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Abstract: The gilded bronze eagles that stand upon the summit of the Tabernacle by Michelozzo in
the Abbey of San Miniato al Monte, Florence (Italy) are an exquisite example of Italian Renaissance
sculpture. Commissioned by Piero di Cosimo de Medici, the two eagles, representing the ancient
Arte di Calimala, were cast and decorated by Maso di Bartolomeo in the 1448–1449 period. A multi-
analytical approach was set up to characterize the state of conservation, materials used, and artistic
technique of the eagles. Non-invasive methods were used and integrated with micro-invasive
analyses, such as X-ray fluorescence (XRF) and Fourier-transform infrared (FTIR) spectroscopy, X-ray
diffractometry on powders (XRPD), scanning electron microscopy coupled with EDS (SEM-EDS),
and metallographic investigation. The results depict shiny-looking eagles, suggesting the use of oil
gilding on almost all surfaces and revealing the presence of polychromies, which is almost unusual
in XV-century bronze statuary and is initially hidden by deposits and corrosion products. Indeed, the
paws were originally painted with azurite, while the use of cinnabar imparted a vivid red color to the
tongue. A black paint containing mercury was found on the eyes and talons. The bales of cloth were
decorated with silver, which is now almost completely lost and whose remains are not visible due to
being tarnished, while fine details in gold were detected on the lanyard.

Keywords: bronze sculpture; Renaissance; gilding; polychromies; non-invasive techniques;
micro-invasive techniques

1. Introduction

From ancient Egypt to Greece, the search for color and light effects was pursued and
then taken up and developed in Roman art, both in statuary and in everyday objects. The
decoration of metals was achieved by combining different metals, like the early examples of
variously colored gold alloys used for jewelry and purple-black patinated alloys containing
gold, as well as by applying materials such as enamel, niello, glass, and stones or semi-
precious stones [1]. The theme of polychromy in ancient statuary is rather challenging
because the traces of the original colors are often modified by the natural processes of
alteration, causing a loss of the original decorative effect as a result of pollution by previous
cleaning interventions or colors being hidden by encrusted deposits. In recent years, interest
in ancient polychromy has strengthened with new studies on stone [2–4], terracotta [5], and
bronze statuary [6].

With regard to bronze, polychromy was obtained by means of surface finishes (pati-
nation with chemical treatments), metal inserts with the use of different alloys to achieve
contrasting effects (anatomical and decorative parts), the application of paints, and gild-
ing [6–8]. In the literature, there are several studies that report decorative techniques for
bronze, including research on Egyptian, Etruscan, Greek, and Roman polychrome bronze
objects and statuary [9–12]. Typical examples of colored copper-based alloys are the “black
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bronzes” from the Hellenistic and Roman periods (Corinthian bronzes) [13]. However,
although some studies investigate Italian Renaissance patination [14–18], to the authors’
knowledge, there are no references regarding polychrome bronze objects or statuary from
this period. Over the centuries, gilding techniques have also been used to enhance the
artistic value of metalworks, giving coloristic effects as well. Among them, foil and leaf
gilding were widely used in antiquity, where the gold was fixed to the underlying metal
either by mechanical action or with an animal or vegetable glue (oil gilding or “doratura a
missione”) [19,20]. Fire gilding consisted of spreading a gold–mercury amalgam over the
base metal or applying gold leaf to the substrate coated with mercury. In both cases, the ap-
plication of the gold was followed by heating and burnishing to close the porous structure
and give a smooth and reflective surface [21–23]. Unfortunately, the use of adhesives poses
problems to the durability of the gilding due to the degradation and mineralization of the
organic component, which often causes loss of the leaf, leaving only traces of gold caught
in the folds and crevices of the object [24]. Fire gilding, instead, gives rise to a well-bonded
layer of gold on the surface, thanks to copper–gold interdiffusion, which gives greater
stability to the gilding [25].

