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Abstract: Marble and limestone have been extensively used as building materials in historical monu-
ments. Environmental, physical, chemical and biological factors contribute to stone deterioration.
The rehabilitation of stone damage and the delay of further deterioration is of utmost importance.
Inorganic nanoparticles having chemical and crystallographic affinity with building materials is
very important for the formation of protective coatings or overlayers. In the present work, we have
tested the possibility of treating calcitic materials with suspensions of amorphous calcium carbonate
(am-CaCO3, ACC) and amorphous silica (AmSiO2). Pentelic marble (PM) was selected as the test
material to validate the efficiency of the nanoparticle suspension treatment towards dissolution in
undersaturated solutions and slightly acidic pH (6.50). Suspensions of ACC and AnSiO2 nanoparti-
cles were prepared by spontaneous precipitation from supersaturated solutions and by tetraethyl
orthosilicate (TEOS) hydrolysis, respectively. The suspensions were quite stable (nine days for ACC
and months for AmSiO2). ACC and Am SiO2 particles were deposited on the surface of powdered
PM. The rates of dissolution of PM were measured in solutions undersaturated with respect to calcite
at a constant pH of 6.50. For specimens treated with ACC and AmSiO2 suspensions, the measured
dissolution rates were significantly lower. The extent of the rate of dissolution reduction was higher
for AmSiO2 particles on PM. Moreover, application of the nanoparticles on the substrate during their
precipitation was most efficient method.

Keywords: amorphous calcium carbonate (ACC); amorphous silica; synthesis; characterization;
coatings; dissolution rates

1. Introduction

Marble and limestone are commonly used building materials for historical monu-
ments, especially in the countries in the Mediterranean basin. These building materials
contain mainly calcite, which makes them susceptible to chemical deterioration from wet
precipitation. This problem is intensified at conditions of environmental pollution in which
the concentration of acid gases (SO2, NOx) is sufficiently high to render rainwater acidic [1].
The presence of microorganisms on the surface of monuments contributes to stone dete-
rioration over time due to changes in the chemical microenvironment and coloration as
well as mechanical damage. Human interventions aimed at the restoration of monuments
may also lead to further destruction because of the use of improper materials or because
of material mismatch [2,3]. The importance of cultural heritage calls for the development
of new materials, especially for materials which can effectively repair building materials
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and artefacts and treat natural stone. Nanotechnology is a very important resource for
these materials [4]. New materials for the remediation of damaged stones should exhibit
structural affinity for the substrates. Colloid and material science have contributed sig-
nificantly to art (paper, canvas, and wood) preservation over time through the use of
nanostructured fluids (microemulsions and micellar solutions), chemical gels and alkaline
nonaqueous nanoparticles dispersions [2]. Several attempts for the consolidation and
protection of stones of historic monuments have involved the use of polymeric compounds
(acrylates, alkoxysilanes). Fluorinated polymers and hybrid organic–inorganic coatings
are the most promising materials in the field of monument protection [3]. Alkoxysilanes
and modified silica nanoparticles are applied on stone artifacts (sandstone, marble and
granite) as protective water repellent coatings [5]. Materials consisting of an ethyl silicate
matrix with colloidal TiO2 and SiO2 nanoparticles were shown to be effective in stabi-
lizing porous limestone [6]. The hybrid material consisting of SiO2 and TiO2 showed
encouraging results in the protection and self-cleaning of marble [7,8]. Enhancement of
hydrophobicity of stone-based monuments was reported for polymer–silica nanoparticle
composite films on mineral substrates (natural marble and home made calcium carbonate
blocks) [9]. Clay, SiO2, Ca(OH)2 and CaCO3 were satisfactory for the consolidation of lime-
stone [10]. Calcium carbonate–polymer nanocomposite increased the impermeability of
limestone and improve its mechanical properties [11]. Composites of amorphous calcium
carbonate (ACC) and amorphous calcium oxalate (ACO) with alkoxysilane gels applied
for the protection of monument building materials without silicates (marble, calcarenite,
gypsum) resulted in the increase of surface hydrophobicity and improved resistance to
acid attack [12]. Siloxane coatings with SiO2, Al2O3 SnO2 and TiO2 nanoparticles yielded
superhydrophobic surfaces [13]. Barium, calcium and strontium hydroxide nanoparticles
have also been used successfully for the restoration of wall paintings and in trials on
sandstone and marble [14–17]. During consolidation by Ca(OH)2 particles upon exposure
to atmospheric CO2, ACC formation takes place, which is subsequently converted to the
thermodynamically more stable calcite [18]. Besides their crystallographic characteristics,
these two calcium carbonates differ significantly in particle size (almost 1:10). The very
small size of ACC particles is expected to favor penetration into the meso- and macropores
of damaged stone. Amorphous silica particles suspended in water, used for the treatment
of stone, penetrated inside stone matrix to a very shallow depth which increased upon
suspending the particles in alcohol [19].

