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Abstract: Farnesol is a natural sesquiterpenoid and an interesting quorum-sensing molecule.
Its insolubility in water is the biggest obstacle to its application for bacterial biofilm treatments since it
compromises the bioavailability. Recently, an increasing interest in farnesol encapsulation or loading
in polymeric materials may be noted due to the prolonged action of the active macromolecular
systems. In this short review, we present an overview of methods leading to improved interactions
between farnesol and microbial biofilms.
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1. Introduction

Biofilms that cover both abiotic and biotic surfaces provide a protective environment for the
efficient growth of pathogenic bacteria and fungi. A critical factor for the optimal existence of
microorganisms within biofilms is proper communication between the microbial cells. It ensures the
synchronization of the morphological changes, growth, gene expression and secretion of compounds
crucial for the colony development. In heterogeneous microbial biofilms, often one group of consortium
utilize secreted signaling chemical molecules to coordinate collective behavior [1]. The cell-to-cell
communication system, called quorum sensing (QS), involves numerous molecules that regulate biofilm
development and, in consequence, surface colonization [2]. QS inhibitors (QSI) have been proposed
as promising antibiofilm agents and therapeutic alternatives and/or adjuvants to currently failing
antibiotics. QSI inhibit virulence factors essential for establishing infection and pathogenesis through
targeting non-essential metabolic pathways [3]. The effect of naturally isolated plant compounds,
non-toxic to the natural environment, on the repression of QS systems seems to be a very interesting
alternative for disinfectant/antibiotic treatments. Especially, novel antimicrobial systems eliminating
multiantibiotic-resistant biofilms are of increasing interest.

Farnesol (3,7,11-trimethyl-2,6,10-dodecatrien-1-ol) and its derivatives have an important role
in the signal transmission between plants and other organisms, including plant pathogens: aphids
and molds [4,5]. In microorganisms, farnesol is known as a quorum-sensing molecule, that can
significantly increase extracellular polymeric substances (EPS) production by promoting polysaccharide
biosynthesis [6]. Its chemical and biological activity has been recently reviewed [7]. Although the
terpenoid is an important bioactive agent, the direct bioapplication of this compound is limited by its
insolubility in water. Nanoencapsulation of essential oils in nanostructured systems has been employed
in order to overcome their chemical instability and to improve their bioavailability under controlled
release conditions [8]. The design of such high-performance multifunctional materials with a good
activity against drug-resistant pathogens is often bio-inspired, mimicking biological processes and
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natural materials [9]. The encapsulation of farnesol in polymer nanoparticles and micelles or loading it
into polymer gels improves both its stability and bioavailability. In this review, we present a summary
of recent reports on macromolecular systems containing farnesol and its derivatives as antibacterial and
antifungal agents as well as an auxiliary drug in skin reparative therapies and transdermal treatment.

2. Farnesol and Its Antibiofilm Activity

Chemically, farnesol (FOH) is an acyclic sesquiterpene alcohol (Scheme 1), endogenously synthesized
via the ergosterol pathway, present in microbial, plant and mammalian cells. This compound is a major
component of various plant essential oils, e.g., lily of the valley (Convallaria majalis), citrus (Citrus sp.)
and nutmeg (Myristica fragrans). In mammalian cells, FOH is a key intermedjiate in de novo synthesis of
cholesterol [10]. Farnesol, non-toxic to the natural environment, can be a very interesting alternative
for disinfectant/antibiotic treatments, which are often ineffective and induce an increase in the
microbial resistance.
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Scheme 1. Chemical structure of farnesol (3,7,11-trimethyl-2,6,10-dodecatrien-1-ol).