As part of the celebrations for the millenary of the Abbey of San Miniato al Monte
in Florence, held in 2018, an extensive restoration project was carried out, including the
restoration of the bronze eagles that stand upon the summit of the marble tabernacle made
by Michelozzo called “Cappella del Crocifisso”, placed in front of the entrance. Commissioned
by Piero di Cosimo de Medici, the two eagles (approximately 42 cm high and 35 cm wide),
clutching bales of cloth to represent the ancient Arte di Calimala, were cast and decorated by
Maso di Bartolomeo from 28 January 1448 to 22 April 1449. Supported by the Friends of
Florence Foundation, the restoration aimed to recover the legibility of the surfaces, bringing
the original gilding affected by corrosion products, aged coatings, and disfiguring deposits
back to its ancient splendor. Some details about the expenditures for lost-wax casting—“le
due aquile in ottone per mettere insu la Chappella de marmo. . .”—can be found in the Journal
d’un sculpteur Florentin au XVe siècle [26], where the prices of wood, wax, iron, and bronze
are exactly reported.

Prior to restoration, the knowledge of execution techniques and the state of conserva-
tion of ancient artifacts is necessary for gaining awareness of historical and artistic value,
as well as to set up appropriate intervention strategies. Due to the great artistic value of
historic objects, the use of non-invasive portable instrumentation has gained significant
interest in the last twenty years. Since non-invasive measurements do not require any
contact with the examined object, they can be performed on the entire surface of interest,
extending to a virtually infinite number of points with a clear advantage in terms of data
representativeness. However, compared to the use of bench-top instruments dedicated
to the analysis of samples or small objects, the application of portable and non-invasive
techniques presents inevitable limitations, including problems of spectral interpretation of
materials with multilayer character, as occurs in polychromies. In such cases, the application
of a multi-analytical approach, where data derived from non-invasive and micro-invasive
techniques are merged, is necessary to yield a more accurate characterization of materials
and surface treatments [27]. The information obtained with the preliminary non-invasive
study is also functional in guiding sampling, thus reducing the number and size of samples
to the bare minimum.

With the aims of characterizing the artistic technique and the state of conservation of
the two eagles from the Abbey of San Miniato al Monte and providing useful information
for the restoration process (Appendix A), an in-depth diagnostic project was set up. An
array of analytical techniques was employed, including non-invasive X-ray fluorescence
spectroscopy (XRF), to map and identify the working technique of gilding on bodies and
bales of cloth [28,29] with micro-invasive analyses. Regarding the powder samples taken
from the surface, the compositions of pigments, deposits, and patinas were identified by
combining Fourier-transform infrared (FTIR) spectroscopy [30] and X-ray diffractometry
on powders (XRPD). The microstructure, composition of the alloys, and gilding techniques
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were investigated on micro-fragments through the metallographic observation of cross-
sections and scanning electron microscopy coupled with an EDS probe (SEM-EDS) [31].

2. Materials and Methods

The constituent materials, the manufacturing technique, and the state of conservation
of the two gilt bronze eagles were determined by a combination of non-invasive investiga-
tions carried out on-site with portable instruments and micro-invasive laboratory analysis.

2.1. Non-Invasive Analyses

A Bruker Tracer III SD portable spectrometer equipped with a rhodium anode and a
solid-state silicon detector energy dispersion system was used for the elemental analysis.
Fifty spectra were recorded with a setting of 40 kV and 12 µA and a measurement time of
60 s. In some points, the lines of the heavy elements were enhanced with a special filter
(25.4 µm copper, 25.4 µm titanium, and 304.8 µm aluminum). The penetration depth of
the incident photons varies depending on their energy, the density of the sample, and
the fluorescence energy of the chemical elements present in the material. In the case of
lead-containing bronze alloys, it is estimated that 90% of the incident photons are absorbed
in the first 100–200 µm [32,33]. The ARTAX software was used for the data evaluation after
the spectra had been normalized to the intensity of Rh Ka at 20.21 keV. All investigated
areas were documented using a portable digital microscope with different magnifications
(Scalar DG-2A, optical zoom 25–200×, magnification at 25×, area 13 mm × 8 mm). Figure 1
shows the location of the XRF measurement points on the eagles and bales of cloth.
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Figure 1. Location of the XRF measurement points of analyses. (a) Eastern eagle; (b) Western eagle; 
(c) bales of cloth under the Western (top) and Eastern eagles (bottom). 
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include patina, gilding (if present), and alloy, were taken to characterize the composition and 
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fragments. Samples 11–14 were taken from the areas of interest after the cleaning tests. Table 
1 contains a brief description of the samples analyzed and the applied methods. 