In the present work, CaCO3 and silica SiO2 nanoparticle suspensions were pre-
pared from highly supersaturated solutions and from the hydrolysis of tetraortho silicate
(Si(OC2H5)4,TEOS) in ethanolic solutions, respectively. Both solid particles in the respec-
tive suspensions have high crystallographic affinity for calcite. The solid particles in the
suspensions were characterized by physicochemical methods (powder X-ray diffraction,
XRD; measurements of their specific surface area with nitrogen adsorption according to the
Brunnauer–Emmet–Teller method, BET; Fourier transformed infra-red spectroscopy, FTIR;
micro-Raman, mR; and thermogravimetric analysis, TGA). The stability of the nanoparticle
suspensions was assessed from the mean particle size measured with laser diffraction. The
effect of the presence of the cationic surfactant hexadecyltrimethylammonium bromide
(CTAB) on the stability of the nanoparticle suspensions was investigated. The stability of
the unstable ACC and of the respective suspensions was investigated in isopropyl alcohol.
The deposition of the ACC and SiO2 nanoparticles in their suspensions was carried out on
powdered Pentelic marble, to maximize the surface area. Slabs of PM were ground in a
ball mill to a powder with a grain size of between 600–1700 µm. The results of the treated
materials with the particles were evaluated by dissolution experiments in which the rates
of dissolution of the specimens were measured in undersaturated solutions of calcium
carbonate (pH 6.50, 25.0 ◦C). Earlier work has shown that accelerated dissolution tests
of powdered building materials yielded comparable results with respective dissolution
experiments in which intact stone slabs were used [20]. The present work may be consid-
ered preliminary, proof-of-concept work, for the evaluation of new materials. Although
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ACC has been identified in conservation processes, especially with nanolime, up to the
present to our knowledge, it has not been used in the form of stable suspensions, as a
primary stone conservation material. Provided that the results are encouraging in the
sense that they show protection of treated stone material, the work may be expanded to a
second stage in order to involve blocks or test specimens of stone material, either intact
or artificially deteriorated. The results in the present work are only preliminary, pointing
to potential applications, and they allow for more detailed insight on the interactions of
ACC and AmSiO2 particles with marble. The further task of this work is the preparation of
the composite material ACC–AmSiO2, which we anticipate will be able to provide both
consolidation and resistance to chemical dissolution of treated stone.

2. Experimental

ACC and SiO2 were prepared is suspensions. CaCO3 particles were prepared by
precipitation from supersaturated solutions, the composition of which is summarized in
Table 1.

Table 1. Experimental conditions for the synthesis of ACC suspensions. 25 ◦C; Total duration of
precipitation before the separation of the solids from mother liquor: 150 s.

Parameter/Preparation 1 2 3 4 5

Concentration of DMC (M) 0.1 0.1 0.1 0.1 0.05
Concentration of CaCl2·2H2O (M) 0.05 0.05 0.05 0.05 0.01

Concentration of NaOH (M) 0.3 0.3 0.3 0.3 0.1
Concentration of CTAB (ppm) - 1 10 100 -