Farnesol is a quorum-sensing molecule secreted by the opportunistic human pathogenic yeast
Candida albicans [11]. However, the mechanism behind its action is not completely understood [1].
It was speculated that C. albicans may exploit the genes regulating filamentation as a self-regulatory
mechanism to induce yeast budding in mature biofilms, their dispersal and seeding of new niches.
Due to the accumulation of farnesol, dense cultures of C. albicans have been reported to display a reduced
tendency for the yeast-to-hyphal switch, inferring the role of FOH in inhibiting hyphae formation [12].
Farnesol’s action as a QSI for C. albicans appears to be highly specific. Only E,E-isomer acts as a
quorum-sensing molecule and supresses filamentation [13]. The morphological response to FOH in
C. albicans seems to be also sensitive for minor structural changes in the molecule morphology [13,14].
It hints that a target-specific protein is most probably involved in its action. Farnesol can be transported
over the bacterial membrane and targets several factors involved in the regulation of morphogenesis
in C. albicans (adenylyl cyclase Cyr1, suppression of mitogen activated protein (MAP) kinase pathway
and Rasl-cAMP signalling pathway) [1,15,16]. In addition, it was found that the removal of the
C. albicans gene EED1, which governs hyphal maintenance, led to hypersensitivity to FOH as well
as to its increased production. It suggests that there is a link between elongated hyphal growth and
FOH signalling mediated via a specific sensor/receptor [17-19]. Farnesol may also induce cell death
(apoptosis) by unspecific effects, e.g., membrane disturbances or glutathione extrusion [1]. C. albicans
has evolved mechanisms that allow tolerating its high concentration in the environment. Despite being
continuously released into the environment at a high cell density, it blocks filamentation, but cannot
inhibit the elongation of already existing hyphae. Therefore, cells are sensitive to farnesol only for a
limited time [20].

Farnesol affects many stages of biofilm development [21] and is responsible for the activation of
extracellular traps’ formations [14]. The expression of genes responsible for cell wall maintenance,
cell surface hydrophilicity, drug resistance, iron transport, hyphae formation and heat shock proteins,
e.g., TUPI (general transcriptional corepressor 1 gene), CRK1 (serine/threonine-protein kinase 1 gene),
PDE? (phosphodiesterase 2 gene), FCR1 (fluconazole resistance 1 gene), PDR16 (phosphatidylinositol
transfer gene), CHT2 and CHT3 (chitinase 2 and 3 genes) and CSH1 genes (cell surface hydrophobicity)
is affected in farnesol-treated biofilms [22]. The activity of the FTR2 enzyme (formylmethanofuran-
tetrahydromethanopterin formyltransferase), as well as the heat shock proteins” production (HSP70,
HSP90, HSP104, CaMSI3, SSA2) are increased in the presence of FOH [22]. Farnesol increases C. albicans
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susceptibility to fungicides by influencing the expression of CYR1 (adenylate cyclase gene) and PDE2
(moderates signalling by cyclic adenosine monophosphate-cAMP) [23].

Farnesol takes part in interspecies communication [24]. This molecule formed by C. albicans may
also inhibit biofilm formation and compromise the cell membrane integrity of methicillin-resistant
and -susceptible strains of Staphylococcus aureus [25]. It has been recently shown that FOH-sensitive
S. aureus lose the staphyloxanthin pigment, an important virulence factor [26]. Farnesol exposure
caused oxidative stress in S. aureus cells is demonstrated by alterations in the redox sensors and major
virulence regulators. Theoretical modelling indicated that FOH may block staphyloxanthin biosynthesis
via competitive binding to the CrtM enzyme, owing to their high structural similarity. Moreover,
farnesol significantly inhibited biofilm formation by Streptococcus mutans [27] and S. epidermidis [28].
It also interferes with the growth of C. neoformans, Penicillium expansum and affects the cell wall and
cytoskeletal integrity in A. fumigatus [29]. Farnesol leads to the downregulation of the Pseudomonas
aeruginosa quinolone signal and enables the coexisting of a mixed heterogeneous population of
C. albicans and P. aeruginosa [30]. It also enhanced the permeability of S. aureus and E. coli to exogenous
chemical compounds [31] and induced apoptosis in Aspergillus nidulans [32] and Aspergillus flavus [33].
The impact of FOH on human innate immune cells was also investigated [34].