Table 1. Samples taken from the two statues and the analytical methods used. 
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01 Chip Western eagle, tail stratigraphic sample Metallography; SEM-EDS 
02 Chip Western bale of cloth stratigraphic sample Metallography; SEM-EDS 
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05 Powder Western bale of cloth hard deposit ATR-FTIR; XRPD 
06 Powder Western eagle, under the tail green patina ATR-FTIR; XRPD 
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13 Powder Eastern eagle, from the talon black paint ATR-FTIR; XRPD 
14 Powder Western eagle, on the tongue red paint ATR-FTIR; XRPD 

 

Figure 1. Location of the XRF measurement points of analyses. (a) Eastern eagle; (b) Western eagle;
(c) bales of cloth under the Western (top) and Eastern eagles (bottom).

2.2. Micro-Invasive Analyses
2.2.1. Samples

Powders (a few mg) of deposits and of corrosion patina, as well as micro-fragments that
include patina, gilding (if present), and alloy, were taken to characterize the composition
and microstructure. Figure S1 shows the sampling points and the associated powders and
fragments. Samples 11–14 were taken from the areas of interest after the cleaning tests.
Table 1 contains a brief description of the samples analyzed and the applied methods.

Table 1. Samples taken from the two statues and the analytical methods used.

Sample Type of Sample Position Description Analytical Techniques

01 Chip Western eagle, tail stratigraphic sample Metallography; SEM-EDS
02 Chip Western bale of cloth stratigraphic sample Metallography; SEM-EDS
03 Powder Western bale of cloth green patina ATR-FTIR; XRPD
04 Powder Western bale of cloth hard deposit ATR-FTIR; XRPD
05 Powder Western bale of cloth hard deposit ATR-FTIR; XRPD
06 Powder Western eagle, under the tail green patina ATR-FTIR; XRPD
07 Powder Western eagle, on the gilding whitish patina ATR-FTIR
08 Powder Western eagle, feather dark patina ATR-FTIR
09 Chip Eastern eagle, under the wing stratigraphic sample Metallography; SEM-EDS
10 Chip Eastern bale of cloth stratigraphic sample Metallography; SEM-EDS
11 Powder Western eagle, on the paw blue paint ATR-FTIR; XRPD
12 Powder Western eagle, from the talon black paint ATR-FTIR; XRPD
13 Powder Eastern eagle, from the talon black paint ATR-FTIR; XRPD
14 Powder Western eagle, on the tongue red paint ATR-FTIR; XRPD
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2.2.2. FTIR Spectroscopy

The powders were analyzed using an Agilent Technologies Cary 660 FTIR spectrom-
eter coupled with a Cary 620 Microscope equipped with an MCT detector. All spectra
were recorded in microATR mode with germanium crystal, 64 scans, and a resolution of
4 cm−1 in the 4000–400 cm−1 range. The spectra were processed using Agilent Resolutions
Pro software.

2.2.3. XRPD

X-ray powder diffraction (XRPD) was used to determine the crystalline composition
of patinas and deposits. An X’Pert Pro PANanalytical powder X-ray diffractometer (Cu
anticathode (λ = 1.54 Å)) was used under the following conditions: current 30 mA, voltage
40 kV, explored 2θ range between 3 and 70◦, and step size 0.02◦. A zero-background sample
stage was used. The Powder Diffraction (PDF) database of the International Center for
Diffraction Data (ICDD) was used for the phase identification of the XRPD results.

