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Abstract: Current Multi-View Stereo (MVS) algorithms are tools for high-quality 3D model recon-
struction, strongly depending on image spatial resolution. In this context, the combination of image
Super-Resolution (SR) with image-based 3D reconstruction is turning into an interesting research
topic in photogrammetry, around which however only a few works have been reported so far in
the literature. Here, a thorough study is carried out on various state-of-the-art image SR techniques
to evaluate the suitability of such an approach in terms of its inclusion in the 3D reconstruction
process. Deep-learning techniques are tested here on a UAV image dataset, while the MVS task is
then performed via the Agisoft Metashape photogrammetric tool. The data under experimentation
are oblique cultural heritage imagery. According to results, point clouds from low-resolution images
present quality inferior to those from upsampled high-resolution ones. The SR techniques HAT
and DRLN outperform bicubic interpolation, yielding high precision/recall scores for the differ-
ences of reconstructed 3D point clouds from the reference surface. The current study indicates
spatial image resolution increased by SR techniques may indeed be advantageous for state-of-the art
photogrammetric 3D reconstruction.

Keywords: 3D reconstruction; photogrammetry; image super-resolution; deep-learning; UAV;
cultural heritage

1. Introduction

Image data can be exploited by SfM (Structure-from-Motion) and MVS (Multi-View
Stereo) photogrammetric tools towards reconstructing robust, free of outliers, and elaborate
3D models [1,2]. Essentially, these image-based approaches start from aerial and/or terres-
trial image blocks to automatically perform image registration (via sparse image matching)
and subsequently reconstruct accurate textured 3D models of the depicted scenes (via dense
image matching). Since these automated pipelines are capable of generating high-quality
spatial data at a reasonable cost, the now widely available software tools for SfM/MVS
photogrammetry have triggered a tremendous increase in the number of its applications,
notably in the geosciences but also in all possible fields requiring reliable 3D geospatial
information. Consequently, the SfM/MVS photogrammetric tools also attract today un-
precedented numbers of mostly non-expert users, namely those with little or without
formal training in photogrammetry [3].

Clearly, however, this striking popularity of photogrammetric 3D reconstruction
approaches is largely due to an ever-growing variety of autonomous platforms for flexible
image acquisition known as unmanned aerial vehicles (UAVs) or drones. Thanks to their
obvious advantages, both financial and technical, against conventional satellite and manned
aircraft platforms [4], UAVs have become the main camera platform currently used for the
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purposes of aerial mapping. A summary literature review of recent developments and
applications involving light-weight UAVs and SfM/MVS software is given in [5].

This is also true for the specific environment of cultural heritage, where UAVs have
provided an attractive alternative to traditional, but unwieldy, camera platforms for low-
altitude image acquisition (balloons, kites, elevators, tripods). In a review of their use in
this field [6], it is noted that, beyond mere technical innovation, the methodological novelty
of UAVs lies mainly in allowing archaeologists to exercise direct control over all aspects of
survey processes (platform, sensors, and processing of collected data). As a consequence of
the above, the UAV/SfM/MVS photogrammetric approach is now also very popular in the
field of cultural heritage. The recent detailed review [7] discusses state-of-the-art tools and
methodologies for image acquisition, data processing, and 3D reconstruction in relation to
cultural heritage.