The phenomenon of QS inhibition by farnesol has a big potential for the efficient reduction of gene
expression. However, the demonstrated antibiofilm potential of FOH needs to be further explored in
order to develop new therapeutic strategies against biofilm-associated infections. Its hydrophobicity
and limited solubility in water reduces largely the bioavailability and, as a consequence, the antibiofilm
activity on contaminated surfaces. Farnesol oils and stock solutions should be stored under a controlled
atmosphere. Despite its long-term stability in water [11], the composition of the growth medium may
be of importance for the FOH decomposition rate [35]. The encapsulation of farnesol in macromolecular
materials may protect the hydrophobic molecules and help in their dispersion in aqueous systems
enhancing their contact with biofilms. This approach may be an efficient solution for the multiple drug
resistance in microbial pathogens. Such combinations of active drugs and polymeric materials offer
important advantages over conventional antibacterial and antibiofilm systems: prolonged activity,
non-volatility, chemical stability and reduced risk of developing resistance to active agents [36—40].

3. Farnesol-Containing Polymer Materials

Farnesol interactions with macromolecular systems can be found in nature. It was shown that
odorant binding proteins (OBPs) of olfactory roles, present in insects such as Spodoptera exigua, exhibited
considerable affinities to host odorants of acetophenone, farnesol and 3-ionone (Ki < 20 uM) [41].
Farnesol molecules can also be applied for the preparation of synthetic macromolecular systems,
e.g., dendrimers that are interesting materials of unique architecture and applicative potential in
medicine, biology and biotechnology. Well soluble carbosilane dendrimers (first to fourth generation)
were obtained with high yields through the reaction between FOH and Si-Cl-bonded carbosilane
parent dendrimers [42]. Farnesol and its derivative farnesyl were also applied as crosslinkers for
polymeric sulfur (polymeric materials with > 50 wt % elemental sulfur as their major component) [43].
The application of FOH allowed the preparation of more rigid polymers with high T. The foamed
S-farnesol material exhibited extremely high affinity for mercury, making it a promising, low-cost
material for an efficient Hg capture.

Farnesol derivatives can also be used as additives to improve properties of polymers. For example,
farnesyl 3,5-di-tert-butyl-4-hydroxybenzoate and farnesyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)
propionate were proved to influence the oxidation of a polyolefin elastomer [44]. The radical grafting of
these compounds not only prevented their migration from the polymer matrix, but also enhanced the
material’s resistance to oxidation. The material can be applied for novel antioxidant active packaging,
which are of improved long-term stability and attractive physicochemical properties. It should be stressed
that the oxidation of lipids and microbial growth is the main cause of food spoilage [45]. The migration of
low molecular weight antioxidant compounds and their extraction by liquid media is typically a significant
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disadvantage, which results in the deterioration of the properties of polymeric materials and the release of
applied stabilizers [46]. Another farnesol derivative (3,7,11-trimethyl-2,6,10-dodecatrien-1-diaminobutane
amide) was covalently incorporated into polyurethane (PU) chains resulting in the formation of a new
type of polyurethane scaffolds (PU-F) [47]. It influenced the degradation, surface and mechanical
properties of PU. Scaffolds for tissue engineering should be biocompatible, biodegradable, stimulate
blood vessel ingrowth and have mechanical properties consistent with the anatomical site into which it is
to be implanted [48]. The prepared material exhibited good biocompatibility, a capability to vascularize
after implantation and an unconfined compressive of stiffness [49]. No inflammatory reaction was
observed after the scaffold implementation and the modification positively influenced the cell-material
interactions in bovine chondrocytes tests, but had no effect on cells’ viability or proliferation.

