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Abstract: It is increasingly useful to develop bifunctional catalysts for oxygen reduction and
oxygen evolution reaction (ORR and OER) for fuel cells, metal-air rechargeable batteries,
and unitized regenerative cells. Here, based on the excellent conductivity and stability of
ordered mesoporous carbons, and the best ORR and OER activity of Co3O4, the composite
Co3O4/N-HNMK-3 was designed and manufactured by means of a solvothermal method, using
ordered N-doped mesoporous carbon (N-HNMK-3) as substrate, and then the bifunctional
electrocatalytic performance corresponding to ORR, OER in alkaline media was carefully
investigated. The results showed that Co3O4/N-HNMK-3 composite, a non-precious metal
centered electrocatalyst, displayed excellent ORR performance (activity, selectivity, and stability)
close to that of commercial 20 wt.% Pt/C and a promising OER activity near 20 wt.% RuO2/C.
The outstanding bifunctional activities of Co3O4/N-HNMK-3 was assessed with the lowest 4E
value of 0.86 V (EOER,10 mA cm−2 -EORR,−3 mA cm−2 ) with respect to the two commercial precious
metal-based electrocatalysts.

Keywords: Ordered mesoporous carbon; nitrogen doping; cobalt-based electrocatalyst; bifunctional
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1. Introduction

Hydrogen is deemed as the best way for renewable sources energy-storage to replace
petroleum-based energy resources because of its high calorific value, abundant reserve, and near
zero release. Yet, both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER)
individually play crucial roles in fuel cells for the practical application of hydrogen, and water
electrolysis for the high-efficiency production of high-purity hydrogen [1–4]. Recently, unitized
regenerative cells (URCs), integrating water electrolysis and fuel cell in one setup, have attracted
increasing attention due to potential applications in aviation, submarines and transportation as a
mobile power source. This issue remains key to exploring high performance and low cost. In terms
of electrocatalytic activity, Pt/C and Ru-/Ir oxides are generally considered to be the most advanced
electrochemical oxygen catalysts for the ORR and OER processes, respectively. However, high cost,
low methanol tolerance, and poor stability continue to hamper practical marketing development [5].
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Therefore, it remains a big challenge to develop promising bifunctional oxygen electrodes for the
development of URCs.

Among non-precious metal electrocatalysts being developed such as cobalt-based chalcogenides,
CoSe2, CoS, and Co3O4, show outstanding performance toward oxygen electrode reactions including
activity, selectivity, and durability in alkaline media [6–9]. However, cobalt-based chalcogenide
electrocatalysts have a low electrical conductivity and per se a negative effect on the performance of the
electrocatalyst. On the other hand, ordered mesoporous carbon as a conductive substrate has attracted
more attention because of large surface, high conductivity and long durability. [10–13]. In addition, the
doping heteroatom, such as nitrogen [14,15], phosphor [16,17], sulfur [18] and boron [19], can further
improve electrocatalytic performance towards oxygen electrode reactions due to new active species.
In a previous report, we developed N-doped ordered mesoporous carbons (CMK-3) with high ORR
activity, long stability, and outstanding methanol tolerance in 0.1 M KOH [20]. Therefore, it is possible
to explore high-performance, low-cost electrocatalysts using N-doped ordered mesoporous carbon as
a substrate to support cobalt-based chalcogenides.

Here, we manufactured the N-doped ordered mesoporous carbon substrate (N-HNMK-3) for
Co3O4 composite (Co3O4/N-HNMK-3) by means of a solvothermal route using the home-made
ordered mesoporous carbon as carbon source, melamine as a nitrogen source, cobalt acetate as a cobalt
source, and urea as the precipitating agent. Figure 1 describes the corresponding synthesis process.
In addition, we carefully examined the bifunctional electrocatalytic performance of ORR and OER
processes in alkaline media using the rotating disc electrode technique. The compound, based on
non-precious metals, shows a promising electrocatalytic performance.
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2. Materials and Methods

2.1. Chemicals

Cobalt acetate (Co(CH3COO)2·6H2O), urea (CO(NH2)2), HNO3 (6M), melamine (C3H6N6), and
ethanol (C2H5OH) were A.R. grade and were directly used as received from Beijing Chemical Co. Ltd
(Beijing, China). CMK-3 was synthesized as reported previously [20].