On the other hand, in multiple applications of Remote Sensing (RS), such as surveil-
lance and satellite imaging practices, the spatial resolution of aerial or satellite images has a
strong impact on the precision and reliability of the information which is extracted from the
images [8–10]. High-resolution (HR) images may of course be acquired under controlled
scenarios in the absence of related constraints on the recording hardware. However, in
certain instances the MVS input images are of limited spatial resolution (as in the case of
historic photographic archives); the hardware may impede the collection of the required
data amount; power consumption may in turn constrain the hardware, e.g., in the case
of drones [11]. As regards imagery from unmanned aerial vehicles (UAVs) in particular,
issues of low spatial resolution are mainly attributed to the flight height and the selected
resolution in 3D space (ground element or “groundel”), especially in urban environments
or industrial and construction sites, as well as to their generally low-cost, consumer-grade
digital RGB cameras. The problem is that requirements of safe flight and/or the camera
parameters do not always conform with the needed ground sampling distance, geometry
or texture quality; in such cases, the generated 3D model will most likely be poor in detail
and completeness, regardless of the adopted MVS algorithm [11–13]. For straightforwardly
super-resolving a Digital Surface Model (DSM), on the other hand, a large amount of
data is required for model training [14]. Hence, an algorithmic increase of image spatial
resolution may indeed be of high interest as a means for effectively improving not only the
visual quality but also the metric accuracy of results. Super-Resolution (SR) algorithms
upsample original low-resolution (LR) imagery in an attempt to improve both their visual
and metric properties, enrich detail and possibly recover high image frequencies [10,15–25].
In this sense, single-image super-resolving techniques, in particular, seem to be suitable for
improving 3D reconstruction, thus calling for a closer examination in terms of effectiveness.

In this work, a study is carried out on different image SR techniques to assess their
suitability regarding their inclusion in a 3D reconstruction procedure. SR techniques
are validated on UAV-captured image data. In particular, the SR algorithms presented
in [19,22–24] are examined as means for super-resolving images which enter the 3D recon-
struction task in the field of cultural heritage. The MVS task is performed by using the
Agisoft Metashape photogrammetric tool [26]. The specific contribution of our work is
a thorough investigation of the suitability of different pre-trained image SR techniques
applied on oblique low-altitude (close-range) imagery for the purposes of photogrammetric
full 3D reconstruction (as generally required in the field of cultural heritage projects).

This work is organized into 6 sections. Section 2 presents the literature on improving
3D reconstruction by means of SR tools. Section 3 describes the image datasets, the
SR techniques, the 3D reconstruction approach and the methodology adopted for the
comparisons. The results are given in Section 4, while Section 5 discusses the main issues
arising throughout the current study. The conclusions are drawn in Section 6.

2. Literature Review of 3D Reconstruction with the Aid of Super-Resolution

SR techniques can algorithmically increase the spatial resolution of images (but it is
noted that, while thereby details get clearer and more discernible, artefacts may also be
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induced). The exploitation of SR tools for enhancing 3D reconstruction procedures is an
open research field, since relatively few related studies have appeared in the literature up
to now [11–14,25,27,28].

Working in the context of conventional mapping and DSM generation from satellite
imagery, the authors in [14] examined the introduction of different refined SR models
aiming at a workflow for creating DSMs per subpixel level. Qualitative analysis and a
summary statistical measure (RMS difference in DSM elevations) led to the conclusion that
a subpixel level DSM of higher reliability may be more effectively obtained via image SR
techniques rather than bicubic image interpolation or direct DSM upscaling.

In Ref. [25] the neural networks RDN [29] and ESRGAN [30], along with bicubic inter-
polation, were evaluated regarding DSM generation in urban areas from pairs of satellite
images. Judging mainly from the summary quantitative measures of DSM differences,
these authors found no evidence that the employment of image SR networks outperforms
standard bicubic image interpolation for the investigated 3D task. In a more detailed local
investigation on stereo matching, image disparities at the maxima of the distributions of the
employed similarity measure (cross-correlation coefficient) along corresponding epipolar
lines of satellite stereo pairs were evaluated against ground truth elevation data from Lidar.
It was seen that matching benefited strongly from SR for features of high contrast; on the
other hand, in uniformly textured areas SR turned out to be disadvantageous, accompanied
by uncontrolled artefact occurrence and inconsistent patterns which led to poor matching in
such areas (not rare in urban environments). Concluding, the authors skeptically wondered
whether, without addressing such shortcomings, one may actually exploit SR potential with
reliability in 3D photogrammetry. One may remark, however, that (unlike standard stereo
matching) multi-view matching may provide more means to efficiently exclude outlying
image content and SR-induced image artefacts.