The composition of the solutions was selected so that the solution supersaturation with
respect to calcium carbonate was very high, and the solid phase anticipated to form was
ACC [21,22]. Preparations 1–4 (Table 1), were done both in the absence and in the presence
of cetrimonium bromide ([(C16H33)N(CH3)3]Br; cetyltrimethylammonium bromide; and
hexadecyltrimethylammonium bromide; CTAB) at concentrations of 1, 10 and 100 ppm.
Specifically, two solutions were mixed in a batch reactor at 25 ◦C. The first solution was
dimethyl carbonate (DMC) and sodium chloride (NaCl) and the second solution was
calcium chloride (CaCl2). The two solutions upon mixing were stirred vigorously with a
PTFE coated bar and a magnetic stirrer for 2.5 min. The suspension of calcium carbonate
solid particles was filtered under vacuum with membrane filters (cellulose nitrate 0.2 µm),
and the solid on the filters was rinsed with acetone and freeze dried. The solid, was
identified by XRD and the morphology and particle size distribution was assessed from
pictures obtained with scanning electron microscopy, SEM. The solid phase was further
characterized with Fourier Transformed InfraRed Sepctroscopy (FTIR), micro Raman
spectroscopy (mR) and Thermo-Gravimetric Analysis (TGA). The respective specific surface
area was measured by the Brunnauer, Emmet, Teller (BET) nitrogen absorption method.
Extended absorption isotherm measurements were used for the calculation of porosity.
In the case of powdered PM, dried material was used. For the PM samples treated with
the suspensions, the samples were separated from the suspensions by filtration, washed
with triply distilled water and dried overnight at 60 ◦C. Silicon oxide nanoparticles were
prepared by hydrolysis of TEOS [23]. Ethanol (C2H5OH, 95% in water) and ammonia (NH3,
32%) solutions were added in a batch reactor and were stirred with a magnetic stirrer for
30 min. Next, the appropriate amount of TEOS was added and stirring was continued for
an additional hour. In the silica precipitation in the presence of CTAB, the latter was added
in an ethanol–ammonia solution. The solid formed by hydrolysis was characterized by
XRD and the morphology was investigated by SEM. The stability of the silica suspensions
in the absence and in the presence of CTAB was monitored as a function of time from
measurements of the particle size distribution (PSD) in the suspensions. The silica particles
that were formed were treated in an ultrasonic bath for 1, 2, 5 and 7 min. The suspended
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particles were separated from the suspensions, filtered through membrane filters (0.1 µm)
and analyzed by thermogravimetric analysis (TGA).

Powdered Pentelic marble (PM) was used as a model system for CaCO3 and SiO2
nanoparticle deposition, to test the effect of application of the suspensions of particles
prepared on its protection from dissolution in acidic undersaturated solutions. PM from
slabs was ground in a ball mill, until a powder of particles with sizes (equivalent sphere
diameter) between 500–1500 µm was obtained. Each of these particles contained a large
number marble grains consisting of calcite crystals, separated in their boundaries, consist-
ing of silica minerals. These granulated PM particles provide a reasonable representation
of flat marble surfaces from the point of view of chemical and mineralogical composition,
while exhibiting on the other hand a sufficiently large surface area to observe and monitor
surface-controlled processes such as dissolution in undersaturated solutions. Two methods
for the deposition of ACC nanoparticles on PM were applied: According to the first method
(method CCA), the powdered PM was suspended in the DMC and CaCl2 solution mixture.
The suspension of PM powder was thoroughly mixed until it was homogeneous, and next,
the appropriate sodium hydroxide solution was added to make the suspension alkaline
(pH Ca.10) and thus initiate hydrolysis of DMC, which resulted in the precipitation of ACC.
In the second method (method CCB), the powdered PM was introduced in the solutions
mixture immediately past the onset of formation of ACC. From the practical point of view,
both methods represented situations in which a suspension of ACC was deposited on
the surface of PM, but they differed in the timing of deposition: in CCA, deposits were
formed in situ during precipitation on the substrate, and in CCB, a suspension of ACC
particles interacted with the substrate. Amorphous SiO2 particles (AmSiO2) were prepared
by hydrolysis of TEOS (0.29 M) in ammonia solution, (0.67 M) in 95% ethanol solutions
at 25 ◦C. The duration of the hydrolysis process was 180 min. AmSiO2 suspensions were
also prepared at the same conditions, in the presence of 1, 5 and 10 ppm of CTAB in the
hydrolysis medium. The deposition of amorphous SiO2 nanoparticles was also done with
two methods: AmSiA, in which powdered PM was suspended in the ethanol–ammonia
mixture followed by the introduction and subsequent hydrolysis of TEOS, and AmSiB, in
which the powdered PM was added after the initiation of the rapid hydrolysis of TEOS.
The solids at the end of the synthesis were separated from the liquid by filtration and
were characterized by XRD and measurements of their specific surface area (BET). The
morphology of the preparations was studied by SEM.

