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Abstract: Using a mathematical model of concrete carbonation that describes the variation in porosity
as a consequence of the involved chemical reactions, we both validated and calibrated the related
numerical algorithm of degradation. Once calibrated, a simulation algorithm was used as a fore-
casting tool for predicting the effects on the porosity of concrete exposed to increasing levels of CO2

emissions, as well as to rising temperatures. Taking into account future projections of environmental
modifications deriving from climate changes, some scenarios were produced numerically by the
mathematical algorithm that showed the effects of different pollution levels and global warming on
the porosity of Portland cement in a time window of years. Finally, a theoretical study on the effects
of pollution levels on the carbonation constant determining the advancement in the carbonation front
was carried out for the analyzed scenarios.

Keywords: concrete carbonation; reaction and diffusion models; climate changes; model parameter
estimation; mathematical algorithms

1. Introduction

The interactions between environment and building heritage, i.e., monuments, ar-
chaeological sites, and historical and modern buildings have always been, and will con-
tinue to be, crucial for conservation issues. Moreover, the deterioration and damage
of materials caused by weathering processes is still not completely understood since it
is a highly complex phenomenon resulting from the interaction of both chemical and
mechanical processes.

As natural stones are exposed to the modification of the environment and surrounding
landscapes, concrete is also subjected to attack by multiple damaging factors, such as
weathering, chemical aggression and abrasion, that may cause its deterioration in terms of
a modification of the original form, quality and serviceability. Such weathering processes
are always associated with water flow within the material, determined by wetting or
infiltration, caused by meteoric precipitation or groundwater capillary rise, respectively.

An increased rate of extreme conditions due to climate change also constitutes a further
threat, increasing the decaying rates and contributing to the occurrence of new degradation
mechanisms. This happens because climatic changes can not only influence the frequency
and intensity of hazardous events but can also worsen the physical, chemical and biological
mechanisms causing the degradation of the structure and its materials. In recent years,
research communities have started to discuss the impact of climate change on cultural
heritage (CH). Since 2003, the number of papers on this subject increased significantly;
see [1,2]. The changes in the climate system have been studied by climate scientists; see, for
instance, [3–5]. In particular, the studies presented by NOAA Climate.gov show that
environmental changes in recent decades are leading to a progressive increase in the CO2
concentration in the atmosphere, along with human emissions. The Intergovernmental
Panel on Climate Change (https://www.ipcc.ch/, accessed on 8 November 2022) takes
into account possible scenarios of CO2 emissions, showing that, in the near future (up until
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2050), the CO2 concentration will grow with different rates of increase and, in only a few
cases, might be similar to that in 2015.

The environmental changes may affect CH buildings and artifacts due to the synergis-
tic action of atmospheric agents and pollutants; see the recent studies in [6,7]. Such phenom-
ena may determine an irreversible weakening of the mechanical strength and an increased
vulnerability to the chemical aggression of porous materials through several mechanisms,
such as freeze–thaw cycles, a change in precipitation, corrosion, salt crystallization cycles
and an increased frequency of extreme events, just to mention a few; see [8–13]. Recently,
predictive maintenance, consisting of anticipating future deterioration through appropri-
ate diagnostic techniques, has emerged as a new tool for monitoring and protecting CH
sites [14]. Such a diagnosis is carried out by collecting and analyzing, with statistical tools,
data on the constitutive materials of the work of art, as well as the action of environmental
factors at the CH site. Our approach is within the model-driven framework on predictive
maintenance, based on mathematical models for CH (equations describing deterioration
processes and the effects of conservation practices)—see, for instance, [15–18]—coupled
with data derived from laboratory experiments and/or gathered by sensors suitably placed
at the CH site.

Our study is focused on concrete since it is the most widely used construction ma-
terial worldwide [19], as it is employed in the construction of buildings, stadiums, stairs,
sidewalks and foundations; see Figure 1.

Figure 1. Two examples of concrete buildings. Left Panel: Termini Station in Rome, Italy.
Right Panel: Bridge on Basento river in A2 motorway (Italy). Credit: MIBAC, 2018.

Such a material has a porous structure and its durability is mainly due to its resistance
to chemical aggression. In particular, one of the most important degradation phenomena
for concrete is carbonation, caused by carbon dioxide in the atmosphere. As shown in
Figure 2, environmental changes in recent decades have determined a constant increase in
the carbon dioxide concentration in the atmosphere. This fact may accelerate the damage
process of building structures.

Concrete carbonation is a complex process whose study requires the cooperation of
chemists, engineers and mathematicians in order to capture its features. It is caused by
a sequence of chemical reactions that consume calcium hydroxide (Ca(OH)2) and form
calcium carbonate (CaCO3). The above reactions are induced by carbon dioxide (CO2),
which is transported by water through the porous medium.