2.2.4. Optical Microscopy (MO) and Scanning Electron Microscopy (SEM-EDS)

The microstructure and composition of the alloy were examined on cross-sections
by metallographic observation and scanning electron microscopy coupled with an EDS
probe (SEM-EDS), respectively. All samples were first observed using a Zeiss Stemi 200 C
stereomicroscope equipped with a high-resolution photo camera. Samples 01, 02, 09, and
10 were embedded in epoxy resin, cut perpendicular to the stratigraphy, and polished with
sandpaper (180 to 4000 grit) and diamond paste (6 to 1 µm) to obtain the cross-sections.
Observations were made with an optical microscope in visible and ultraviolet-reflected light
using a Nikon Eclipse E600 microscope equipped with a halogen lamp (12 V, 100 W) with
fiber optics and a mercury vapor lamp for the UV fluorescence observations. The objectives
used were 1×, 4×, 10× and 20×. The acquisition and processing software is Nikon ACT-1.
For the metallography, the observation was repeated before and after the attack with the
FeCl3/HCl reagent [34]. The cross-sections were also observed and analyzed by SEM-EDS.
A ZEISS EVO MA15, equipped with EDS and OXFORD INCA 250 software, operates at a
20 kV acceleration voltage, 700 pA emission current, and a working distance of 9.5 mm.

3. Results
3.1. X-ray Fluorescence Spectroscopy (XRF)

The elements detected on each measurement point are listed in Table S1. Gold signals
were detected at all examined points on the body of the eagles (Figure 2a), but not on the
paws and talons (Figure 2b). The beak also showed significant gold values (Figure 2c).
Gold signals were also found on the lanyard of the bale of cloth but not on the bale itself
(Figure 2d). Instead, silver was detected at all measurement points on the bales of cloth
(spots 03, 05, 17). When using the filter to enhance the detection of the heaviest metals
(Section 2.1), weak lines attributable to silver were also found on the parts of the talons
closest to the bales, probably due to the size of the silver leaves applied to the bales’ surface,
which partially overlapped with the eagle’s body. Mercury was found on the black-painted
talons and eyes of the Western eagle, while gold was absent (Figure 2b). Instead, no mercury
was detected on the Eastern eagle.

The presence of copper, tin, and antimony signals was ubiquitous and attributable to
the underlying bronze alloy. Arsenic signals were detected on the bale of cloth, together
with silver (Figure 2d). Weak arsenic signals were also observed in correspondence with
some points on the talons and paws. Lead was also detected.

Small amounts of manganese were attributed to impurities in the alloy, while potas-
sium, silicon, calcium, and sulfur were due to atmospheric deposition. In the Eastern eagle,
a dot of red paint on the right wing (points 01, 07) consists of mercury and sulfur (cinnabar).
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Figure 2. XRF spectra of (a) point 24 on one of the feathers of the Eastern eagle; (b) points 13 (orange) 
and 16 (blue) on the paw and talon of the Western eagle, respectively; (c) point 20 on the beak of the 
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lanyard, respectively. 
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Figure 2. XRF spectra of (a) point 24 on one of the feathers of the Eastern eagle; (b) points 13 (orange)
and 16 (blue) on the paw and talon of the Western eagle, respectively; (c) point 20 on the beak of the
Eastern eagle and (d) points 03 (orange) and 04 (gray) on the bale of cloth of the Eastern eagle and
lanyard, respectively.

3.2. Fourier-Transform Infrared Spectroscopy (FTIR) and X-ray Powder Diffraction (XRPD)

Figure 3a shows representative FTIR spectra of samples 06, 08, and 11. The composi-
tion of the deposits and patina detected by ATR-FTIR and XRPD analyses is summarized
in Table 2, while the main FTIR vibrational bands of the detected compounds and their
assignments are listed in Table S2 [35–48]. The XRPD patterns are shown in Figure S2. The
complementarity of XRPD and FTIR made it possible to characterize the organic and inor-
ganic compounds in the samples. Apparently, different results between the two analytical
techniques are either due to the fact that FTIR can identify amorphous compounds that are
not detectable by XRPD or due to the different sizes of the analyzed sample (whole powder
for XRPD, selected grains for ATR-FTIR).