Quite importantly, farnesol can be also used as an additive that reduces the rate of bacterial
biofilms” growth on polymeric systems. In vitro experiments showed that FOH can act as an adjuvant
with conventional antibiotics. For example, farnesol and lipopeptide from Bacillus subtilis AC7 (AC7BS)
exhibited a synergistic effect on the inhibition of Candida albicans’ biofilms” growth on catheters made
of silicone elastomers [50]. C. albicans are responsible for dangerous infections caused by their biofilm
formation, whereas FOH inhibits the filamentation regulating the yeast-to-mycelium conversion and
thus influences the biofilm size [51]. The simultaneous application of both compounds exhibited a
stronger activity than each molecule on their own. Their synergistic effect reduced C. albicans” adhesion
up to 74% at 1.5 h and the biofilm growth up to 93% at 24 h. Farnesol was also applied for the surface
modification of orthopedic implants [52]. A limited blood flow and high porosity of bones increase the
risk of bacterial infection in tissues surrounding implants. A high concentration of antibiotics that are
required after orthopedic surgeries can produce irreversible organ damage. To prevent this situation,
the simultaneous local delivery of an antibiotic (vancomycin) and an adjuvant (farnesol) was proposed
to potentiate the therapeutic effect. Although the incorporation of antibiotic and hydrophobic FOH
into a biocompatible and highly porous silica sol-gel was not a simple task, it did not influence the
stability of the thin films on the surface of implants made of titanium alloy and anodized Kirshner
wires, and neither did it affect the release of vancomycin. A complete inhibition of S. aureus was
obtained for films composed of 30 wt % of farnesol and 10 wt % of vancomycin (around 10°-fold
reduction in growth), whereas the application of identical amounts of the pure compounds had no
bactericidal effect (Figure 1).
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Figure 1. The anti-methicillin-susceptible S. aureus growth effect of thin sol-gel films containing
vancomycin and farnesol, coated on Ti rods [52]. Reprinted with permission from (Biomaterials).
Copyright (2014) Elsevier.

The suggested mechanism of action is based on a combined interaction of vancomycin and farnesol
with bacterial cell walls and cell membranes (Figure 2). The antibiotic forms hydrogen bond with
the terminal D-alanyl-D-alanine moieties of the peptides built of N-acetylmuramic acid (NAM) and
N-acetylglucosamine (NAG), thus preventing the proper formation of the cell wall and making it more
prone to lysis [53,54]. However, penetration of the cell wall with the hydrophilic and highly protein
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bound vancomycin is difficult. Farnesol is able to penetrate the biofilm and enhances the permeability
of bacterial cells to some chemical compounds (including vancomycin [55]) and its presence may help
to reduce the number of adherent bacteria. Its hydrophobic molecules can enhance non-specifically
the permeability of bacterial cells by accumulating in the cell wall and cell membrane, increasing its
porosity within the cell wall and preventing its reparation mechanisms. It leaves a pathway for a
vancomycin penetration of the cells.
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Figure 2. Farnesol adjuvant activity leading to the enhancement of vancomycin’s effectiveness [52].
Reprinted with permission from (Biomaterials). Copyright (2014) Elsevier.

Molecules of farnesol, due to their amphiphilic structure, are capable of the formation of large
supramolecular systems. It was shown that FOH-based heterocyclic cationic surfactants, [1-methyl-
3-(2-oxo-2-((farnesyl)oxy)ethyl)-1H-imidazol-3-ium bromide, 3-hydroxy-8-methyl8-(2-oxo-2-((farnesyl)
oxy)ethyl)-8-azabicyclo[3.2.1]Joctan-8-ium bromide and 1-(2-oxo-2-((farnesyl)oxy)ethyl)pyridin-1-ium
bromide)], can adsorb at the water—air interface and self-aggregate into micelles in aqueous systems [56].
Intramolecular cation—m interactions, hydrolysis and molecular rearrangements resulted in the release of
volatile compounds. Their type was influenced by the place where they were formed (inside micelles
or at the air-water interface). Molecules of farnesol can also be loaded inside micelles, nanoparticles
and liposomes formed by various polymers, such as poly(lactic acid), poly(methyl methacrylate) and
polystyrene microparticles [57]. Such an encapsulation may also robustly improve its dispersion in
other systems, including its aqueous solubility. It is also a very good solution to increase the stability of
antibacterial and antifungal activity of FOH in the treatment of biofilms and planktonic cells.

Farnesol can also be encapsulated in silica capsules with oil cores obtained by a sol-gel method
(water-in-oil-in-water—O/W/O, multiple emulsions) using tetraethoxysilane as their precursor [58,59].
Amorphous silica-based capsules are an interesting alternative to organic-based micelles due to their
good thermal stability and biocompatibility. This type of nanoparticles can find an application in
cosmetics as an efficient but not expensive antioxidant-releasing material.