Although concrete is a long-lasting material, its degradation and the consequent
weakening may be due to the sulfation of the cementitious matrix, freeze–thaw cycles and
the corrosion of steel armor caused by carbonation. Indeed, a basic environment inside the
non-carbonated concrete forms a thin film of oxide that protects the steel bars reinforcing
the structures, and such a layer is maintained as long as the environment has a pH value
of at least 13. In carbonated areas, the presence of carbon dioxide instead neutralizes the
alkalinity of concrete with the solution within the pores, assuming a pH value inferior to 9.
This causes the destruction of the protective layer and starts corroding the steel bars [20].
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Figure 2. Increasing behavior of carbon dioxide in the atmosphere (blue line) associated to human
emissions (gray line) since 1750 (start of the Industrial Revolution) until 2021. Credit: NOAA
Climate.gov.

In the literature, many experiments for quantitatively evaluating the effects of the
carbonation process on cement materials can be found. Since, in natural conditions, the
carbonation process is very slow, most of the experiments are carried out in an accelerated
regime. For fixed conditions of the CO2 concentration, temperature, humidity and time,
the samples are subjected to carbonation in a sealed chamber [21]. At the end of the
test, the specimens are split, cleaned and sprayed with a phenolphthalein pH indicator,
which is an organic compound that is colorless in an acid environment (carbonated part)
and turns pink in a basic environment (non-carbonated part); see, for instance, [22,23].
SEM microscope observations and X-rays allow for the quantification of the effect of
carbonation by identifying the presence of CaCO3 formed and residual Ca(OH)2 not yet
reacted with CO2. From the comparison of the sample before and after carbonation, the
material, initially rich in calcium hydroxide, transforms into being mainly composed of
CaCO3, clearly indicating that the reaction with CO2 has taken place [24,25]. Porosity
represents a fundamental parameter for process control that allows us to evaluate the effect
of carbonation on the structure of cement. To this aim, gammadensimetry and mercury
intrusion analysis can be carried out.

Carbonation has attracted research interests also within the mathematical community
and there is a huge amount of literature addressing the mechanism of carbonation with
different mathematical models; see, for instance, [26–34].

In [35], we introduced a mathematical model describing porosity variation as the
result of several intermediate chemical reactions triggered by the penetration of carbon
dioxide that diffuses and is transported into the pores by water that is present.

The present paper describes the application of a mathematical model toward the simu-
lation of CH degradation under climate change scenarios. Such scenarios are introduced in
Section 2. The mathematical-based simulation algorithm is presented in Section 3. Section 4
is devoted to describe the fitting procedure of the mathematical-based simulation algorithm
against laboratory data obtained in natural conditions of the carbon dioxide concentration.
Then, in Section 5, we present different pollution scenarios produced by the simulation
algorithm with the forecast of porosity variation occurring during the carbonation process.
Moreover, a theoretical study on the effects of climate changes in terms of pollution levels
on the carbonation constant K was carried out for the analyzed scenarios.

2. Review on Climate Change Scenarios

Given the scope of the paper, a brief discussion of some elements of the global climate
crisis is necessary. Since a wide and deep overview on the matter is outside our purposes,
we focused on the elements that are relevant for the present research: the carbon dioxide
concentration in the atmosphere and global warming. For each of the above elements,
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a description of the literature sources of climate data that we used in our simulations is
provided (see Section 5).

2.1. Atmospheric Pollution: CO2 Emission Levels

The Intergovernmental Panel on Climate Change (IPCC)1 is the UN body that advances
knowledge of every aspect related to climate change, with a particular emphasis on human-
induced climate change. IPCC “prepares comprehensive Assessment Reports about the
state of scientific, technical and socio-economic knowledge on climate change, its impacts
and future risks, and options for reducing the rate at which climate change is taking place”.

One of the main forces of climate change is the emission of gases due to human
activities (such as industry production, transportation, etc.). Among these gases, carbon
dioxide has a central role and has become a reference measure of climate change. In its
reports, IPCC takes into account several future scenarios of emissions based on assumptions
about social, economic and technical development. These shared socio-economic pathways
(SSPs) were developed in the year to describe, in a self-consistent logic, major trends of the
economy, human lifestyle, technology, demography, policy, etc. There are five SSPs and
each provides distinct routes that describe how societies might act in the future and how
these actions will impact our environment [36].
SSP1 Sustainability—Taking the Green Road (Low challenges to mitigation and adaptation);
SSP2 Middle of the Road (Medium challenges to mitigation and adaptation);
SSP3 Regional Rivalry–A Rocky Road (High challenges to mitigation and adaptation);
SSP4 Inequality—A Road Divided (Low challenges to mitigation, high challenges

to adaptation);
SSP5 Fossil-fueled Development—Taking the Highway (High challenges to mitigation, low

challenges to adaptation).

Concerning atmospheric pollution, Figure 3 shows the evolution of the concentration
of carbon dioxide in the atmosphere from 2015 to 2150 for several scenarios; see [37]. We
can observe that, in the near future (up until 2050), the carbon dioxide concentration keeps
increasing under all scenarios; the rate of increase differs for each scenario. However, after
at least 2050, some scenarios foresee a slow decrease in concentration; in a few cases, the
concentration of carbon dioxide in 2150 will be equal to the concentration in 2015.

In this work, we show some simulations of the carbonation of concrete using the
values of carbon dioxide concentration following the scenarios developed in [37]. The
actual values of carbon dioxide concentration that we used in our simulations are listed in
Table 1.