The PM dissolution (treated and untreated) was studied in solutions undersaturated
with respect to calcium carbonate. Undersaturated solutions were prepared directly in
a batch reactor thermostatic at 25.0 ± 0.1 ◦C with circulating water. The solutions were
prepared by mixing CaCl2·2H2O and NaHCO3 solutions (final solutions concentrations
1.25 mM) and pH was adjusted to 6.50. The ionic strength of the solutions was adjusted
to 0.15 M with the addition of stock NaCl solution as needed. Following pH adjustment
by the addition of standard hydrochloric acid solution, accurately weighted test solid was
introduced into the undersaturated solutions. The solutions’ pH increased as a result of
the dissolution of calcium carbonate:

H2O + CaCO3 ↔ Ca2+ + HCO3
− + OH− (1)

Changes in the solution pH as small as 0.01 pH units triggered the addition of standard
HCl solution (0.01 M) from the precision syringe of a computer-controlled pH stat system.
The dissolution process was thus measured at a constant pH until the solution undersatu-
ration decreased sufficiently to stop additions, due to the pH reaching a point where it was
practically unchanged. Samples were withdrawn and filtered through membrane filters.
The filtrates were analyzed for total calcium by atomic absorption spectrometry (AAS,
Perkin Elmer AAnalyst 300) and for dissolved silicates spectrophotometrically (Perkin
Elmer lambda 35) as needed. The experimental set-up for the dissolution tests is shown in
Figure 1.
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Figure 2. Powder X-Ray diffraction pattern of CaCO3 precipitates in the absence (a) and in the presence of CTAB (b).  
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Figure 1. Experimental set-up for the measurement of dissolution of calcitic materials at constant pH.

3. Results and Discussion
3.1. CaCO3 Particles/Suspensions

Calcium carbonate, in preparations 1–4 of Table 1 (in the absence and in the presence
of CTAB) yielded calcite and vaterite and small amounts of ACC. The presence of ACC was
a clear indication of the formation of ACC and its subsequent transformation to vaterite,
and to the most stable calcite. In the absence of CTAB, the crystalline phases identified in
the precipitate were vaterite and portlandite (Figure 2a). At all test conditions, calcium
hydroxide (portlandite) precipitated as well from the supersaturated solutions because
of the high initial pH of the solutions (>10), as may be seen in the XRD profiles shown in
Figure 2b. It is interesting to note that portlandite was stable for a long time, although it is
reported that the carbonation reaction of calcium carbonate is quite fast [18,23]. Perhaps
the stabilization towards carbonization is due to the substrate or to the presence of the
other mineral phases. Specifically, in the absence and in the presence of low CTAB (1 ppm)
concentrations, vaterite precipitated together with ACC, showing that the presence of the
cationic surfactant slowed to some extent the conversion of ACC to vaterite. At higher
concentrations of the test cationic surfactant (10, 100 ppm) calcite was also found, clearly
coming from the conversion of the less stable vaterite.
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Figure 2. Powder X-ray diffraction pattern of CaCO3 precipitates in the absence (a) and in the
presence of CTAB (b).

In the SEM photographs (Figure 3), vaterite particles may be seen (mean diameter
1.0–1.5 µm) both in the absence and in the presence of CTAB. The very small vaterite
particle size showed that this phase was formed by conversion of the initially formed ACC.
In the presence of the cationic surfactant other than vaterite, ACC nanoparticles were also
to a significant extent converting to vaterite (Figure 3b–d). In Figure 3a, as may be seen,
the precipitate consists of ca. 100 nm ACC particles agglomerated to vaterite converting to
calcite (developing crystal faces typical of calcite).
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(b) 1 ppm CTAB, Bar 2 µm; (c) 10 ppm, Bar 200 nm; (d) 100 ppm CTAB, Bar 2 µm.