3.1. Nanoparticles and Liposomes Containing Farnesol

3.1.1. Antibacterial Materials

Nanoparticles can act on bacterial cells in biofilms and their components through peptidoglycan
damage, plasmid nicking, oxidative damage to cell components by reactive oxygen species, enzyme
disruption or protein denaturation [60,61]. Strategies involving nanoparticles include contact killing
through cell membrane breakage, biofilm penetration through water channels and EPS, antimicrobial
cargo loading, photosensitizer loading for photothermal effects or ion release [62]. Apart from the size
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and shape of nanoparticles, also their surface properties and interior structure (liposomes, micelles,
dendrimers, mesoporous silica particles) may be tailored for the best effect.

For example, pluronics-formulated farnesol was used for efficiently killing Streptococcus mutans
biofilms that are a causative agent of dental caries. A tooth-binding, negatively charged micellar
drug delivery platform was designed using biocompatible Pluronic copolymers that encapsulated
antimicrobial FOH [63]. Their functionalization with biomineral-binding alendronate moieties allowed
an effective and swift binding (<1 min) to the model tooth surface—hydroxyapatite (HAp—the main
component of enamel)—and gradually released the encapsulated farnesol. In vitro biofilm inhibition
studies demonstrated that they were able to provide a significantly stronger inhibition of Streptococcus
mutans’ biofilm formation on HAp discs than the untreated blank control micelles (p < 0.0001).
Other studies showed that the biomass was significantly decreased (SNK test, p < 0.05) in the presence
of FOH encapsulated in Pluronics micelles, relative to untreated biofilms [64]. The formation of large
towers containing dead cells appeared to be specific to formulated farnesol (this phenomenon was not
observed in the presence of triclosan). The cell killing was independent of the tower formation. Parallel
CFU/mL tests revealed that biofilm growth in the presence of Pluronic-formulated FOH resulted in a
3-log reduction in viability, whereas the viability in the presence of neat farnesol decreased by less than
1-log. The Pluronics-formulated FOH was able to alternate the biofilm architecture, presumably via
interactions with the sucrose-dependent biofilm matrix.

The antibacterial efficacy of formulations containing farnesol can also be improved by the
application of pH-responsive polymer nanoparticle carriers (NPCs) which may be of importance in
acidic microenvironments of bacterial biofilms. Such an approach to drug delivery enhanced the
therapeutic efficacy and reduced the side effects [65,66]. Stimuli-responsive materials can be designed to
modify their features in response to the nature of the microorganisms (changes in pH, pO,, temperature,
bacterial-secreted compounds) in order to improve their performance against infections and biofilms [67].
Antibacterial pH-responsive nanoparticles become a means for controlling oral biofilm-related infections
during various stages of biofilm formation [68,69]. FOH release from nanoparticles as a function of pH
is a novel, promising way to inhibit biofilm formation and reduce the number and severity of carious
lesions. Farnesol-loaded p(DMAEMA)-b-p(DMAEMA-co-BMA-co-PAA) [poly(dimethylaminoethyl
methacrylate)-b-poly(dimethylaminoethyl methacrylate)-co-butyl methacrylate-co-propylacrylic acid]
micelles can be successfully applied against S. mutants’ biofilm formation [70,71]. FOH-containing
nanoparticles capable of binding to hydroxyapatite (HA), saliva-coated HA (sHA) and exopolysaccharides
with an enhanced drug release at an acidic pH were developed [70]. It was loaded into cationic
nanoparticles formed by diblock copolymers composed of 2-(dimethylamino)ethyl methacrylate
(DMAEMA), butyl methacrylate (BMA) and 2-propylacrylic acid (PAA) (p(DMAEMA)-b-p(DMAEMA-
co-BMA-co-PAA)) (Figure 3). The cationic nanoparticles adsorbed very well onto the negatively
charged HA, sHA and exopolysaccharide-coated sHA due to the strong electrostatic interactions
via the multivalent tertiary amines of p(DMAEMA). FOH was loaded into hydrophobic cores at
~22 wt %. Farnesol release was found to be pH-dependent with t;, =7 h (pH 4.5) and 15 h (pH 7.2).
At an acidic pH (characteristic of cariogenic biofilm microenvironments), the nanoparticles underwent
core destabilization. Topical applications of the FOH-loaded nanoparticles disrupted biofilms of
Streptococcus mutans four times more effectively than free farnesol and reduced both the number and
severity of carious lesions (free FOH had no effect). Treatment drug-loaded nanoparticles compromised
the mechanical stability of the biofilms compared with the free farnesol and control experiments
(>2x enhancement in the biofilm removal under shear stress).
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Figure 3. Synthesis and function of polymeric nanocarriers of farnesol and their antibiofilm activity [70].
(A) Depiction of the chemistry and self-assembly of diblock copolymers. (B) Structures of control
polymers utilized to isolate the required physicochemical characteristics for binding to dental surfaces.
(C) Proposed mode of action of pH-responsive nanoparticles for the prevention and/or treatment of
biofilms. Reprinted with permission from (ACS Nano). Copyright (2015) American Chemical Society.