2.2. Synthesis of Nitrogen-Doped Ordered Mesoporous Carbon (N-HNMK-3)

Nitrogen-doped ordered mesoporous carbon was fabricated by post-treated nitrogen doping
method using ordered mesoporous carbon (CMK-3, surface area, 1247.5 m2/g; pore volume, 1.5 mL/g)
as carbon source, and melamine as nitrogen source. To obtain HNMK-3, CMK-3 (0.5002 g) was
dispersed in 6.0 M HNO3 (50.0 mL) under vigorous stirring at 70 ◦C for 3 h, and the resulting
suspension was cleaned to neutral pH using deionized water. Thereafter, 0.5000 g HNMK-3 and
2.5000 g melamine were then mixed during grinding to form the homogeneous mixture. Finally, the
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obtained mixture was calcined in a nitrogen atmosphere at 900 ◦C for 4 h to produce nitrogen-doped
ordered mesoporous carbon (N-HNMK-3).

2.3. Synthesis of Co3O4/N-HNMK-3 Electrocatalyst

Co3O4/N-HNMK-3 electrocatalyst was carefully generated via the solvothermal route using
N-HNMK-3 as conductive support; Co(CH3COO)2 as cobalt source, and CO(NH2)2 as the precipitating
agent. Typically, 0.0175 g of the as-prepared N-HNMK-3 was dispersed in ethanol (40.0 mL) by
ultrasound for 2h to form the suspension A. Simultaneously, 1.50 g Co(Ac)2 (6.0 mmol) was added in
deionized water (40.0 mL) and ultra-sonicated for 20 min to form solution B. Then suspension A and
solution B were mixed and ultrasonicated again to produce another suspension. At this point 0.72 g
CO(NH)2 was added under vigorous stirring at 80 ◦C for 24 h to produce a suspension, which was
heated at 150 ◦C in a Teflon-lined stainless-steel autoclave for 3 h. The cooled product was centrifuged
and washed with deionized water and ethanol three cycles, and dried at 60 ◦C overnight. The collected
final product was Co3O4/N-HNMK-3. In addition, Co3O4, as a reference, was prepared in the same
procedure without N-HNMK-3.

2.4. Characterization

The materials phase was characterized by Rigaku UItima III XRD (Rigaku Corporation, Tokyo,
Japan) with Cu Kα radiation (λ = 0.154 nm) at 5 min−1 per 2θ. The morphologies were analyzed by
Zeiss Supra 55 SEM(Carl Zeiss Jena, Oberkochen, German), a JEOL JEM-2012 TEM (JEOL, Tokyo,
Japan), and HRTEM (JEOL, Tokyo, Japan) with a line resolution of 0.19 nm was used. Raman spectra
were examined via a Nanofinder 3.0 Raman spectrometer with a He-Ne laser beam of 532 nm. Binding
energies of chemical species were collected by XPS using VG ESCALAB 2201 XL spectrometer (Thermo
VG Scientific, West Sussex, England).

2.5. Electrochemical Measurements

All electrochemical tests were performed in a standard three-electrode system on the Chen Hua
electrochemical workstation (CH Instruments Ins., Shanghai, China) at 25 ◦C. Here, a saturated calomel
electrode and a Pt-wire were employed as the reference and counter electrodes, respectively. In this
work, all potentials were referred to a reversible hydrogen electrode (RHE): ERHE = ESCE + 0.99 V
(0.1 M KOH); and ERHE = ESCE + 1.06 V (1.0 M KOH).

Prior to catalyst deposition, the GC disk was polished with γ-alumina (5A), and successively
ultra-sonically treated in water, and then ethanol for one min in each solvent. The ink was prepared
by mixing the catalyst powder (6.7 mg), Nafion (5 wt.%) (40 µL), ethanol (300 µL), deionized water
(1160 µL) and ultra-sonicated for 40 min. 4.2 µL of the ink was deposited onto the GC disk (4.0 mm,
diameter) with a catalyst mass loading of 150 µg cm−2. The electrolyte was degassed with argon and
oxygen for 30 min before cyclic voltammetry (CV) tests. Also, two benchmarks: 20 wt.% Pt/C (Johnson
Matthey) and RuO2/C were prepared as references with a corresponding loading of 60 µg cm−2 for Pt,
and RuO2.