Silica-based deposits (quartz and other silicates), gypsum (CaSO4·2H2O), calcium
carbonate (CaCO3), and weddellite (calcium oxalate, CaC2O4·2H2O) were detected in
the powders analyzed before cleaning (samples 04 and 05). In the green patina, either
atacamite (copper hydroxychloride, Cu2Cl(OH)3) or gerhardtite (basic copper nitrate,
Cu2(NO3)(OH)3) were detected, as well as cuprite (cuprous oxide, Cu2O) in samples 03
and 13. In samples 06 and 13, nantokite (copper chloride, CuCl) was detected in the XRPD
analyses. Calcium and copper (moolooite, CuC2O4·H2O) oxalates were also detected in the
patina, which can be attributed to the degradation (mineralization) of the protective agents
applied in the past [49]. Sample 06 also shows some bands between 2955 and 2850 cm−1

assigned to νas(CH3) and νs(CH2), suggesting an organic material. Instead, the weak band
at 1412 cm−1 can be attributed to a carbonate, which is consistent with the XRPD results.
The blue paint on the paw (sample 11, Figure 3a) under the wing of the Western eagle is
composed of azurite (2CuCO3·Cu(OH)2) and a proteinaceous substance that was probably
used as a binder for the pigment, while silica-based deposits and alteration products, such
as copper oxalate and lead sulfate (PbSO4), were also found. The red paint on the tongue
(sample 14) contains gypsum, calcium oxalate, silicates, and gerhardtite, as well as cinnabar
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(HgS). On the Eastern eagle, after cleaning, polysaccharide compounds were found in
the black paint (sample 13) together with nantokite, cuprite, hematite (Fe2O3), silicates,
tenorite (CuO), and gypsum. ATR-FTIR analysis of small fragments of gilding (sample
08, Figure 3a) showed the presence of a lipid compatible with an oil binder, as well as
moolooite and gypsum (see Table S2 for vibration band assignments). MicroATR-FTIR
analysis of the layer visible under the gold further revealed vibrational bands associated
with ester-type substances: νas(CH3) and νs(CH2) at 2928 and 2858 cm−1, respectively;
ν(C=O) at 1710 cm−1, and antisymmetric and symmetric ν(COO−) vibrations and δ(CH2)
between 1615 and 1406 cm−1 (Figure 3b), compatible with a mixture of drying oil and metal
carboxylates [42–44,50].
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spectrum of the layer under the gilding.
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Table 2. Composition of the deposits and patinas determined with ATR-FTIR and XRPD. W: Western
eagle; E: Eastern eagle; B: bale of cloth.

Sample Description Position ATR-FTIR XRPD

03 Green patina W, B Organic material, calcium
carbonate Cuprite, gerhardtite

04 Deposit W, B Gypsum, calcium oxalate,
calcium carbonate, silicate Gypsum

05 Deposit W, B Gypsum, calcium oxalate,
calcium carbonate, silicate Gypsum

06 Green patina W Atacamite, calcium oxalate,
calcium carbonate

Atacamite, calcite, quartz,
nantokite, paratacamite,

weddellite, gypsum

07 White patina W Calcium oxalate, silicate n.a.

08 Patina W Moolooite, gypsum, oil binder n.a.

11 Blue paint on paw, after
cleaning W Azurite, copper oxalate, oil

binder, proteinaceous substance Azurite, gold, lead sulphate

12 Dark paint on talon,
after cleaning W Atacamite, calcium oxalate,

moolooite Weddellite, gypsum, quartz

13 Dark paint on talon,
after cleaning E Polysaccharide component Nantokite, cuprite, hematite,

quartz, tenorite, gypsum

14 Red paint on tongue W Gypsum, calcium oxalate,
moolooite, silicate Cinnabar, gerhardtite, gypsum

3.3. Optical Microscopy (OM) and Scanning Electron Microscope Coupled with Energy Dispersive
Spectroscopy (SEM-EDS)

The SEM-EDS analysis of the alloys of the body and bale of cloth of the Western eagle
(samples 01 and 02, respectively) is shown in Figure S2. A binary Cu-Sn alloy (spectrum 1)
with a few small lead globules was detected (spectrum 2) in the body. Impurities of silicon
and aluminum were also detected in traces (spectrum 3), as well as antimony (spectrum
4). In the Cu-Sn alloy of the bale of cloth (spectrum 2), an Sn-enriched intergrain eutectoid
phase was found in addition to small lead globules (spectrum 3) and antimony-containing
inclusions (spectrum 1,4). These results are similar to those obtained in the corresponding
parts of the Eastern eagle (samples 09 and 10, respectively). The elemental composition of
each sample is reported in Table 3.