The IR spectra of the precipitates are shown in Figure 4. The characteristic band
at 745 cm−1, corresponding to vaterite, was present in all precipitates [24]. The band at
1074 cm−1 of the solid precipitated in the presence of CTAB corresponds to ACC [25].
In the absence of the cationic surfactant, the band of the precipitated solid at 848 cm−1

corresponded to calcite. The strong band at 713 cm−1, corresponding to calcite [24], was
found in all precipitated solids. The absorption bands at 1087 cm−1 suggested the presence
of ACC, in the form of precursor to calcite and vaterite polymorphic phases [25]. The
broad band at 2700–3600 cm−1 is suggested to correspond to the water content of ACC.
The bands at 2352 and 3642 cm−1 suggested the presence of portlandite [26–30].

The Raman spectra, shown in Figure 5, revealed the characteristic peaks of calcite
and vaterite. The peak at 1085 cm−1 is characteristic for ACC, corresponding to the ν1
vibration [25]. Calcite was identified in the precipitates formed in the presence of higher
CTAB concentrations (10, 100 ppm) from the peaks at 155 cm−1, 282 cm−1, and 711 cm−1,
which belong to lattice modes. The doublets of the vibration modes 1075–1090 cm−1

(v1; all precipitates except of the precipitate formed in the presence of 10 ppm CTAB)
and 740–750 cm−1 (v4) confirmed the presence of vaterite. Strong peaks at 105, 114, 267,
300 cm−1 correspond, also, to vaterite (formed both in the absence and in the presence
of 1 ppm CTAB). The presence of aragonite was identified at 206 cm−1, both in the ab-
sence and in the presence of 1 ppm CTAB and in higher concentrations (10, 100 ppm) at
155 cm−1 [31,32]. Finally, portlandite was identified in all preparations at 350 cm−1, while
absence of CTAB showed an extra band at 350 cm−1 [33]. Thermogravimetric analysis
results of the precipitates are shown in Figure 6. The first weight reduction (85–110 ◦C) is
due to the removal of naturally absorbed water. At the temperature range of 400–450 ◦C,
the weight difference is due to the combustion of the organic part of the precipitate, re-
sulting from the hydrolysis of DMC during the synthesis of CaCO3. The final weight loss
was observed at 650–700 ◦C and was due to the removal of carbon dioxide during the
conversion of calcium carbonate to calcium oxide at this temperature range.
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The formation of ACC nanoparticles by precipitation in the conditions used for prepa-
ration 5 (Table 1), was confirmed by the XRD profile shown in Figure 7a. As may be seen
both from the lack of sharp reflections and from the low counts number, the respective
solids were predominantly amorphous. The morphology of the precipitated solid, as may
be seen from SEM photographs, showed the formation of spherical particles, with sizes of
about 300 nm (Figure 7b). The BET specific surface area of the precipitate was measured
and was found to be equal to 4.7 m2·g−1.
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An important property of nanomaterials is their high specific surface area in com-
parison with the respective area of the macroscopic material. Their application therefore
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implies a drastically larger interaction surface with the environment. The application of
suspended nanoparticles on stone, from a practical point of view, is often done by brushes
or by spray applications. In the present work, the application of suspended particles
was done by suspending the powdered PM, which presents the advantage of increasing
the surface area of interaction, while on the other hand, the advantage of simulation of
the macroscopic size of treated stone is preserved. Each of the grains of the PM powder
consists of particles which make up a miniature of the stone surface. Undoubtedly, further
development is needed before going on to conservation practice, to ensure effective pene-
tration of the suspension to the deteriorated parts of the stone. The main task of the present
work was to prove a significant increase in the resistance of the treated stone material to
dissolution caused by wet precipitation. ACC suspended in water is shown to transform in
rather short times in aqueous media [18]. To extend further the stability of the suspended
solid phase, ACC particles, after their separation from the mother liquor by freeze drying,
were suspended in isopropyl alcohol. The stability of the suspensions was monitored
for two weeks; the morphology and particle size were checked from a number of SEM
photographs, as may be seen in Figure 8; their suspension into the solvent resulted in their
stability in the form of ACC with sizes lower than 500 nm for nine days. Their transfor-
mation into calcite took place during the following days. Specifically, over the first nine
days (Figure 8a–d), the spherical nanoparticles were seen exclusively without significant
changes in size. Past this time, the morphology of the particles started to change, showing
conversion to rhombohedral calcite, although the size changes were not significant.
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From the results shown so far, it may be concluded that the formation of ACC is
feasible and that stable suspensions can be prepared in isopropyl alcohol. It should be
noted that the dry ACC powder, preserved at −24 ◦C, did not show any changes in particle
size, shape and crystallinity for time periods of at least eight months. It is therefore possible
to keep ACC intact and make the suspensions needed for the treatment of calcareous stones.