In the ORR test, the LSV curves were recorded in O2-saturated 0.1 M KOH by scanning the disc
potential vs. RHE from 0.95 V to 0.15 V at 5 mVs−1 with the electrode rotated at 2500, 2025, 1600,1225,
900, 625, and 400 rpm, and analysis performed using the Koutecky-Levich (K-L) equation:
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j, jk, jd are the corresponding measured, kinetic and diffusion limiting current densities, respectively [5];
C0 and D0 were the saturated concentration, and the diffusion coefficient of O2 (1.14 × 10−6 mol cm−3

and 1.73 × 10−5 cm s−1) in 0.1 M KOH, v was the kinetic viscosity coefficient (0.01 cm2 s−1).
In the RRDE test, the HO2

−% and the number of electrons transferred(n) was calculated by the
following two equations:

HO−2 % = 200 ∗ IR/N
ID + IR/N

(4)

n = 4 ∗ ID
ID + IR/N

(5)

where ID, IR and N is disk current, ring current and collection efficiency (0.424), respectively.
For the OER tests, measurements were carried out in O2-saturated 1.0 M KOH with a rotating

speed of 1600 rpm at a scan rate of 5 mV s−1 from 1.0 V to 1.65V vs. RHE.

3. Results and Discussion

3.1. Structure, Morphology, and Chemical Composition

Figure 2 shows the powder PXRD patterns of N-HNMK-3, Co3O4, and Co3O4/N-HNMK-3.
Compared to CMK-3, the peak of N-HNMK-3 samples at 23.8◦/2θ shifts to a lower angle with a higher
degree of graphitization, which could be the result of a change in electron distribution following the
incorporation of the heteroatom on the surface of carbon materials [21]. Based on the Bragg equation,
a series of Bragg reflection peaks in Co3O4 and Co3O4/N-HNMK-3 samples correspond to (111), (220),
(311), (400), (511), and (440) crystal faces, that match well with the cubic spinel phase Co3O4 (ICDD
PDF card No. 42-1467). This means that the urea-assisted solvothermal method is an available way to
prepare the Co3O4/N-HNMK-3 composite.
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Figure 2. Powder XRD patterns of N-HNMK-3, Co3O4, and Co3O4/N-HNMK-3 composite.

Figure 3 displays the morphologies and microstructures of Co3O4 and Co3O4/N-HNMK-3
samples. The Co3O4 sample shows different rod-shape in size, Figure 3a. In comparison, the Co3O4

particles, in Co3O4/N-HNMK-3 composite, are well-dispersed and supported on N-HNMK-3 substrate,
Figure 3b,c. In addition, the average particle size for Co3O4 was 20–30 nm, Figure 3c. The HRTEM
image of Co3O4 reveals three lattice distances such as 0.286, 0.244 and 0.202 nm, which individually
correspond to (220), (311) and (400) Co3O4 crystal planes, Figure 3d.



Surfaces 2019, 2 233

Surfaces 2019, 2 FOR PEER REVIEW  5 

 

Figure 3. (a) The SEM images of Co3O4, (b) Co3O4 /N-HNMK-3. (c) TEM and (d) HRTEM images of 
Co3O4 /N-HNMK-3. 

In addition, Figure 4 shows the Raman spectra of N-HNMK-3, Co3O4, and Co3O4/N-HNMK-3 
samples as well as the corresponding fitting profiles of N-HNMK-3 and Co3O4/N-HNMK-3. One 
observes two characteristic bands for N-HNMK-3, and Co3O4/N-HNMK-3 centered at 1358 (D peak) 
and 1590 (G peak) cm−1. The former peak (D peak) refers to sp3-like C atoms defect sites, whereas the 
latter (G peak) refers to sp2 C=C stretching mode [22]. Remarkably, other peaks were detected at 192, 
468, 516 and 677 cm−1, assessing the presence of Co3O4 [23]. The intensity ratio of two bands (ID/IG) 
illustrates the disordered degree of carbonization. A ratio of 2.96 for N-HNMK-3, and 2.78 for 
Co3O4/N-HNMK-3 suggest that the incorporation of Co3O4 decreases the disordered degree, 
increasing the conductivity of the substrate. 

Figure 4. (a) Raman spectra of N-HNMK-3, Co3O4 and Co3O4/N-HNMK-3. (b) The corresponding 
Raman fitting profiles of N-HNMK-3 and Co3O4/N-HNMK-3. 