Table 1. The values (percentage) of carbon dioxide concentration foreseen for 2075 for the indicated
scenarios. Values taken from [37].

SSP1-1.9 SSP4-6.0 SSP5-8.5

0.041973 0.060695 0.080169

Remark 1. The codes of the scenarios in Table 1 are identified by the following rule: SSPx-y.z,
where x is the number of the related shared socio-economic pathway and y.z is the target radiative
forcing expected by the year 2100. For example, the code SSP4-6.0 is related to SSP4 and foresees a
value of radiative forcing of 6.0W/m2 at the end of the century. Radiative forcing is a measure of
the imbalance between the incoming solar radiation and the outgoing IR thermal emission due to
the change in a variable (i.e., the increase/decrease in carbon dioxide concentration) while all other
variables remain the same.

2.2. Global Warming: Changes in Temperatures and Relative Humidity

Climate change also acts on the global temperature, since the amount of water vapor
in the atmosphere is changing, which has potentially significant effects. Over the last few
decades, global warming has been observed and studied and, correspondingly, climate
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models have been developed. Climate scientists foresee that the Earth has a high proba-
bility to continue to warm over this century and beyond, with a corresponding increase
in temperatures [3,4]. Indeed, global warming is caused by the growth in carbon dioxide
emissions associated to the presence of other harmful gases produced by human activities.
According to a wide range of climate model simulations [38,39], the global average tem-
perature could be between 1.1 and 5.4 ◦C warmer in 2100; see Figure 4. Such scenarios are
the results of projections, but it is also possible that greenhouse gas concentrations may
increase at higher rates with respect to those indicated in the graph. In fact, carbon dioxide
emissions are increasing at a rate of more than 3% per year; if the rate would maintain the
same level, in the future, the carbon dioxide concentration in the atmosphere would exceed
the scenario depicted in red by the end of this century or even before.

Figure 3. CO2 concentration scenarios (data taken from [37]).

Figure 4. Future climate projections based on different human emission pathways. Credit [40].
The picture shows the average of a set of temperature simulations for the 20th century (black line),
followed by projected temperatures for the 21st century based on a range of emissions scenarios
(colored lines). The shaded areas around each line indicate the statistical spread (one standard
deviation) provided by individual model runs.

Regarding the relative humidity, further investigations and studies are still needed to
be able to predict its trend in land through the next decades. Indeed, the RH values may
be related to many factors, such as changes in atmospheric circulations and land surface
properties; see [3].

3. The Mathematical-Based Simulation Algorithm

Here, we refer to the mathematical model recently introduced in [35]. Such a model
describes the movement of water (indicated by the letter w) within the porous stones;
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carbon dioxide (a) dissolved in water; the carbonate ion (b) produced by the dissolution
of carbon dioxide; the evolution of calcium hydroxide (i), which reacts with carbonate
to produce calcium carbonate; the evolution of calcium carbonate (c), produced by the
above reaction and later dissolving; finally, the evolution of calcium ion (e) produced by
the dissolution of calcium carbonate. The model will describe the subsequent change in
porosity, i.e., the fraction of the volume of voids over the total volume of the porous sample,
(ε). The complete model reads as follows:

∂w
∂t = ∂

∂z

((
ε−wmin

ε0−wmin

) 19
6 D(w, ε) ∂w

∂z

)
+ rw

∂(wa)
∂t = ∂

∂z

(
a
(

ε−wmin
ε0−wmin

) 19
6 D(w, ε) ∂w

∂z

)
+ ∂

∂z

(
Daw ∂a

∂z

)
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∂(wb)
∂t = ∂

∂z

(
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(
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) 19
6 D(w, ε) ∂w

∂z

)
+ ∂

∂z

(
Dbw ∂b

∂z

)
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∂i
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mc
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+ e0

me
− i
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me

ε = ε1 + (ε0 − ε1)
i
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+ ε2

(
e
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− 1
)

.

(1)

The terms rk, k = w, a, b, i, c, e represent the chemical reactions, defined according to
the following equations:

rw = mw(ωib −ωa)

ra = −maωa

rb = −mb(ωib −ωa −ωc)

ri = −miωib

rc = mc(ωib −ωc)

re = meωc

where the terms mk, k = w, a, b, i, c, e indicate the molar masses of the respective substances,
and the ωs describe the single chemical reactions and are defined as follows:

ωa = ν
a

ma
, dissolution of CO2 in water

ωib = µ

(
i

mi
· b

mb

)
, reaction between Ca(OH)2 and CaCO3

ωc = δ
c

mc
, dissolution of CaCO3

where ν, µ and δ are the reaction rates that represent the key parameters of our model, since
their values take into account the different time scales of the chemical reactions involved in
the carbonation process. In particular, ν represents the reaction coefficient between carbon
dioxide and water, µ is the reaction coefficient between calcium hydroxide and carbonate
ions and δ is the dissolution rate of calcium carbonate.

