

Article Co₃O₄ nanopetals on Si as photoanodes for the oxidation of organics

Leonardo Girardi¹, Luca Bardini¹, Niccoló Michieli², Boris Kalinic², Chiara Maurizio², Gian Andrea Rizzi¹, and Giovanni Mattei²

- ¹ University of Padova, via Marzolo 1, 35121 Padova, Italy;leonardo.girardi@phd.unipd.com (L.G.); luca.bardini@unipd.it (L.B.),
- ² University of Padova , via Marzolo 6, 35121 Padova, Italy; niccolotomaso.micheli@unipd.it (N.M.); boris.kalinic@unipd.it (B.K.) ;chiara.maurizio@unipd.it (C.M.); giovanni.mattei@unipd.it (G.M.)
- * Correspondence:gianandrea.rizzi@unipd.com; Tel.: + 39-049-827-5722

Academic Editor: name Version January 8, 2019 submitted to Surfaces

Figure S1. Linear sweep voltammetry (5mV/s) under illumination of the PETAL sample in different electrolyte solutions.

Figure S2. Mott-Schottky plots of the prepared samples in the dark and under illumination in Na₂SO₄.

Figure S3. Cyclic voltammetry performed on sample PETALS, in 0.1 M NaOH and 5 mM glucose with scan rate of 40 mV/s in the dark and with illumination.

Table S1. Sensing in Sodium Sulphate 0.1 M at 1 V vs Ag/AgCl.

	Petal	NoPetal	Hybrid
Sensibility $mA/cm^2 \times M^{-1}$	7.5 ± 0.1	2.4 ± 0.1	2.4 ± 0.2
Dev.Standard ($\mu A / cm^2$)	0.006	0.002	0.003
LOD (μM)	2.3 ± 1.7	2.5 ± 0.1	3.9 ± 0.3
$LOQ(\mu M)$	7.7 ± 0.6	8.4 ± 0.4	12.9 ± 1.0
Linear Range (μM)	$0 \div 4$	0÷2	0÷2

	Double Layer			($Co_3O_4/SiO_x/Si$		Co_3O_4 surface states		
PETALS	R1 (Ω)	CPE-T1 (F)	CPE-α1	R2 (Ω)	CPE-T2 (F)	CPE-α2	R3 (Ω)	CPE-T3 (F)	CPE-α3
led off 0.1 V	6.7E+04	1.7E-04	0.68	3.5E+03	6.2E-08	0.90	1.9E+03	1.0E-09	0.97
led on 0.1V	4.3E+04	1.5E-04	0.85	1.6E+03	5.1E-10	1.00	5.8E+02	4.8E-07	0.64
led off 1V	3.7E+03	9.7E-05	0.87	9.2E+03	5.4E-08	0.93	2.2E+03	2.1E-09	0.92
led on 1V	4.0E+02	2.7E-03	0.63	5.8E+01	2.1E-05	0.71	1.2E+03	8.9E-10	0.99
NO PETALS	R1 (Ω)	CPE-T1 (F)	CPE-α1	R2 (Ω)	CPE-T2 (F)	CPE-α2			
led off 0.1 V	9.9E+04	5.4E-06	0.82	1.3E+03	7.0E-08	0.81			
led on 0.1V	3.7E+04	6.3E-06	0.84	1.4E+03	1.9E-07	0.74			
led off 1V	6.8E+04	4.7E-06	0.73	1.5E+04	3.3E-08	0.94			
led on 1V	3.6E+03	7.1E-06	0.82	1.1E+03	4.5E-07	0.65			
HYBRID	R1 (Ω)	CPE-T1 (F)	CPE-α1	R2 (Ω)	CPE-T2 (F)	CPE-α2			
led off 0.1 V	1.4E+04	3.6E-06	0.89	4.5E+04	1.2E-07	0.80			
led on 0.1V	5.4E+03	5.2E-06	0.88	2.1E+03	1.3E-08	0.80			
led off 1V	9.3E+03	4.0E-06	0.90	3.0E+03	5.9E-08	0.85			
led on 1V	1.2E+03	5.3E-06	0.86	1.6E+03	9.9E-09	0.81			

Table S2. Equivalent Circuit parameters.

1 The columns are ordered according to increasing frequency values; lower frequencies correspond

² to the Helmholtz layer interface, the highest frequencies correspond to the Co₃O₄ space charge layer

³ with surface states and the intermediate frequencies are assigned to the Co_3O_4 SiO_x interface. α is the

frequency dispersion coefficient.

5 © 2019 by the authors. Submitted to Surfaces for possible open access publication under the terms and conditions

⁶ of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).