Surface elemental properties and electronic valence states were further characterized by XPS. A 
survey spectrum of Co3O4/HNMK-3 displays the existence of C 1s, N 1s, O 1s, Co 2p signals at 284.5, 
399.9, 530.5, 780.1 and 796.2 eV, respectively, as shown in Figure 5a. The corresponding atomic 

Figure 3. (a) The SEM images of Co3O4, (b) Co3O4/N-HNMK-3. (c) TEM and (d) HRTEM images of
Co3O4/N-HNMK-3.

In addition, Figure 4 shows the Raman spectra of N-HNMK-3, Co3O4, and Co3O4/N-HNMK-3
samples as well as the corresponding fitting profiles of N-HNMK-3 and Co3O4/N-HNMK-3. One
observes two characteristic bands for N-HNMK-3, and Co3O4/N-HNMK-3 centered at 1358 (D peak)
and 1590 (G peak) cm−1. The former peak (D peak) refers to sp3-like C atoms defect sites, whereas
the latter (G peak) refers to sp2 C=C stretching mode [22]. Remarkably, other peaks were detected at
192, 468, 516 and 677 cm−1, assessing the presence of Co3O4 [23]. The intensity ratio of two bands
(ID/IG) illustrates the disordered degree of carbonization. A ratio of 2.96 for N-HNMK-3, and 2.78
for Co3O4/N-HNMK-3 suggest that the incorporation of Co3O4 decreases the disordered degree,
increasing the conductivity of the substrate.
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Surface elemental properties and electronic valence states were further characterized by XPS.
A survey spectrum of Co3O4/HNMK-3 displays the existence of C 1s, N 1s, O 1s, Co 2p signals at
284.5, 399.9, 530.5, 780.1 and 796.2 eV, respectively, as shown in Figure 5a. The corresponding atomic
percentage of every element of different samples, N-HNMK-3 has a similar nitrogen content with
Co3O4/HNMK-3, as summarized in Table 1. In the C1s high-resolution XPS spectrum, shown in
Figure 5b, the prominent peak centered at 284.6 eV corresponds to sp2-hybridised carbon atoms in
graphitic structure. The series of fitted peaks at 285.7, 288.3, and 288.6 eV are attributed to C=N, O-C=O
and C-N, respectively. The XPS spectra of C=N and C-N further assess the presence of N-dopant atoms.
As to Co2p spectrum, Figure 5c there are two peaks centered at 779.7 and 795.1 eV attributed to Co
2p3/2 and 2p1/2 signals, with an energy separation of 15.4 eV, evidencing the presence of Co3O4 in
the composites [24]. Two nitrogen species detected in the N 1s high resolution, shown in Figure 5d, at
~398.6 eV and 400.2 eV are assigned to pyridine and Pyrrole-N. Previous results already demonstrated
that pyridine N is an active site for the ORR [25]. The relative content of Pyrrole-N in Co3O4/HNMK-3
sample is 70.2%, which is higher than that of Pyridine-N (29.8%). It’s worth noting that N-HNMK-3
and Co3O4/HNMK-3 samples have similar N content.
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Table 1. The element amount (at. %) in N-HNMK-3, Co3O4 and Co3O4/N-HNMK-3 samples.