Remark 2. Since porosity varies as a consequence of carbonation, a couple of words are in order to
explain how we model it. Porosity changes following two processes:

1. Calcium hydroxide reacts with carbonate ions to form calcium carbonate; this process reduces
porosity.

2. Calcium carbonate dissolves; this process increases porosity.

Following the same arguments as in [35], we can represent porosity with the following expression:

ε = ε1 + (ε0 − ε1)
i
i0

+ ε2

(
e
e0
− 1
)

, (2)
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where:

ε0 is the porosity of the non-carbonated concrete;

ε1 is the porosity of (totally) carbonated concrete;

ε2 represents how porosity varies when calcium carbonate dissolves.

3.1. Initial and Boundary Conditions

The mathematical model is endowed with initial and boundary conditions for the
unknown variables. Here, we consider a concrete specimen in the domain [0, L], with L > 0.
The left boundary z = 0 identifies the surface in contact with the environment, with which
the exchange of humidity, carbon dioxide and carbonate occurs. For the unknowns, we
impose initial conditions of the form

f (z, 0) ≡ f0 for f = w, a, b, c, i, e.

Notice that no boundary conditions are needed for the variables i, c and e since these
are solutions of ODEs and their evolution in space only depends on the evolution of the
other variables. For the unknowns w, a and b, we impose a zero flux condition at the right
boundary z = L, i.e.,

∂ f
∂z

= 0 for f = w, a, b.

At z = 0, we assign a Dirichlet condition for water, i.e.,

w(0, t) ≡ w̄(t),

where the constant w̄(t) is the value of the (time-dependent) environmental moisture
content computed as

w̄ = SVD(T(t))RH(t), (3)

where SVD is the saturated vapor density in [g/cm3] computed as in [27]:

SVD(T(t)) = 10−6 × (5.018 + 0.32321T(t) + 8.1847× 10−3T(t)2 + 3.1243× 10−4T(t)3), (4)

where temperature T and relative humidity RH can be time-dependent if we consider
real environmental settings. If instead, we refer to the experimental settings such as those
reported in [22], we assume a relative humidity of RH = 70% and temperature T = 20 ◦C.

Then, for a, we assume that the flux at z = 0 depends on the difference between the
internal and external carbon dioxide concentration:

∂a
∂z

(0, t) = −Ka(a(0, t)− ā(t)),

where Ka is an unknown constant describing the penetration rate of carbon dioxide es-
timated from the calibration against data and ā(t) is the value of the external carbon
dioxide concentration.

Remark 3. Most often, in experimental works, the concentration of carbon dioxide is given as
non-dimensional units as a percentage of the substance within the mixture; however, in our settings,
we need the value ā expressed in dimensional units. Given a concentration of carbon dioxide at y%,
ā is computed in g/cm3 as:

ā(t) =
may

RTK(t)

103 , (5)

where TK(t) is the temperature expressed in Kelvin and R = 0.082 L atm K−1mol−1 is the
gas constant.
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Note that, if we consider laboratory conditions reported in [22], we have the w̄ and
ā constant.

We assume the null-flux condition at the left boundary for carbonate:

∂b
∂z

(0, t) = 0.

The model described above is able to describe the evolution of the carbonation process
in the time interval [0, T], with T > 0.

3.2. Numerical Algorithm

For the simulations, we assumed the model parameters listed in Table 2.
The interval [0, L] is discretized with a step ∆z = L

N+2 , with λ = ∆t
∆z , zj = j∆z,

j = 0, ..., N + 1. We also set wn
j = w(zj, tn) as the approximation of the function w at the

height zj and at the time tn.
We can assume that:

Vn
j = Dw

(
εn

j − wmin

ε0 − wmin

) 19
6 wn

j+1 − wn
j−1

2∆z
, for j = 1, . . . , N,

with the boundary values set as follows:

Vn
0 = 0;

Vn
N+1 = 0.

As shown in [35], if we define

∆j(u, v) :=
(uj + uj+1)(vj+1 − vj)− (uj−1 + uj)(vj − vj−1)

2∆z2 .

the numerical algorithm is the following:
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with a suitable discretization of the boundary conditions for w, a and b described above.
Note that the scheme above is convergent under the CFL condition ∆t ≤ ∆2z/Da. More
details are reported in [35].

4. Model Validation and Calibration

In the present Section, we show the numerical validation of the mathematical model
described above. A fine tuning of key model parameters, i.e., the reaction coefficients ν, µ
and δ, was carried out in a time window of one year in order to represent realistic situations.
A common approach usually adopted in order to study the carbonation of concrete is to
consider specimens exposed to carbon dioxide concentrations of up to 20%, the so-called
accelerated conditions. On the contrary, our aim here was to validate and calibrate the
mathematical algorithm over one year for a natural concentration of carbon dioxide in the
air, i.e., 0.03%.

In order to validate and calibrate the mathematical model, we referred to data from a
carbonation experiment described in [22] performed on a type Portland cement specimen.
As described in the work by Pan et al., concrete specimens characterized by a w/c ratio of
0.53 are first polymerized at a temperature of 20 ◦C and RH of 70% for 24 h; then, they are
placed in a seasoning environment at 20 ± 3 ◦C and 90% RH for 28 days and, successively,
samples are placed in a drying oven at 50◦C for 48 h. The carbonation test is executed at
T = 20 ◦C and 70% humidity for CO2 concentrations 0.03%, 3% and 20%. In what follows,
we considered only the data corresponding to the carbon dioxide concentration of 0.03%.
For more details on the experimental setting, the reader may refer to the original paper [22].