The use of image SR algorithms has been suggested also in [12] for cases where a
required higher ground resolution cannot be possibly met by shorter imaging distances
or different cameras/lenses. In this work, photogrammetric products (from the Agisoft
Metashape tool) from vertical images captured by a small commercial UAV were evaluated
against the same data pre-processed with a method based on the SR generative adversarial
network (SRGAN) [31]; the data collected at a lower altitude served for ground truth.
It was concluded that photogrammetric products created after SR-processing of images
from larger imaging distances presented quality close to those from smaller distances (and,
additionally, avoided certain occlusion issues met in imagery from smaller heights but with
inadequate multiple overlaps).

A recent paper [11] also investigated how an increase in resolution by SR techniques
of the images which enter an MVSNet algorithm is reflected in quality improvements
of the reconstructed 3D models. COLMAP [32] and CasMVSNet [33,34] were the 3D
reconstruction algorithms used. In order to increase the image spatial resolution by a
factor of 2, the SR algorithm Deep Back-Projection Networks (DBPN) [35], as well as
bicubic interpolation, were tested. It was shown that the introduction of a SR stage before
recovering the depth maps led in most cases to a better 3D model in the case of both
PatchMatch-based and Deep-Learning (DL) based algorithms. Overall, it was concluded
that SR especially improves the completeness of reconstructed models, turning out to be
particularly effective in the case of well-textured scenes.

The potential of a SR model for single images, based on the ESRGAN deep convolu-
tional neural network [26], to improve the spatial resolution of UAV-captured RGB images
was investigated in [13]. The model was retrained using HR images and corresponding LR
images created by downsampling the original HR images. A qualitative and quantitative
assessment of results from a photogrammetric Structure from Motion (SfM) process (again
with the Agisoft Metashape software) indicated that the internal and external camera
parameters of the SR images presented values close to those from the adjustment of the HR
images. It was also concluded that SR resampling is beneficial for scene reconstruction; a
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more thorough evaluation, however, would have allowed a more detailed comparison of
the two dense 3D models.

Finally, other recent applications employed a SR technique to assist road pavement
monitoring with UAV images [27] and to improve building façade 3D reconstruction using
images from a smartphone [28]. In the different context of consumer RGB-D cameras, the
approach in [36] aims at high-quality 3D reconstruction involving, among other steps, the
application of a depth super-resolution network directly on noisy, low-resolution depth
images combined with a high-resolution intensity image of the scene (for a review of similar
methods for super-resolving depth images from RGB-D cameras see [37]).

3. Materials and Methods
3.1. Low-Altitude Image Data

The dataset in our low-altitude close-range photogrammetric study consists of 29
UAV-captured oblique images and depicts Omorfokklisia, a 13th-century Byzantine church
on the outskirts of Athens, Greece. The UAV platform was a DJI Phantom 3 Professional
with a 12 MP camera (pixel size: 1.6 µm; nominal focal length: 3.61 mm). The mean flying
height was ~18 m and the camera tilt angle ~45◦. A circular flight path in the “point of
interest flight mode” was chosen, i.e., the UAV orbited automatically around the object
of interest. Figure 1 presents two typical images of the data set, which also show the
environment of the monument.
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Figure 1. Two images of the data set, which show the monument and its direct environment.

3.2. Deep-Learning Based Super-Resolution Techniques

Besides conventional bicubic image upscaling per factor 4 (used here for the purposes
of comparison), the following DL-based SR techniques have been tested in the context of
3D reconstruction. All algorithms have been run on Kaggle [38].