Table 3. Elemental composition from SEM-EDS analyses of samples taken from the Western (01,02)
and Eastern eagles (09,10).

Sample Description Eagle O wt% Si wt% Cu wt% Sn wt% As wt%

01 Body W 2.55 0.85 88.85 8.15
02 Bale of cloth W 2.72 89.74 7.54
09 Body E 2.24 89.56 8.23
10 Bale of cloth E 2.62 87.99 9.08 0.63

In both sculptures, the metallographic analyses (Figure 4) revealed a dendritic mi-
crostructure with the α-phase partially homogenized, probably due to moderate heating.
The surface grains were flattened, suggesting that the object had been cold-worked. Strain
lines were also visible along the thickness of the sample, suggesting an intense mechanical
process due to heavy hammering.

Figure 5 shows the stratigraphy on the cross-section of the body of the Western eagle
(sample 01), which is also representative of that of the Eastern eagle (sample 09, SEM
images not reported). From bottom to top, the observations in bright-field (Figure 5a) and
UV light (Figure 5b) show the following: (i) alloy; (ii) organic fluorescent layer (10–30 µm
thick); (iii) gold leaf (about 2 µm thick); and (iv) superficial patina composed of deposits
and corrosion products. SEM-EDS analyses (Figure 5c) showed the Cu-Sn alloy (layer (i),
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Figure 5d) under a lead-rich layer with minor amounts of iron, calcium, potassium, silicon,
magnesium, and chlorine (layer (ii), Figure 5e). The gold leaf (layer (iii), Figure 5f) consists
of pure gold. Silicon, aluminum, potassium, and chlorine were detected in the superficial
patina (layer (iv), Figure 5g).
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4. Discussion

The preliminary non-invasive measurements with a portable XRF device proved to
be effective, not only for mapping the gilding and hypothesizing its execution technique
but also for detecting decorations and polychromies that are not clearly visible under the
patina of time. The results of the XRF also guided the later sampling necessary to better
study the alloys and compounds using laboratory techniques.

Most of the surface of the eagles was originally gilded with a thin leaf (approx. 2 µm
thick), as evidenced by the detection of gold at almost all points of the XRF measurement
and confirmed by cross-sections. The absence of mercury in the areas where gold is present
suggests that the leaf-gilding technique was used and not amalgam. The detection of
FTIR vibrational bands related to lipids indicates the presence of a siccative oil in the layer
beneath the gold, further supporting the oil-gilding hypothesis. Metal carboxylates were
also detected, probably originating from the reaction of the oil with the alloy and/or with
metal ions in the minerals contained in the sizing. Lead was also found in the cross-sections
using SEM-EDS and was attributed to lead white (basic lead carbonate, 2PbCO3·Pb(OH)2),
which is usually added to the mixture to improve the setting of the oil and/or to lighten the
color. This layer was infiltrated by chloride-based corrosion products and contained clay
minerals, as suggested by the detection of chlorine and typical earth elements (aluminum,
silicon, iron, magnesium, and potassium), respectively.

The bales of cloth were originally decorated with silver, as the detection of this element
on the entire surface of both bales suggests, while it is missing in the alloy. However, the
decoration seems to have been largely lost, as can be deduced from the weak intensity of
the silver signals. Instead, the lanyards were gilded, as evidenced by the presence of gold.
The weak silver signals detected on the gilded Eastern lanyard can be attributed to the
overlapping of gold and silver leaves. The arsenic found in very small amounts together
with silver, as well as in some points on the paws and talons near the bale of cloth [16,21,22],
may indicate impurities that were not completely removed from the ore by smelting [51].
Nevertheless, traces of arsenic are frequently found in Renaissance bronzes [52].