In the following numerical tests, we assumed the values of the parameters, taken from
the literature or calibrated against data, reported in Table 2.

Since the kinetic coefficients refer to an aqueous solution under ideal conditions, such
coefficients were estimated by the simulation algorithm against data, together with the
diffusivity coefficient Da. Indeed, in the presence of a significantly lower concentration of
CO2, we expect that the diffusivity within the material is higher.

In Figures 5, we report the plots of the profiles of the quantities obtained by the
mathematical-based algorithm described in Section 3 assuming parameters reported in
Table 2. In particular, the left picture shows the system behavior at t = 0, when the
diffusion of gaseous CO2 has already taken place in the cement matrix and the carbonic
acid formation reaction has just begun, whereas, on the right, the situation at t =365 days
is depicted.

Looking at the curve profiles of the main quantities involved in the carbonation process
and depicted in Figure 5, we obtained a qualitative validation of the model, since it perfectly
describes the real phenomenon according to the following aspects:

• Carbon dioxide a (magenta line) enters within the pores and is rapidly consumed;
• Water w (blue line) is consumed by the reaction, as expected;
• The carbonate ion b described by the yellow curve is the sum of two reactions, i.e.,

the dissolution of carbon dioxide in water and the reaction with calcium hydroxide to
form CaCO3;

• Calcium hydroxide i shows an “S” shape (green line): near the face in contact with
carbon dioxide, calcium hydroxide dissolves by the chemical reaction with carbonate
ion; far from there, it is still close to the initial datum since the calcium ion has not yet
penetrated sufficiently within the stone;

• On the other hand, the calcium carbonate c (red line) reaches its maximum at the left
end of the specimen (in contact with CO2) and decreases towards the other end, where
the concentration of carbonate ions is very low; moreover, the dissolution of calcium
carbonate has already started;

• The calcium ion e (black line), due to the rapid dissolution of calcium hydroxide,
only participates in the dissociation reaction of calcium carbonate and it is
consequently consumed.
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Table 2. Parameters of the model (1).

Description Units Value Ref.

h Specimen’s height cm 2 datum

∆z Space step cm 0.1 -

∆t Time step s 4 -

A Shape coefficient of water diffusivity cm2/s 3.24× 10−8 [28]

B Shape coefficient of water diffusivity - 100 [28]

ε0 Porosity of the unperturbed material - 0.2 [41]

ε1
Porosity after complete consumption

of Ca(OH)2
- 0.08 hypothesis/ [42]

ε2 Porosity change due to CaCO3 dissolution - 0.025 hypothesis/ [42]

Da Diffusivity of CO2 in water at 20 ◦C cm2/s 4.8 ×10−3 calibrated against data

Db Diffusivity of CO2−
3 in water at 20 ◦C cm2/s 0.81 ×10−5 [43]

ρw Density of water g/cm3 1 [44]

ν
Coefficient of reaction between CO2 and

water at 20 ◦C and 1 atm s−1 1 calibrated against data

µ
Coefficient of reaction between Ca(OH)2 and

CO2−
3 at 20 ◦C and 1 atm cm3/(mol s) 7× 10−2 calibrated against data

δ Dissolution rate of CaCO3 at 20 ◦C and 1 atm s−1 6× 10−9 calibrated against data

ma Molecular mass of CO2 g/mol 44.01 [45]

mb Molecular mass of CO2−
3 g/mol 60.01 [45]

mc Molecular mass of CaCO3 g/mol 100.09 [45]

me Molecular mass of Ca2+ g/mol 40.08 [45]

mi Molecular mass of Ca(OH)2 g/mol 74.10 [45]

mw Molecular mass of water g/mol 18.01 [45]

w0 Initial water content g/cm3 0.622 [22]

a0 Initial concentration of CO2 - 0.03% [22]

b0 Initial concentration of CO2−
3 g/cm3 1.3× 10−11 hypothesis

i0 Initial concentration of Ca(OH)2 g/cm3 5.2× 10−2 [22]

e0 Initial concentration of Ca2+ g/cm3 8.9× 10−3 hypothesis

c0 Initial concentration of CaCO3 g/cm3 9.8× 10−4 [22]

w̄ Moisture content of the ambient air for
UR = 70%, T = 20°C g/cm3 0.25 datum

ā Concentration of CO2 at the boundary g/cm3

derived with
formula (5) for
{0.03%, 0.04%,
0.06%, 0.08%}

scenarios

Ka Penetration rate of CO2 in the medium cm−1 104 calibrated against data
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Finally, it is worth noting that, due to the carbonation process, the porosity profile ε
(cyan line) depicted in the bottom picture of Figure 5 shows an increasing behavior.