1. RankSRGAN: This SR technique [23] was employed for image resolution enhancement
by a factor of 4. The RankSRGAN framework is structured into 3 stages. In stage
1, various SR techniques serve for super-resolving images of public SR datasets.
Next, pair-wise images are ranked based on the quality score of a chosen perceptual
metric while the corresponding ranking labels are preserved. Stage 2 regards Ranker
training. The learned Ranker has a Siamese architecture and should be able to rank
images depending on their perceptual scores. In stage 3 the trained Ranker serves
as the definition of a rank-content loss for a typical SRGAN to generate visually
“pleasing” images.

2. Densely Residual Laplacian Super-Resolution (DRLN): This SR technique [19] also
served in this study for SR by a factor of 4. It relies on a modular convolution neural
network, where several components that boost the performance are employed. The
cascading residual on the residual architecture used facilitates the circulation of low-
frequency information so that high and mid-level information can be learned by
the network. There are densely linked residual blocks that reprocess the previously
computed features, which results in “deep supervision” and learning from high-
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level complex features. Another significant characteristic of the DRLN technique
is Laplacian attention. Via the latter, the crucial features are modeled on multiple
scales, whereas the inter- and intra-level dependencies between the feature maps
get comprehended.

3. Hybrid Attention Transformer Super-Resolution (HAT): The images were again super-
resolved by a factor of 4 via this SR technique [24]. HAT is inspired by the fact
that transformer networks can greatly benefit from the self-attention mechanism and
exploit long-range information. Shallow feature extraction and deep feature extraction
precede the SR reconstruction stage. The HAT transformer jointly utilizes channel
attention and self-attention schemes as well as an overlapping cross-attention module.
This SR technique aims at activating many more pixels for the reconstruction of
HR images.

Finally, in our experiment, the Holistic Attention Network (HAN) [22], in which the
feature representation for SR is advanced, has also been used. There are two attention
modules jointly working to successfully model informative features among hierarchical
layers. The layer attention module learns the weights for hierarchical features by consid-
ering correlations of multi-scale layers, channels, and positions, while a channel-spatial
attention module comprehends the channel and spatial interdependencies of features in
each layer. However, the HAN technique needs input images with an equal number of
rows and columns, which is not the case here. It has been tested in other experiments with
satisfactory performance, but no results can be shown in this work.

3.3. SfM/MVS Tool

Several alternative software tools are currently available to end-users for the pho-
togrammetric generation of complex 3D models from unordered imagery. Although most of
them are based on implementing the standard SfM procedure, they demonstrate variations
in terms of user-friendliness and interactivity, acquisition cost (open-source or commercial
software), level of customization, and overall processing time. Some of the most com-
monly used open-source SfM software options include COLMAP [39] and Meshroom [40].
In the commercial market, on the other hand, the tools ContextCapture [41], Agisoft
Metashape [26], RealityCapture [42], and Pix4DMapper [43] are some of the dominant
players. For the 3D reconstruction stage in the present contribution, the photogrammetric
3D reconstruction pipeline of Agisoft Metashape was employed due to its wide popularity
(particularly among non-experts in photogrammetry) in both the remote sensing and the
cultural heritage communities as well as its ease of use. Note that this software is also
available for use under an academic license.

It may be mentioned that the Cascade Cost Volume Multi View Stereo CasMVSNet [33,34],
a DL based algorithm for MVS reconstruction, has also been experimented with; regrettably, it
ran out of memory when asked to process the HR images.

3.4. Methodology for 3D Model Reconstruction

Starting from digital images, Agisoft Metashape produces 3D spatial data in an accu-
rate and fast manner. Characteristic feature functions of this image-based reconstruction
software include point extraction and matching, photogrammetric bundle adjustment,
dense point cloud editing and classification, DSM generation, georeferenced orthomosaic
generation, stereoscopic measurements, 3D model generation and texturing, along with
panorama stitching.

Similar to other publications [13,25], bicubic downscaling per a factor of 4 has been
applied to the original HR images to generate their LR counterparts. Then, the three
mentioned SR tools RankSRGAN, DRLN, and HAT [19,23,24] were used to bring these
LR images back to the original spatial resolution, thus producing the super-resolved (SR)
images; for comparison purposes, bicubic interpolation was also applied for upsampling
the LR images by a factor of 4. In Figure 2 typical image patches are seen.
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Figure 2. Three patches of the same oblique image. From left to right: low resolution, bicubic
upscaling, super resolution (HAT), high resolution (original image).