Samples C N Co O Pyridinic-N Pyrrolic-N

N-HNMK-3 88.8 2.6 8.6 31.2 68.8
Co3O4 42.8 57.2

Co3O4/N-HNMK-3 60.6 2.2 9.4 27.8 29.8 70.2

3.2. Electrocatalytic ORR Performance

The ORR performance of Co3O4/N-HNMK-3 composite was determined by RDE technique, and
compared to two commercial reference materials: Pt/C and RuO2/C. Figure 6 displays the activity
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towards ORR in 0.1 M KOH electrolyte. Specifically, Figure 6a,b show the ORR activity difference
among five samples: N-HMNK-3, physical mixture of N-HMNK-3 and Co3O4, Co3O4/N-HMNK-3
composite, Pt/C, and RuO2/C. Herein, it is observed that the Co3O4/N-HMNK-3 composite has a
much higher ORR activity compared to N-HMNK-3, the physical mixture, and RuO2/C, and close
to Pt/C. Interestingly, the Co3O4/N-HNMK-3 composite shows much better ORR activity than the
mechanical mixture (Co3O4 +N-HNMK-3). This difference in the ORR activity results from the possible
synergistic effect between two compositions, and from the high dispersion of Co3O4 on the N-HNMK-3
substrate. In addition, cyclic voltammetry measurement, shown in Figure 6c, was conducted to gain
deeper insight into the ORR process. In the O2-saturated electrolyte there is a cathodic peak centered
at 0.75 V, which is absent in the Ar-saturated electrolyte. The onset potential of Co3O4/N-HMNK was
detected at 0.90 V vs. RHE. The ORR hydrodynamics on Co3O4/N-HNMK-3 between 400 rpm to 2500
rpm is shown in Figure 6d with well-defined sigmoidal curves. The electron transfers number (n)
was estimated through the slopes of fitted K-L plots, see the inset in Figure 6d. Within the applied
electrode potential from 0.2 to 0.5 V, the estimated transfer number (n) per O2 molecule was ca. 3.94,
suggesting a 4-electron transfer pathway. Meanwhile, we used the RRDE to calculate the hydrogen
peroxide and electron transfer number in Figure S1 (See Supporting Information). The low hydrogen
peroxide below 15% and transfer number beyond ca. 3.75 in the range of 0.1–0.75 V suggested a close
4-electron transfer pathway.
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Figure 6. (a) ORR polarization curves of N-HNMK-3, Co3O4+N-HNMK-3 (physical mixture),
Co3O4/N-HNMK-3, Pt/C, and RuO2/C at 1600 rpm in O2-saturated 0.1M KOH; (b) the limited
current density at 0.50 V/RHE and half-wave potential from (a); (c) CV curves of Co3O4/N-HNMK-3
in Ar- and O2-saturated 0.1M KOH; (d) ORR polarization curves of Co3O4/N-HNMK-3 at various
rotation rates, the inset shows the corresponding K-L plot of Co3O4/N-HNMK-3.

In addition to activity, the selectivity (tolerance to small organics) and the stability are two other
key parameters for a high performance electrocatalyst. Figure 7a depicts the electrocatalytic selectivity
in the presence and the absence of 3.0 M methanol in 0.1 M KOH electrolyte. After the addition of 3 M
methanol, no significant change was observed in the polarization curves in Ar- and/or O2-saturated
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electrolyte, see the inset in Figure 7a. In O2-saturated electrolyte Co3O4/N-HNMK-3 showed a
complete tolerance to methanol. In contrast, as it is well established, Pt/C has no selectivity towards the
ORR in presence of methanol, since this material develops a mixed potential due to methanol oxidation
and oxygen reduction. Furthermore, the stability test, as demonstrated by chronoamperometry,
Figure 7b, was conducted at 0.70 V/RHE, and revealed that, after 18000 s, the ORR activity of
Co3O4/N-HNMK-3 dropped 18.2% against 23.9% on Pt/C. Meanwhile, CVs with multiple cycles in
oxygen- saturated solution for ORR were shown in Figure S2 (See Supporting Information), after the
accelerated aging test, the reduction potential only shifts 36 mV to a negative region for 1500 cycles.
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3.3. Electrocatalytic OER Performance

The OER plays a crucial role in water electrolysis and metal-air batteries’ systems [26]. In
particular, high-performance OER electrocatalysts aim at reducing energy costs to produce high purity
hydrogen and promote the development of URCs. Figure 8 shows the activity of Co3O4/N-HNMK-3
compared to N-HNMK-3, physical mixture of Co3O4 + N-HNMK-3, Pt/C, and RuO2/C in 1.0 M
KOH. Apart from RuO2/C, the Co3O4/N-HNMK-3 has the highest OER activity with a higher current
density of 19.56 mA cm−2 at 1.65 V, lower overpotential (365 mV) at the current density of 10 mA cm−2,
a value close to the best OER electrocatalyst RuO2/C. The Tafel plots for the OER kinetics are shown
in Figure 8b. The slope of 93 mV dec−1 for Co3O4/N-HNMK-3 is higher than that of 74 mV dec−1