Now, we present the numerical procedure for a fine tuning of model parameters
against laboratory data available from the literature. In particular, we used data in
([22], Table 5).

reporting the concentration of calcium hydroxide and calcium carbonate at the natural
exposure of carbon dioxide in the air corresponding to 0.03% for one year. As can be noticed
from experimental data, the content of calcium hydroxide always increases with depth,
and calcium carbonate shows an opposite trend. Then, a qualitative validation of model
outcomes was obtained looking at the relationship between the carbonation depth and the
content of calcium hydroxide and calcium carbonate.

Figure 5. Profiles of numerical solutions to the system (1) at time t = 0 (on the left) and after
t = 365 days (on the right) obtained with model parameters in Table 2 and with concentration of
carbon dioxide of 0.03%. We depict the concentration of water, carbon dioxide, carbonate, calcium
hydroxide, calcium carbonate and calcium ion (in g/cm3) and the non-dimensional porosity profile
(cyan line). The figures depict the profile on the space dimension (length of the specimen in cm).

In Figure 6, plots of the profiles derived from experimental data (line-circles) taken
from [22] for a carbon dioxide concentration of 0.03% and the related numerical results
obtained by the model (line-points) using parameters in Table 2 at time t = 365 days
are shown. As can be observed from the left picture in Figure 6, with a fine tuning of
model parameters describing reaction rates, not only the qualitative behavior but also the
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quantitative values of the calcium hydroxide profile are very close to the experimental ones
after one year, and the same occurs for the calcium carbonate depicted in the right picture
of Figure 6.

Figure 6. Plots of the profiles derived from experimental data (line-circles) taken from [22] and
numerical results obtained by the model (line-points) at time t = 365 days. On the left: profile of
measured VS-computed Ca(OH)2 and on the right: profile of measured VS-computed CaCO3. The
y-axis depicts the concentration of the substances (in g/cm3), whereas the x-axis shows the length of
the specimen (in cm).

In conclusion, a qualitative and quantitative validation of the model is obtained.
Indeed, the main feature of our model is its capability to reproduce the mechanism of the
creation and consumption of CaCO3 on one hand and, on the other hand, the ability to
predict the time evolution of the system, even including the long-time behavior.

The forecasting algorithm was implemented in Matlab c© and the computational time
taken for a simulation on the complete model with fixed parameters until time t = 365 days
was approximately 2000 seconds on an Intel(R) Core(TM) i7-3630 QM CPU 2.4 GHz.

5. Mathematical-Based Forecasting Algorithm: Damage Scenarios
5.1. Scenario 1. Laboratory Setting VS. Real Environmental Conditions

In Figure 7, the profiles of the temperature (T) and relative humidity (RH) detected in
the laboratory setting (constant values reported in paper [22]) and variable values detected
in the environment over a year (2017) by sensors of Arpa Lazio [46] and linearly interpolated
on the computational grid are reported. The corresponding boundary conditions for water
and carbonic acid obtained by using, respectively, Formulas (3) and (5) are reported in
Figure 8.

In Figure 9, the porosity profile in the first point of the material across the time window
of [0, 365] days is depicted. In particular, we depict the porosity at point x0 computed by
the mathematical model (1) at time T = 356 days for a concentration of carbon dioxide
of 0.03% in laboratory (red dotted line) vs. real (blue line) environmental conditions. As
can be observed, in both cases, the porosity initially decreases but, after approximately
150 days, it changes its behavior and starts increasing. Moreover, as can be noticed from
the superposition between the blue and red curves, the behavior of the porosity obtained
by the model (1) using inflow boundary conditions coming from laboratory conditions is
reproduces the curves obtained using boundary conditions coming from real environmental
conditions quite well. This is probably due to the fact that the inflow of carbon dioxide ā
in the case of constant laboratory conditions is more or less an averaged value of the real
values, as can be seen in the right panel of Figure 8.
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Figure 7. Temperature and relative humidity in fixed (constant) laboratory conditions vs. interpolated
real conditions detected over a year in 2017 in Rome (Arpa Lazio [46]).

Figure 8. Fixed in laboratory vs. numerical boundary conditions computed with real data for w̄ and
ā using, respectively, Formulas (3) and (5).

If we run the simulation algorithm until a time of 5 years, we can see that the porosity
still increases, as can be observed in Figure 10, thus possibly determining a weakening of
the structure of the building material.

5.2. Scenario 2. Effects of CO2 Pollution Growth on Porosity

Here, using the forecasting tool calibrated against laboratory data as described in
Section 4, we consider the carbon dioxide concentration scenarios depicted in Figure 3. In
particular, we focused on the concentrations of carbon dioxide reported in Table 1 and we
simulated the possible scenarios occurring for the porosity profile in these situations; see
Figure 11.

As can be seen, in the case of a higher concentration represented by the worst case
scenario SSP5-8.5 (approximately 0.08%), the porosity assumes its minimum after approxi-
mately 1 month, i.e., approximately three months earlier with respect to the present case,
with a 0.03% carbon dioxide concentration. For the intermediate scenarios (SSP4-6.0 and
SSP1-1.9), we can observe that the minimum is reached, respectively, after 50 and 80 days.
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Figure 9. Profile of the porosity at point x0 computed by the mathematical model (1) at time T = 356 days
for a concentration of carbon dioxide of 0.03% in laboratory vs. real environmental conditions.