The super-resolved image has a clearly improved quality (edges have been enhanced,
yet poorly textured areas have been somewhat “flattened” compared to the HR images).
No discernible SR-induced artefacts are to be observed.

The original HR images were then input into the Agisoft tool for full self-calibrating
bundle adjustment (estimation of interior and exterior camera orientations) and 3D re-
construction. The resulting HR 3D model served as the reference model in comparisons.



Heritage 2023, 6 2707

Next, SR 3D models were generated from the SR images, along with a 3D model from
the bicubically upscaled images; finally, the LR images produced the low-resolution 3D
model. All high-precision reconstruction processes in Agisoft were performed with the
same parameters. In summary, the following six models were generated:

(a) one model from the original 3000 × 4000 high-resolution images (HR)
(b) one model from the downsampled 750 × 1000 low-resolution images (LR)
(c) one model from the bicubically upsampled 3000 × 4000 low-resolution images (BU)
(d) three models from the super-resolved 3000 × 4000 low-resolution images (SR).

3.5. Criteria for the Comparison of Point Clouds

The evaluation of the similarity between point clouds has generally two distinct
steps: the registration of the clouds into the same reference (geodetic) system; and the
comparison itself. The objective of registration is basically to calculate the 6-parameter
rigid (translation and rotation) or the 7-parameter similarity (plus uniform scaling) 3D
transformation for point clouds of arbitrary initial position in order to express them in a
common coordinate system. In general, the registration step includes, in turn, two distinct
steps: coarse registration (initialisation); and registration refinement.

The alternatives for point cloud registration have been extensively reviewed in the
recent literature [44–49], particularly in the context of photogrammetric and LiDAR 3D
reconstruction. A large part of the reviewed research is dedicated to the automatic estab-
lishment of distinctive feature point correspondences for initializing registration, among
which DL-based approaches are being currently investigated. In our case, however, initial-
isation presents no problem since ground control points (GCPs) have been used, which
additionally gives to all 3D models a common scale. Alternatively, one could use the GPS
information for the location of camera stations; or else (since in our case the corresponding
images of the different image sets share the same exterior camera orientation) one could
simply transform these orientations into a common reference system.

On the other hand, a substantial part of research on point cloud registration addresses
the general case of “non-cooperative” datasets of point clouds stemming from different
sources, where the registration task may face varying levels of noise and types of out-
liers, considerable scaling differences, very different point densities, and only partially
overlapping 3D data. In cases (like here), however, of point clouds from the same source,
with equal point density (excepting the low-resolution 3D model), no scaling issues, total
overlap, similar levels of noise, and good initial registration, methods based on the ICP
(Iterative Closest Point) registration algorithm [50,51] are generally expected to perform
well [46,49,50]. Furthermore, considering 3D rigid transformations (rotation plus transla-
tion), the transformation which minimizes the total Euclidean distance between all point
correspondences is usually regarded as being optimal [48].

Coming, finally, to the comparison itself between registered point clouds and the
evaluation of their quality, several different approaches have been reviewed in the context
of aerial photogrammetry and laser scanning [52,53]. Both these reviews conclude that,
among other possible metrics, in such applications, the most popular and representative
evaluation option for cloud-to-cloud comparisons and noise evaluation appears to be the
so-called point-to-plane approach (see also [54]). This means that the evaluation measure
for the difference between point clouds is the distance of a reconstructed point from the
reference surface, which is modelled locally by fitting a mathematical primitive (in this case
a plane) on the nearest point and its immediate neighbourhood.