3.2. Suspensions of Amorphous SiO2 Particles

The particle size distribution of the AmSiO2 preparations described in the experimen-
tal section was monitored as a function of time. The stability of the AmSiO2 suspensions
treated by sonication for time periods up to 7 min was examined. The mean particle size of
the AmSiO2 suspensions was stable, at about 150–200 nm for a period of one month. Ultra-
sonic treatment over short time periods did not show any changes. However, ultrasonic
treatment of the suspensions for longer times (5 and 7 min) caused the agglomeration of
the suspended particles, as shown in Figure 9, in which the mean size of the suspensions
treated for different duration times is shown as a function of time.
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Figure 9. Mean particle diameter of AmSiO2 suspensions in the mother liquor, in the absence of
CTAB as function of time, using ultrasonic treatment for 1, 2, 5, and 7 min.

The preparation obtained in the presence of low concentrations (1, 5 ppm) of CTAB
consisted of particles with mean sizes of about 200 nm. In the presence of higher concentra-
tions of CTAB (10 ppm), the mean particle size increased, as may be seen in Figure 10. It
may be suggested that the apparent aggregation was due to the adsorption of the cationic
surfactant adsorption on the negatively charged (in alkaline pH suspensions) SiO2 particles,
which resulted in at least partial charge neutralization of their surface charge. As may
be seen, the presence of 1 ppm CTAB did not have any significant effect, 5 ppm resulted
in increases in the mean size by almost 50%, and the presence of 10 ppm CTAB yielded
aggregated particles with a mean size of three times the respective size seen in the absence
of CTAB. The concentration-dependent mean size increase is evidence of the respective
surface charge neutralization.

The results of the XRD analysis (Figure 11) of the silica precipitates confirmed that
the solids were amorphous to X-rays, both in the absence and in the presence of CTAB—
which, as shown, did not affect the crystallinity of the precipitate. The entire XRD pattern
did not show any reflection corresponding to crystalline materials, the total number of
counts (intensity) of the diffracted X-rays was very low, and the pattern was typical for
substances amorphous to X-rays. The morphology and particle size of the amorphous
silica nanoparticles prepared by TEOS hydrolysis in the absence of CTAB are shown in
the SEM pictures in Figure 12. The mean particle size was 100 nm and the preparation
had a narrow size distribution. The larger mean particle size and the rather broad particle
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size distribution of the preparations in the mother liquor apparently correspond to the
formation of agglomerates which are stable over long time periods.
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Figure 11. Powder X-ray diffraction pattern of SiO2 particles precipitated by TEOS hydrolysis in the
absence and in the presence of CTAB.

The results of the thermogravimetric analysis (TGA) for the AmSiO2 nanoparticles
prepared both in the absence and in the presence of CTAB are shown in Figure 13. The
weight loss in the range of 100 to 300 ◦C observed was due to the residual organic part of
TEOS (TEOH) after hydrolysis. No difference between solids prepared in the absence and
in the presence of CTAB was observed.