For longer times, when the porosity starts increasing, all of the curve profiles have the
same qualitative and quantitative behavior. This phenomenon should depend on the fact
that the porosity growth does not depend on CO2 dissolved in water but on the dissolution
of calcium carbonate.

A Theoretical Estimate on the Effect of Changes in CO2 Levels on the Carbonation Front

When studying carbonation processes, one often evaluates the advancement in the
carbonation front (i.e., the boundary separating the carbonated from the non-carbonated
zone) in the interior of concrete samples. From an experimental point of view, the carbon-
ated zone can be identified through several techniques, as explained in the introduction.
Here, we want to briefly discuss how the carbon dioxide concentration might affect the
advancement in the carbonation front.

If we indicate with σ = σ(t) the position of the carbonation front, we have that our
specimen is divided in two regions:

Carbonated region C(t) defined by x ∈ [0, σ(t)];

Uncarbonated region U (t), x ∈ [σ(t), L].
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Figure 10. Profile of the porosity at point x0 computed by the mathematical model (1) at time
T = 1825 days (5 years) obtained for a concentration of carbon dioxide of 0.03% in laboratory conditions.

The front moves into the specimen following a square root in time law [47], i.e.,

σ(t) = K
√

t

where K (mm · s−1/2) is a constant that depends on the material properties, as well as the
concentration of carbon dioxide.

In our previous work [27], we determined the value of K as:

K =

√
2ε1

Da

1−ω

ā
µhma

(8)

where µh is the molar density of calcium hydroxide, i.e.,

µh = 0.02984 mol · cm−3

and ω = 0.0723 is a dimensionless parameter taking into account the shrinkage of concrete
as an effect of carbonation.
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Figure 11. Profile of the porosity at point x0 computed by the mathematical model (1) at time
T = 356 days for a concentration of carbon dioxide of 0.03% (orange line), 0.04% (red dotted line),
0.06% (blue dotted line) and 0.08% (purple dotted line).

If we insert the values of carbon dioxide for the base case 0.03% in (8), we obtain, after
one year, that the front reached the position:

σ0.03%(1 year) = 0.3282 cm.

Such a value is smaller than that reported in [22] (i.e., 7.8 mm). However, they reported
only one value for the experiments in natural conditions; on the other hand, the value that
we obtained here is of the same order of magnitude. Thus, we might assume σ0.03%(1 year)
as a base case to compare the carbonation effect under different pollution scenarios. In
other words, here, we evaluated how much the front modifies its position in the three
scenarios SSP1-1.9, SSP4-6.0 and SSP5-8.5. Table 3 lists the values of σ(t) after one year
using the concentration of carbon dioxide from Table 1.
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Table 3. The position of the carbonation front (in cm) after one year under the considered climate
change scenarios.

SSP1-1.9 SSP4-6.0 SSP5-8.5

σ (1 year) 0.3882 0.4668 0.5365

As one can imagine, since the concentration of carbon dioxide is higher in 2075 than
in the present days (according to all three scenarios), the carbonation front penetrates more
deeply in concrete stone. It is interesting to see the extent of the penetration with respect to
the base case. If we calculate the percentage of increase, i.e.,

dσ (1 year) =
σ (1 year)− σ0.03% (1 year)

σ0.03% (1 year)
· 100

we can find the values in Table 4.

Table 4. Percentage of change in front position due to the increased CO2 concentration with respect
to the base case.

SSP1-1.9 SSP4-6.0 SSP5-8.5

dσ (1 year) 18.2836 42.2381 63.4717

For example, in the scenario SSP1-1.9, which foresees a concentration of carbon dioxide
that is approximately 40% higher than the base case, the carbonation front increases its
depth by “only” 18%.

5.3. Scenario 3. Global Warming Effects on Porosity

The present paragraph is devoted to the numerical study on the influence of the
temperature change on the carbonation progress. If we suppose that the RH stays more or
less constant and consider a scenario taking into account a temperature increase of 5 ◦C as
predicted in [40], we do not expect to have a significant impact on porosity only depending
on this factor. Indeed, as can also be seen in [32], where the authors take into account the
effect of the temperature increase in the formulation of the diffusion coefficient, the results
show minimal effects (of the order of 1%).

In the next Figure 12, where we depict the porosity profile after 50 days for CO2 levels
corresponding to the SSP5-8.5 pollution scenario, we can observe that the profiles obtained
at a temperature of T = 20 ◦C (cyan line) and at T = 25 ◦C (blue dotted line) are nearly
the same.

A Theoretical Study of the Effect of Temperature on Carbonation Front

The mathematical model that we used in this paper does not explicitly describe the
action of temperature in carbonation processes. However, we can give some estimate of
how temperature affects carbonation in a changing environment. First of all, as we can
find in the literature (see for example [32]), we might reformulate the diffusion coefficient
through the well-known Arrhenius equation to include temperature, i.e.,

Da(T) = Da exp
{

E
R

(
1
T0
− 1

T

)}
, (9)

where E is the activation energy (40 kJ/mol), R is the gas constant and T0 is a reference
temperature (expressed in Kelvin) that we chose here to equal 20 ◦C . Using the above
formula for Da(T) and assuming in our settings that the temperature remains constant, the
coefficient K in the equation is modified as follows:

K(T) =

√
2ε1

Da(T)
1−ω

ā
µhma

. (10)
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Figure 12. Profile of the porosity at point x0 computed by the mathematical model (1) at time
T = 50 days for a concentration of carbon dioxide of 0.08% at a temperature of T = 20 ◦C (cyan line)
and at T = 25 ◦C (blue dotted line).