3.6. Comparison of Point Clouds

Pairwise comparisons of the dense 3D point clouds were thus performed, namely
the LR model, the BU model, and the three SR models were each compared against the
reference HR model. Based on the above considerations, we used the popular 3D point
cloud processing software CloudCompare [55], which allows for the calculation of distances
between “corresponding” cloud points by means of the ICP algorithm. For each point of a
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cloud, its corresponding point was determined here as its projection on the plane fitted to
its 6 closest points of the other cloud.

Following [56,57], reconstructions were evaluated in terms of precision p and recall
(completeness) r over four distance thresholds t: 0.5, 1, 2, and 3 cm. Completeness is
generally defined as the percentage of ground truth points (here: those of the reference
model) for which the distance to their corresponding (as defined above) point in the
reconstructed cloud is below the selected evaluation threshold. Precision (sometimes also
referred to as accuracy), on the other hand, is defined as the percentage of reconstructed
points whose distance from their corresponding (as defined above) ground truth points
falls within the selected threshold.

Thus, precision quantifies the metric quality of the reconstruction: how close are
the reconstructed points to ground truth; recall, in turn, quantifies the completeness of
reconstruction: to which extent the ground-truth points are covered [56]. Obviously, the
properties of precision and recall (completeness) are both crucial for assessing quality
of reconstructions. Hence, they are often combined in the F-score, which represents a
summary quantitative measure, being the harmonic mean of the precision p and recall r
values: F = 2 × (p × r)/(p + r). The following Tables concentrate all values of p(t), r(t) and
F(t) for the respective evaluation threshold t.

4. Results
4.1. Full 3D Model

The reconstructed 3D models were first cut to keep only the object of interest (in
Figure 3 views of two such models are given). The numbers of reconstructed model points
are seen in Table 1.
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Figure 3. Rendered and textured models from images of low (above) and high resolution (below).

Models from SR images have more vertices than the HR (reference) model; it remains
to be seen whether they fit precisely to the latter. The 3D model from the LR images, on the
other hand, has of course far fewer points (less than 10%).

Then, each of the reconstructed LR, BU, and SR point clouds were registered onto
the properly scaled HR point cloud to allow for comparisons via point-to-plane distances
(as previously defined) from it. No threshold for maximum distance values is used in
these calculations.
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Table 1. Number of point cloud vertices.

3D Models Number of Vertices

HR (reference) 907,917

LR 87,844

BU 1,020,456

SR RankSRGAN 1,091,278

SR DRLN 1,012,209

SR HAT 951,992

Visualizations of model differences from the HR model are seen in Figure 4. Truncated
histograms of differences between the BU and SR models (the differences in the LR model
are very large, as already depicted in Figure 4) from the HR model are shown in Figure 5.
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(right); bottom: DRLN model (left) and HAT model (right).

Detailed results for the registration of reconstructed-to-reference point clouds (preci-
sion p) and of reference-to-reconstructed point clouds (recall r), along with the respective
F-score values (F), are seen in Table 2. The number of points with distances from the refer-
ence model smaller than, or equal to, four selected evaluation thresholds t are presented.
Results will be evaluated in the next section.
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Figure 5. Histograms of point-to-plane distances from the reference (HR) model.

Table 2. Precision (p), Recall (r) and F-score (F) percentage of the calculated distance differences for
the full point cloud. Percentage values account for the points with distances which are smaller than,
or equal to, the respective evaluation threshold t.

Point Cloud

Evaluation Threshold t (cm)

0.5 1.0 2.0 3.0

p r F p r F p r F p r F

LR from Agisoft 15.52 13.79 14.61 30.40 27.13 28.67 57.06 51.49 54.13 77.76 72.09 74.81

BU 49.62 46.62 48.08 78.74 75.28 76.97 96.17 94.89 95.52 98.99 98.56 98.77

RankSRGAN 41.84 40.08 40.94 69.71 67.26 68.46 91.71 90.24 90.97 97.47 96.87 97.17