Another way to prepare antimicrobial materials is by an application of FOH derivatives,
e.g., farnesal (3,7,11-trimethyl-2,6,10-dodecatrienal) [72]. It exhibits similar anti-bacterial properties
against S. mutans, and is also highly hydrophobic. A novel drug delivery system was obtained by
the solubilization of farnesal through linking it to polyethylene glycol chains and conjugation with
tris(tetra-n-butylammonium) hydrogen pyrophosphate. This procedure allowed the synthesis of
polymeric micelles that were able to rapidly bind to hydroxyapatite and remain there for up to 12 h.
Nearly 90% of the encapsulated farnesal was released within 30 min in an acidic pH environment
(pH = 4.5), suggesting that the release takes place selectively under acidic conditions.

It is known that saturated conditions enhance drug loading [73]. The application of the saturated
FOH solution improved the drug loading capacity and prolonged the time with a zero-order drug release
to 48 h. Farnesol-loaded NPCs, varying in the overall molecular weight, and corona-to-core molecular
weight ratios were also used [74]. The active molecules were located in the pH-responsive core of diblock
co-polymer NPCs synthesized by the sequential copolymerization of 2-(dimethylamino)ethylmethacrylate
(DMAEMA), butyl methacrylate (BMA) and 2-propylacrylic acid due to hydrophobic interactions.
NPCs loaded at saturated conditions exhibited ~300% greater drug loading capacity over standard
conditions. A zero-ordered drug release was noted over 48 h (three times longer than standard farnesol
loading). Their anti-biofilm activity towards planktonic Streptococcus mutans and their biofilms was
markedly amplified. The total biomass was reduced by disrupting the insoluble glucan formation and
increased the NPC cell membrane localization.

Antimicrobial properties against S. mutants were also exhibited by FOH-loaded halloysite nanotubes
(Fa-HNT) in dental resin composites [75]. Halloysite nanotubes are two-layered alumino-silicate tubular
structures [76]. Their empty interior can be used as a potential carrier for entrapped drugs [77]. Fa-HNT
were incorporated in flowable resin composites consisting of methacrylate monomers and dental glass
fillers at concentrations of 1-20% (wt./wt.). The addition of Fa-HNT caused an enhancement of the
compressive strength as well as the flexural modulus of the composite, but decreased the flexural strength.
The dental composite exhibited a significant antibacterial activity with an increase in the area of the zone
of inhibition against the strains of Streptococcus mutans. The Fa-HNT resin composites were not cytotoxic
(tests on NIH-3T3 mouse embryonic fibroblast cell lines) and may be used as multipurpose restorative
dental materials. Farnesol was also used as an upgrading additive to a glass ionomer cement (GIC—a
restorative material) [78]. The incorporation of FOH into GIC inhibited the growth of the cariogenic
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bacteria S. mutans but had a little effect on the composition, structure and physiology of the biofilm
matrices. Larger zones of inhibition (p < 0.05) were noted and the polysaccharides levels increased
over time. Bacterial viability in biofilms was reduced for a short term, yet the biomass was similar
(p > 0.05). Moreovert, the GIC’s hardness was increased and it showed greater biocompatibility to human
cell HaCaT.