If we calculate the front σ using this new coefficient for a temperature of 25 ◦C, we
find the values in Table 5:

Table 5. The position of the carbonation front (in cm) after one year under the considered climate
change scenarios for a temperature of 25 ◦C.

SSP1-1.9 SSP4-6.0 SSP5-8.5

σ (1 year) 0.4417 0.5311 0.6104

We can see that, after one year, increasing the temperature by 5 ◦C induces an advance-
ment in the carbonation front by a few tenths of a millimeter.

Thus, temperature does not seems to play a substantial role in carbonation with the
considered carbon dioxide concentration. This might seems to contradict other research
results, such as in [32]. However, this contradiction is more apparent than real since the
authors there considered accelerated conditions (a 20% concentration of CO2). Indeed, if
we repeat the same calculations above for a concentration of 20% of CO2, we obtain the
values in Table 6. We can see that, although our model overestimates the position of the
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front with respect to the values in [32] [Table 13], we can find that the difference is between
the two values (approximately 0.34 cm) and is consistent with the experimental findings.

Table 6. The position of the carbonation front (in cm) after 7 days for a carbon dioxide concentration
of 20%.

20 ◦C 30 ◦C

σ(t) 1.1734 1.5126

Thus, we can conclude that temperature does not play a fundamental role in the
carbonation processes for “small” concentrations of carbon dioxide.

6. Conclusions

The present paper focused on the forecasting capability of the mathematical model of
carbonation - and the related simulation algorithm presented in Section 3. The principal
aim of our work was to obtain a reliable simulation algorithm to be used as a numerical
forecasting tool for predicting the effects of climate changes (i.e., CO2 emission levels,
global warming) on the conservation of Portland cement in terms of the porosity variation
and penetration depth of the carbonation front.

In this framework, a preliminary qualitative validation of the model followed by
a quantitative calibration of its key parameters, i.e., the reaction rates of the chemical
reactions involved in the carbonation process, was successfully carried out in Section 4.
Indeed, the pictorial representation of the curve profiles of the quantities mainly involved
in the carbonation process allows for a first qualitative validation of the model. Then, a
quantitative calibration of the model in the case of exposure to a natural carbon dioxide
concentration (0.03%) over a year was carried out by comparing laboratory data available
from the literature and model outcomes, for both calcium hydroxide and calcium carbonate
concentrations, thus resulting in a fine tuning of model parameters. Moreover, a comparison
between real vs. controlled laboratory settings was proposed, suggesting no effects in terms
of porosity variation. Once calibrated, the simulation algorithm was used as a forecasting
tool for predicting damage scenarios in order to evaluate the effects of the possible future
increase in the carbon dioxide concentration, as well as in the temperature, as predicted in
climate change scenarios reported in Section 2. Finally, since our model does not explicitly
describe the advancement in the carbonation front, some theoretical estimates on the effects
of climate changes on the penetration of carbon dioxide within cement is proposed in
Section 5. In more detail, a study on the effects of climate changes in terms of pollution
levels and temperature rise on the carbonation constant K was carried out for the analyzed
scenarios, and a substantial agreement with both the experimental and numerical outcomes
was obtained.

Then, we can summarize the procedure by the steps reported below:

• A qualitative validation and fine tuning of model parameters against laboratory data;
• A numerical simulation of different damage scenarios quantifying the modification of

the front position;
• A theoretical verification of experimental and numerical findings for the

analyzed scenarios.

This represents, to our knowledge, the first study on the effects of climate changes on
the porosity of Portland cement.

Our future work will follow two interconnected lines of research.
First, we will further enhance the forecasting tool by applying it to different kinds

of concrete and with a combination of multiple damaging factors. To this aim, not only
data available from literature but ad hoc laboratory experiments and sensor measurements
are needed to acquire data (chemical/physical properties such as porosity analyses, gas
penetration rates and the presence of other harmful substances). The second line of
research will focus on the impact of climate change on CH sites. Indeed, climate change
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implies modifications in several environmental aspects, such as temperature, precipitation,
moisture content, wind intensity, sea level rise and the occurrence of extreme events. All
of these changes will affect the degradation mechanisms of monuments or other artifacts
in several ways. Thus, we will use our forecasting tool to study how the variation in the
above environmental processes impacts cultural assets. This will be interesting from a
scientific point of view, as well as for heritage management practice. The final goal of our
research in the future is indeed to build a digital-twin prototype of the monitored object
in order to develop a mathematical tool for predictive maintenance. Using mathematical
algorithms to predict damages from chemical actions and from other mechanisms for
building heritage can bring economic savings and allow for the optimal planning of
conservative intervention strategies.
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