DRLN 54.38 53.04 53.70 82.80 81.35 82.07 97.12 96.85 96.98 99.19 99.18 99.18

HAT 56.16 55.10 55.62 84.25 82.94 83.59 97.35 97.17 97.26 99.22 99.27 99.24

4.2. Model Segments

Next to the comparison of the 3D models of the entire monument, 3D reconstruction
was also investigated in different individual model segments. In the mutual registration
of the full (all-around) models, possible misalignments originating in the SfM step (errors
of image interior/exterior orientation in bundle adjustment) may be reflected in stronger
local surface deviations. The main purpose of this paper is to evaluate the effectiveness
of different SR techniques by studying their impact on the multi-view reconstruction
procedure rather than on the SfM step. Although of course the steps of SfM (sparse
matching) and 3D reconstruction (dense matching) cannot be totally decoupled from each
other, an independent registration of segments of the reconstructed 3D models to their
reference counterparts might possibly mitigate the impact of such misalignments. The
issue of SfM-induced 3D reconstruction problems will be discussed in the next section.
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Thus, the same comparisons were made for the three monument segments A, B, and
C seen in Figure 6. These represent three viewing directions, namely a top view (a complex
of domes and slanted tile roofs) and two different side views (which mainly include
planar surfaces but also tile roofs). As in the preceding section, Tables 3–5 concentrate the
respective information from all segment model comparisons regarding the percentages of
calculated distance values for the same evaluation thresholds.
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Table 3. Precision (p), Recall (r) and F-score (F) percentage of distance values for segment A.

Point Cloud

Evaluation Threshold t (cm)

0.5 cm 1 cm 2 cm 3 cm

p r F p r F p r F p r F

BU 44.88 41.92 43.35 75.25 71.03 73.08 95.72 94.03 94.87 98.95 98.40 98.67

RankSRGAN 39.72 36.82 38.21 67.74 63.79 65.71 91.04 88.92 89.97 97.33 96.62 96.97

DRLN 54.43 52.56 53.48 83.16 80.98 82.05 97.23 96.77 97.00 99.23 99.16 99.19

HAT 55.89 54.68 55.28 84.56 82.71 83.62 97.59 97.18 97.38 99.28 99.28 99.28

Table 4. Precision (p), Recall (r) and F-score (F) percentage of distance values for segment B.

Point Cloud

Evaluation Threshold t (cm)

0.5 cm 1 cm 2 cm 3 cm

p r F p r F p r F p r F

BU 50.83 47.37 49.04 80.38 75.93 78.09 96.32 95.09 95.70 99.05 98.78 98.91

RankSRGAN 40.11 38.10 39.08 68.15 65.36 66.73 90.91 89.29 90.09 97.17 96.74 96.95

DRLN 52.85 44.88 48.54 82.14 75.76 78.82 97.04 96.08 96.56 99.21 99.11 99.16

HAT 54.09 52.63 53.35 83.09 81.50 82.29 97.14 96.96 97.05 99.22 99.28 99.25
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Table 5. Precision (p), Recall (r) and F-score (F) percentage of distance values for segment C.

Point Cloud

Evaluation Threshold t (cm)

0.5 cm 1 cm 2 cm 3 cm

p r F p r F p r F p r F

BU 43.19 47.62 45.30 74.27 77.70 75.95 95.77 96.36 96.06 98.97 99.18 99.07

RankSRGAN 38.62 40.63 39.60 66.90 68.91 67.89 91.46 91.85 91.65 97.57 97.75 97.66