Farnesol can be applied along with other antibacterial agents. For example, the biofilm
anti-adhesion activity of poly(vinyl alcohol)-coated silver nanoparticles (AgNPs-PVA) and FOH
was evaluated using bovine root dentine [79]. The minimum inhibitory concentration (MIC) and
minimum microbicidal concentration (MMC) of the AgNPs-PVA and farnesol were evaluated against
E. faecalis (42.5/50 uM and 0.85/1.0%, respectively), C. albicans (27.5/37.5 puM and 1.75/2.5%) and
P. aeruginosa (32.5/32.5 uM and 2.5/2.75%). The antimicrobial and biofilm anti-adhesion activities
of AgNPs-PVA and farnesol show their potential for use as a co-adjuvant in endodontic treatment
(auxiliary procedure for root canal disinfection) as well as intracanal medications, root canal sealers
and/or repair cements.

3.1.2. Antifungal Materials

Nanostructured farnesol may be a promising alternative to conventional antifungal therapies,
including systems of synergistic action with other drugs. Farnesol as a fungal quorum-sensing
molecule (QSM) was co-delivered with antibiotic ciprofloxacin as a liposomal formulation to eradicate
Pseudomonas aeruginosa biofilms [80]. It was proved to be a promising approach that gives better
results in biofilm killing than the application of the free antibiotic. The liposomes were prepared
using the dehydration—rehydration method. This antibiofilm strategy synergistically combined the
microbial quorum-sensing and bactericidal agent’s delivery and led to superior biofilm killing (Figure 4).
The efficacy of liposomes and the detrimental effects of FOH on P. aeruginosa were assessed using
a standard biofilm assay. It was shown that the ciprofloxacin release from liposomes was higher
when encapsulated with farnesol (Lcip + FOH) compared with the antibiotic alone, whereas the FOH
release was lower for Lcip + FOH compared with liposomes containing only farnesol. The biofilm
metabolism was significantly lower when it was simultaneously treated with Lcip + FOH or Lcip
compared with free ciprofloxacin. The biofilm disruption was confirmed for the treatment with Lcip
+ FOH, with a greater dead cell ratio and increased depth of biofilm destruction than with other
liposomal preparations. The addition of FOH allowed the application of a lower concentration of
ciprofloxacin. It should be noted that typically a drug penetration into dense P. aeruginosa biofilms is
difficult and results in an ineffective infection clearance.

Farnesol was also used to cure vulvovaginal candidiasis (VVC) caused by the opportunistic
fungus Candida albicans, whose yeast to hyphae transition is considered a major virulence factor [81].
A mucoadhesive nanostructured system was obtained by the co-encapsulation of FOH and
miconazole nitrate within chitosan nanoparticles and successfully tested against C. albicans infection.
Chitosan nanoparticles containing the active components were prepared by ionic gelation and showed
favourable characteristics for use on mucous membranes. The efficiency of the drug encapsulation was
maintained for at least 30 days. The nanoparticles were considered nontoxic in tests with cultured
fibroblasts (BALB/c 3T3). Farnesol was capable of inhibiting the yeast to hyphae transition at levels
>300 uM. The nanoparticles showed antifungal activity against C. albicans. The minimal inhibitory
concentration of nanoparticles containing miconazole and FOH was slightly lower (2 ug/mL) than
the MIC for nanoparticles with only miconazole (2.5 pg/mL). The chitosan nanoparticles containing
farnesol not only inhibited fungal proliferation, but also inflammation in the tissue.
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Figure 4. Proposed mechanism explaining the P. aeruginosa biofilm disruption by liposomes loaded with
farnesol and ciprofloxacin [80]. Reprinted with permission from (Mol. Pharmaceutics). Copyright (2016)
American Chemical Society. https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.6b00360. Further
permissions related to the material excerpted should be directed to the ACS.