3.3. Deposition of Nanoparticles in Pentelic Marble and Dissolution of Specimens (without and
with Treatment with Suspensions)

The dissolution process takes place on the surface of the test specimens. In the present
work, based on earlier work and in agreement with literature reports, it was assumed that
at pH 6.50 dissolution is mainly controlled by surface diffusion of the crystal building
units (possibly different from the crystal unit cell) on the surface of the crystals. The
characteristic properties of the specimen surfaces are therefore very important for the
kinetics of dissolution. In Table 2, the specific surface area and pore volume of powdered
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Pentelic marble and of the materials, resulting from the deposition of ACC and AmSiO2
nanoparticles, are summarized.
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Figure 13. Thermogravimetric analysis (TGA) of AmSiO2 nanoparticles prepared by TEOS hydrolysis
in the absence and in the presence of the cationic surfactant CTAB.

As shown in Table 2, treatment of the PM surface with ACC nanoparticles reduced the
specific surface area (SSA) and pore volume. This reduction suggested strong interactions
between ACC and marble particles, which resulted in sealing of the larger pores. As may
be seen, ACC particles adhering on marble irrespective of the method of application was
ca. 3% w/w. Coating of PM grains with ACC nanoparticles is shown in the SEM pictures
in Figure 14a,b, in which a rather thick layer of ACC has been formed. SiO2 nanoparticles
interacted to a larger extent with PM grains in suspension, as may be seen from the mass
of silica retained on PM grains (ca. 14% w/w). The SSA of the solid increased to an extent
that confirmed that the PM grain–AmSiO2 composite was not just a mechanical mixture
(a mechanical mixture of two components would be expected to yield an SSA ca. 11 m2·g−1).
The concomitant increase of the pore volume of the composite material suggested that the
deposition of the amorphous silica particles was done in “fluffy” layers, allowing for larger
pores in the composite materials. In this sense, the deposition method AmSiB corresponded
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to a more compact deposition, even though the weight percent deposit was the same as
with AmSiA.

Table 2. Specific surface area (BET), pore volume (calculated from the BET isotherm) and amount of
solid deposited on the powdered Pentelic marble.

Material BET Specific Surface
Area (m2/g)

Pore Volume
(cm3/g)

% w/w CaCO3/SiO2
in Material

Powdered Pentelic
marble 8.4 0.029

CaCO3 (ACC) 4.7 0.006
CCA method of

CaCO3 deposition 7.8 0.012 2.9

CCB method of
CaCO3 deposition 7.9 0.015 2.8

AmSiO2 32.5 0.103
AmSiA method of

SiO2 deposition 23.7 0.110 13.9

AmSiB method of
SiO2 deposition 22.0 0.065 13.7
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method CCB (bar 200 nm); (c) Amorphous SiO2 deposition method AmSiA (bar 200 nm); (d) Amorphous SiO2 deposition
method AmSiB (bar 1 µm).

The morphology of the PM grains covered by ACC and AmSiO2 particles is shown in
the SEM images of Figure 14.

The dissolution rates of all materials (PM grains, PM with ACC (methods CCA and
CCB) and PM with SiO2 (methods AmSiA and AmSiB) were measured in solutions under-
saturated with respect to calcite (thermodynamically the most stable calcium carbonate
phase, which is the main chemical component of PM). The relative undersaturation, σ, of
the solutions is defined as:

σ = 1−Ω
1
2 (2)
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where

Ω =

(
Ca2+

)(
CO2−

3

)
K0

s
(3)

In Equation (3), in the numerator is the product of the respective activities of the
ions in the solution and K0

s is the thermodynamic solubility constant for calcite. The
maximum value of Ω is 1 (saturated solution), where σ = 0. The experimental conditions
for dissolution are summarized in Table 3:

Table 3. Composition and dissolution rates of marble using CaCO3/SiO2 nanoparticles.

Material Relative Undersaturation, σ
Dissolution Rate of

CaCO3
/×10−8 mol·m−2·s−1

Powdered PM

0.89

1.4
CaCO3 (ACC) 3.4

CCA 1.3
CCB 2.0

AmSiO2 N/A
AmSiA 0.3
AmSiB 0.4

The dissolution rate of the PM with ACC deposited with both methods yielded rates
of dissolution close to those corresponding to PM. The ACC coating is expected to dissolve
faster in comparison to PM because of its higher solubility (Figure 15).
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