DRLN 42.27 53.96 47.40 72.30 82.94 77.25 95.12 97.51 96.30 98.89 99.45 99.17

HAT 48.40 54.94 51.46 78.68 84.15 81.32 96.62 97.78 97.20 99.13 99.44 99.28

5. Discussion

The results of the previous section show that, as expected, LR images are by far
superseded by both BU and SR methods regarding both the number of points and preci-
sion/recall performance. Although bicubic interpolation offers substantial improvement
versus LR images, it was expected that it would be outperformed by RankSRGAN; in this
particular investigation, however, the bicubic interpolation appears to be clearly superior
over this SR tool. The other two SR approaches (DRLN and HAT) gave the best results,
with similarly high precision and recall percentages, thus appearing to be very efficient
as regards both model accuracy and completeness. In fact, in all cases, less than 4% of
all tested points differed by more than 2 cm from their expected position, and less than
1% by more than 3 cm. An impression given by Figure 4 is that DRLN gives the best
outcome; yet the tabulated results revealed that HAT consistently gives (marginally) better
p, r, and F values. In fact, both methods appear here to be equivalent in improving 3D
reconstruction when starting with LR images. Furthermore, DRLN and HAT upscaling
produced more reconstructed 3D points than the original HR images (namely by 11.5% and
4%, respectively), which however appear to conform with the used reference surface.

Of course, the final result of 3D reconstruction pipelines carries the impact of multiple
intermediate steps; error propagation through them is a topic not fully mastered in pho-
togrammetry, as rightly remarked in [25]. In typical cases, for instance, sparse matching
(SfM) and dense matching (MVS) errors are intertwined in an almost inseparable way;
hence, it is difficult in our case to separately assess the impact of SR tools on each individual
step. The study of local similarity measures along epipolar lines, as in [25], may indeed give
a picture for the performance of SR tools in stereo matching (although, in the general case,
the positions of epipolar lines themselves have already been affected by bundle adjustment).
But when more overlapping views (and thus more homologous epipolar lines) are available,
the situation is far more complicated, the more so since outlying local contributions of
individual images can be in this case effectively discarded.

On the other hand, a straightforward comparison of the values of image orientation
parameters with those from a different solution may be an indication of their actual close-
ness; this led in [13] to the conclusion that interior and exterior imaging geometry could
be accurately retrieved from SR image sets. These parameters, however, may be strongly
intercorrelated (especially in geometrically weak image networks) and, if necessary, call for
more thorough investigations. In any case, strong imaging configurations are needed in
projects where accuracy is a central issue.

Indeed, the robustness of a bundle adjustment heavily depends on image network
geometry; for instance, image tilts and cross-flights (which allow significant image roll
angles) are generally desirable. Unlike typical networks of vertical images mostly used
in publications on SR-based 3D reconstruction, a strong geometry has been adopted here,
based on oblique UAV imagery pointed towards the object of interest, which guarantees
high numbers of image ray intersections in 3D space. It might be partly attributed to this
fact that our results for the full 3D model are similar to those for the model segments.
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6. Conclusions

Deep-learning-based image SR techniques have been proven as a powerful means
for enhancing image spatial resolution, visual quality, and detail. Our work shows that
it can also contribute to improving 3D scene reconstruction. Corroborating the results of
other relevant publications (based on satellite or vertical UAV images), the present study,
using low-altitude oblique UAV images and pre-trained SR tools, clearly indicated that
state-of-the-art photogrammetric 3D reconstruction can give improved results by exploiting
the increased image spatial resolution thus provided. Two of the three SR tools led to
high and almost equivalent accuracy and completeness scores in 3D reconstruction when
compared with models from images of original high resolution.

Future work includes experimentation with results from model retraining; evaluation
of different imaging geometries for SR-based 3D reconstruction; also, research regarding
the possibility of isolating the effects of SR techniques on the basic steps of a SfM/MVS
pipeline (for sparse point extraction and matching).

As in most relevant publications, the low-resolution images here were not original
images but bicubically downscaled versions of the originals, which might introduce a
certain bias in the comparisons. An alternative would be the employment of different
imaging distances, as in [12], to provide LR and HR data. But this also presents problems
since such images are not directly comparable regarding 3D reconstruction due to their
different image perspectives. Thus, we also intend to perform tests with images acquired
with different resolutions but under similar geometric conditions, namely from equal
imaging distances and with the same camera tilts.
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