Nanogels synthesized from natural based polymers can also work as nanocarriers for FOH and
may be designed for pharmaceutical applications. Antifungal properties have been evaluated for
nanogels (diameter of 42-70 nm) synthetized with alginate (AL) and chitosan (CS) polymers loaded
with farnesol [82]. The nanocarriers which contained 300 mM of farnesol influenced the bacterial
biofilm growth and HWP1, SAP6 and Rim101 gene expression pattern in C. albicans. The chitosan
nanogel released 58% of farnesol during in vitro studies, and showed larger inhibitory zones than the
AL nanogel (37% FOH release). No significant difference between the control and treatment groups was
observed in the cytotoxicity assay (p > 0.05). The expression of the HWP1 and SAP6 genes in C. albicans
ATCC10231 treated with the CS nanogel (assessed using real-time polymerase chain reaction, PCR)
was significantly decreased (p < 0.01). The inhibition of key genes contributing to the hyphal formation
by the CS/farnesol nanogel suggest that this approach may be a suitable drug delivery strategy.

3.2. Skin Reparative Therapies and Transdermal Treatment

Farnesol was found to be a potential skin quality-improving component applicable for reparative
and preventive care purposes for UV-damaged skin. FOH containing formulations composed of
hydroxypropyl methylcellulose (HPMC) with the addition of hyaluronan (HA) and xanthan gum
(XG) were evaluated for the screening of UVB-light and H,O, elimination in normal fibroblasts [83].
Gels containing farnesol exhibited anti-photoaging and reparative effects against UVB-induced
skin damage (collagen production increase and inflammation alleviation) as well as UVB-screening
properties. The best effects were obtained for the gel containing 0.0025% FOH, 0.5% HA, 0.5% XG and
2% HPMC. Further studies have shown that a farnesol-containing (0.3 and 0.8 mM) gel consisting of 0.1%
HA and 2% HPMC was used to prepare facial masks with ultraviolet B-screening and skin-repairing
capabilities [84]. The collagen production enhancement by skin fibroblasts in vitro was evaluated and
an increase in skin smoothness was observed in vivo upon the application of those formulations on
UVB-caused sunburnt rat skin. Skin inflammation was alleviated, and interleukin (IL)-6 was decreased
in the formulation containing 0.8 mM of FOH.
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Liposomal farnesol can help even more to promote sunburn wound healing. For example,
FOH encapsulated in liposomes and admixed into a HPMC gel was studied as a tissue-repairing
agent for third-degree burns [85]. In vitro results revealed that liposomal farnesol at intermediate
concentrations (from 0.04 to 0.8 mM) enhanced the collagen production by murine skin fibroblasts.
High (>0.8 mM) and low (<0.04 mM) concentrations supressed skin fibroblast proliferation.

A farnesol/alcohol mixture was also used as a permeation enhancer to a propranolol hydrochloride
(PPL-HCl)-containing HPMC gel, used in the transdermal treatment for superficial infantile
hemangioma (IH) [86]. Farnesol plus isopropanol was the most effective combination that increased
the cumulative penetration of PPL-HCl (Q24, 6027.4 + 563.1 pg/cmz, ER, 6.8), which was significantly
higher than that of the control gel (p < 0.05).

4. Conclusions

The encapsulation of farnesol in polymeric micelles or loading it into macromolecular nanogels
increases its stability and antibiofilm activity due to the extended contact time. This approach may
also improve interactions of farnesol with planktonic cells, owing to its better dispersion in aqueous
systems. The activity of farnesol as an adjuvant enhances the therapy effectiveness for other drugs.
Polymeric systems containing the terpenoid alcohol are also a promising solution for skin reparative
therapies, not only exhibiting antibiofilm properties and reparative effects, but also UVB screening.
Although drug delivery systems based on macromolecular materials may offer a solution to many
problems and a significant improvement of the therapeutic effects, one should also be aware of the
limitations of these methods. Several synthetic steps may be involved to achieve the designed structure,
which is crucial for pH-sensitive materials, and the resulting products need to have appropriate
physical properties. It is thus necessary to focus on the balance between the pros and the cons as well
as to find a solution to those problems in future research.
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