for RuO2/C, and lower than that of the physical mixture. In addition, the OER stability test, via CV,
performed on Co3O4/N-HNMK-3 is shown in Figure 8c,d. No significant variation was observed after
1500 cycles, and to some extent, Co3O4/N-HNMK-3 showed a ca. 4.1% increase in the overpotential at
10 mA cm−2 after 1500 cycles. The results confirm that Co3O4/N-HNMK-3 is quite durable for the
OER in 1.0 M KOH electrolyte.
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Figure 8. (a) LSV curves of N-HNMK-3, Co3O4 + N-HNMK-3 (physical mixture), Co3O4/N-HNMK-3,
20 wt.% Pt/C, and 20 wt.% RuO2/C towards the OER in O2-saturated 1.0 M KOH at 5 mV s−1 and
1600 rpm; (b) Tafel plots of each samples derived from curves in (a); (c) CVs of Co3O4/N-HNMK-3
from 1.05 V to 1.70 V at 200 mV s−1 in O2-saturated 1.0 M KOH from 1st cycle to 1500th cycle; (d) LSV
curves of Co3O4/N-HNMK-3 from 1.30 V to 1.70 V at 5 mV s−1, the inset presents the variation of η10

at different CV cycles.

3.4. The Bifunctional ORR/OER Performance

The overvoltage between ORR and OER is an important parameter to evaluate the bifunctional
electrocatalytic activity of the material. The corresponding data are summarized in Table 2. The ∆E
value is defined as the difference in potential between the OER current density of 10.0 mA cm−2

and the ORR current density of −3.0 mA cm−2. Among the listed catalysts [27–32] reported in the
literature, Co3O4/N-HNMK-3 shows the best and promising bifunctional activity with a minimum ∆E
value, which is attributed to the interaction developed between Co3O4 species onto N-doped ordered
mesoporous carbons.
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Table 2. The oxygen bifunctional electrocatalytic performance of catalysts prepared in this work
compared with other bifunctional catalysts from the literature.

Catalysts E vs. RHE
at j = −3 mA cm−2

E vs. RHE
at j = 10 mA cm−2

∆E
(EOER@10 mA cm−2 )-(EORR@−3 mA cm−2 ) Refs.

N-HNMK-3 0.69 2.13 1.44 This work
Co3O4+N-HNMK-3 0.56 1.69 1.13 This work
Co3O4/N-HNMK-3 0.73 1.59 0.86 This work

20% Pt/C 0.81 2.07 1.26 This work
20% RuO2/C 0.44 1.55 1.11 This work

Co3O4/Co2MnO4 0.68 1.77 1.09 27
MnCo2O4/Nanocarbon 0.79 1.75 0.96 28

NiCo2O4/Graphene 0.60 1.68 1.08 29
CoFe2O4/Biocarbon 0.69 1.67 0.98 30

O-NiCoFe-LDH 0.62 1.67 1.05 31
Co(OH)2CO3/C 0.81 1.73 0.92 32

4. Conclusions

In this paper, a nitrogen-doped ordered mesoporous carbons supported Co3O4 composite
(Co3O4/N-HNMK-3) was prepared through a solvothermal method. The Co3O4/N-HNMK-3
composite showed a much higher ORR performance, which was close to that of the commercial
Pt/C in 0.1 M KOH. An excellent OER performance near commercial RuO2/C in 1.0 M KOH was also
obtained. Interestingly, Co3O4/N-HNMK-3 has outstanding bifunctional activity with a much lower
4E value between EOER,10 mA cm−2 -EORR,−3 mA cm−2 as compared to Pt/C and RuO2/C in alkaline
medium. Undoubtedly, the synthesis method developed here to obtain the oxygen electrode based on
Co3O4/N-HNMK-3, with non-precious metals will promote the practical development of fuel cells,
water electrolysis and unitized regenerative cells.

Supplementary Materials: The following are available online at http://www.mdpi.com/2571-9637/2/2/18/s1,
Figure S1. (a) Ring (top) and disk (down) current density from RRDE measurements of Co3O4/N-HNMK-3
samples after annealing at different temperature in O2-saturated 0.1 M KOH at 25 ◦C with a sweep rate of
5 mV s−1 at a rotating speed of 1600 rpm; (b) Molar fraction of HO2

− formation and electron transfer number n
from rotating ring-disk electrode (RRDE) curves in (a). Figure S2. (a) CVs of Co3O4/N-HNMK-3 from 0.1 V to
1.0 V at 100 mV s−1 in O2-saturated 0.1 M KOH from 1st cycle to 1500th cycle; (b) LSVs of Co3O4/N-HNMK-3
from 0.1 V to 1.0 V at 5 mV s−1 in O2-saturated 0.1 M KOH from 1st cycle to 1500th cycle.
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