The chemical composition of the alloy is quite homogeneous, 88–90% copper and 7–9%
tin, quite typical of Renaissance bronzes [53]. Small lead globules and traces of antimony
were also detected in the bodies and bales of cloth, which can be attributed to impurities.

The microstructure of the alloy is compatible with that of a dendritic Cu-Sn binary
bronze that has been subjected to moderate heating and subsequent cold working, as
suggested by the strong strain lines and the flattening of the surface phases. The eutectoid
phase, which is rich in tin, is particularly evident in the bales of cloth, whereas it is hardly
present in the eagle bodies. Given the similar composition of the alloy, this difference in
microstructure may indicate faster cooling of the bales of cloth compared to the bodies [53].

The surface deposits consisted of gypsum, calcium carbonate, and silicates, as well as
alteration products of the alloy (atacamite and gerhardtite) and of protective agents used in
the past (copper and calcium oxalates).

Nantokite was also found (Western and Eastern eagles, samples 06 and 13, respec-
tively), which is considered a precursor of bronze disease [8] and must, therefore, be
regarded as a warning signal for the activation of cyclic corrosion processes. A polysaccha-
ride material was also found, which is probably due to contamination.

The analysis of micro-samples taken from the surface revealed the presence of azurite
on the paws of the eagles and of cinnabar on the red tongues. The red dot composed of
mercury and sulfur on the plumage of the Eastern eagle may be related either to incidental
or intentional marking with cinnabar.

Regarding the black paint on the talons and eyes, the absence of characterizing ele-
ments and compounds could suggest the use of carbon black. Nonetheless, in the black
paint on the Western eagle, mercury was detected, but the absence of any Hg-based com-
pounds (as shown in Table 2, sample 12) makes this finding not clearly interpretable.
Several studies discuss the well-known instability of red cinnabar (α-HgS) and the influ-
ence of light, chloride ions, and humidity in the degradation of this pigment to chlorinated



Heritage 2024, 7 993

compounds, black β-HgS, or metallic mercury [54,55]. However, the Eastern eagle did not
show any evidence of mercury, and the absence of any pigment or compound consistent
with the presence of this element in the sample from the Western eagle’s talon still leaves
this issue open.

The results of the analytical examination have allowed us to hypothesize the original
polychromy of the eagles. In addition to the thin gold-leaf coating, which has been almost
completely preserved under the concretions thanks to the location indoors, it can be
assumed that the eagles originally sported red-dyed tongues, black-colored eyes, and
talons and azurite-blue paws, while the bales of cloth shone with the silver–gold contrast
of cloth and lanyard. Figure 6a and b show the evolution of the surfaces as a result of
the restoration intervention, during which the decorations and pigment residues were
rediscovered; Figure 6c shows the digital reconstruction of the original polychromy.
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5. Conclusions

This study confirmed the validity of a two-stage, multi-analytical approach based
on the combination of non-invasive and micro-invasive techniques, in which the former
guides the selection of micro-samples for an in-depth investigation of complex issues.

The results of this multi-analytical approach provided important information both
for the art-historical knowledge of a rare example of a painted bronze statue from the
Renaissance and for the cleaning intervention. The use of oil gilding was confirmed on
almost the entire body, including the beak, and a partial polychromy was revealed that is
almost unique to XV-century bronze statues and was initially obscured by the patina of
time. The paws were originally painted with azurite blue, while the use of cinnabar gave
the tongue a bright red color. Black paint was found on the eyes and talons, probably based
on carbon black and containing mercury, the origin of which is an open question. XRF
revealed silver foil on the bale of cloth, which is now tarnished, while fine details in gold
were detected on the lanyard.
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Appendix A

The encrusted deposits and remnants of previous treatments were removed from the
surface using a combination of laser ablation and chemical cleaning. A Nd:YAG laser with
a Long Q-switched pulse was used [56]. For the paws and talons, water solutions with
agar gel were used, which were alternately washed with mild solvents to preserve the
paint residues. Both cleaning methods were used for the bales of cloth and then finished
by delicate mechanical action with a scalpel. Figure A1 shows the detail of the cleaning
result, revealing the blue polychromy of the paws, which was originally obscured by the
encrustations of dirt and corrosion products of the alloy.
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