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Abstract: The preservation of cultural heritage monuments and artifacts requires the development
of methods to produce water-repellent materials, which can offer protection against the effects of
atmospheric water. Fluorosilanes are a very promising class of materials, as they act as precursors for
the formation of low surface energy polymer networks. 1H,1H,2H,2H-perfluorooctyl-triethoxysilane
is applied on marble, wood and the surfaces of other materials, such as glass, silicon wafer, brass,
paper and silk. According to the measurements of static water contact angles, it is reported that
superhydrophobicity and enhanced hydrophobicity are achieved on the surfaces of coated marble
and wood, respectively. Hydrophobicity and hydrophilicity were observed on the treated surfaces
of the other materials. More important, water repellency is achieved on any hydrophobic or su-
perhydrophobic surface, as revealed by the very low sliding angles of water drops. The study is
accompanied by colorimetric measurements to evaluate the effects of the treatment on the aesthetic
appearances of the investigated materials. Finally, the capillary absorption test and a durability test
are applied on treated wood and marble, respectively.
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1. Introduction

The preservation of the cultural identity may be accomplished by the promotion of
the remaining monuments, buildings and artifacts of the cultural heritage. Modern concep-
tions of conservation strategies are seen as integrated economic development approaches,
similar to parallel processes of improving infrastructure and promoting cultural projects [1].
Thus, it turns out that the preservation, restoration, documentation and promotion of the
cultural heritage is a sustainability obligation. Conservation products, which have been
developed to protect cultural heritage objects and buildings against environmental pollu-
tion, human interventions or natural deterioration, should fulfill specific requirements. The
activities and applications of these materials depend heavily on their chemical composition
and structure.

Alkoxysilanes, for instance, are widely used for the protection and consolidation of
buildings, mainly due to their low viscosity, which allows them to penetrate deep into the
interior of the natural stone [2]. Upon application, the small silane and siloxane molecules are
polymerized in situ through a sol-gel process, forming a polysiloxane network that improves
the mechanical stability and durability of the treated stone [2,3]. Moreover, the application
of carefully designed sol-gel processes can result in the production of superhydrophobic and
water-repellent polysiloxane materials [4,5], which apparently offer enhanced protection
against the degradation effects of atmospheric water. Superhydrophobicity is defined by the
very large static water contact angle (typically > 150◦), whereas a water-repellent surface
is characterized by the low sliding angle of water drop (typically < 10◦). Nanocomposites,
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which consist of nanoparticles embedded in polysiloxane networks, are a new class of
advanced materials, designed for the protection of stone [6–16]. Extreme hydrophobicity
or even superhydrophobicity is achieved on the surfaces of these nanocomposites, as the
additives—nanoparticles promote surface roughness [6–16]. According to the Cassie-Baxter
model, which is commonly used to describe non-wetting phenomena, the hydrophobic
character of any material is enhanced with surface roughness [17].

The replacement of hydrogen (H) atoms with fluorine (F) atoms in a polymeric struc-
ture enhances its ability to endure heat, light, flame, moisture or chemicals [18]. Moreover,
F atoms reduce the surface energy of the material and hence increase hydrophobicity. For
these reasons, fluorinated polymers have been extensively investigated and suggested
for the conservation of buildings and objects of the cultural heritage that are exposed to
atmospheric conditions [19–25].

The static and the sliding angles of a water drop on a surface are used to assess the
hydrophobic/hydrophilic and water-repellent/adhesive character of the surface, respec-
tively. It is stressed that hydrophobicity is not always accompanied by water repellency.
For example, the surface of rose petal shows superhydrophobicity (i.e., the static water
contact angle is >150◦), and yet the water drop remains pinned on this natural surface even
if it is turned upside down, implying high drop adhesion (i.e., the sliding angle cannot be
practically measured) [26,27]. Therefore, both static and sliding angles are important to
characterize the wettability of a surface. It turns out that for practical applications such
as the protection of buildings that are exposed to outdoor conditions, water repellency
(i.e., a small sliding angle of water drop) is the key, desirable property. Only on a water-
repellent surface does the water drop roll off the surface easily, collecting dirt along the
way (self-cleaning scenario) [28].

As described above, contact angle measurements are extremely important in order
to study the interaction of water with a material designed for the protection of cultural
heritage. Moreover, the evaluation of the color parameters after the application of protective
coatings onto materials of cultural heritage is essential, since the alteration of the original
hue is forbidden.

The goal of the present study is to investigate the efficacy of 1H,1H,2H,2H-perfluorooctyl-
triethoxysilane (FAS) to induce hydrophobicity, and more importantly water repellency, on
various cultural heritage materials such as marble, wood, glass, brass, paper and silk. More
experiments are carried out on marble and wood (capillary absorption test and a durability
test), which are commonly found in buildings and objects exposed to atmospheric water.
Moreover, a silicon (Si) wafer is included in the investigation, as this is a smooth surface
that is commonly used in wettability studies. Finally, colorimetric measurements are
carried out.

2. Materials and Methods
2.1. Materials Preparation

FAS silane solution was prepared by 1H,1H,2H,2H-perfluorooctyl-triethoxysilane
(97%) (C14H19F13O3Si) (CAS# 51851-37-7, Sigma Aldrich, St. Louis, MO, USA). One gram
of FAS was mixed with 99 g of ethanol (ChemLab, >98%) and stirred for 2 h while pH
was over 8. Most materials that were treated with the FAS solution were obtained from
the local market: blocks of white (Thassos) marble and beech wood, glass slides, filter
paper (Whatman No 4), polished brass specimens and silk. As for silicon (Si) wafers, these
were obtained from Siegert Wafer (Aachen, Germany). Except for silk and paper, substrate
materials were washed with tap water then rinsed with deionized water and acetone. They
remained in ambient conditions for 4 days in order to dry, while for total moisture removal,
the specimens were placed in a Thermconcept oven (KL 15/12) for 48 h at 80 ◦C. Blocks
of marble and wood with dimensions of 5 cm × 5 cm × 2 cm and 2 cm × 2 cm × 2 cm,
respectively, were used.

The colorless sol was deposited onto marble, glass, Si wafer, brass, paper and silk
using a Da Vinci Forte Basic No 4 brush. Six brush strokes were applied, with each covering
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being applied to the opposite direction of the previous one after the previous one had
dried. Wood specimens were treated with the dip-coating method: samples were partially
immersed by 1 cm in the sol for 50 h. After coating deposition, samples were left to dry.
Coated and uncoated samples were weighted to measure the coating uptake.

2.2. Instrumentation and Characterization Tests

Static contact and sliding angles were measured using an optical tensiometer appara-
tus (Attension Theta, Gothenburg, Sweden). Three drops of distilled water were placed
at three different spots on coated substrates. For the measurements of the sliding angles,
the tilt rate was adjusted to 1◦/s. Colorimetric measurements were carried out using a
MiniScan XE Plus spectrophotometer (HunterLab, Reston, VA, USA), and the results were
evaluated using the L*, a*, b* coordinates of the CIE 1976 scale [29]. The reported results
are averages of three measurements. The silane uptake was measured gravimetrically
(Sartorius, Göttingen, Germany).

Compared to other materials, more tests were carried out on wood and marble, which
are of particular interest. For water absorption by the capillary effect, the pre-weighted
wood specimen was placed with the coated side downwards into a vessel with distilled
water for 2 h at ambient conditions. The weight was then recorded every 5 min, after
removing softly the extra moisture from the coated surface. The calculation was carried
out via the fraction below (1), where wi (g) is the specimen mass at each ti time interval, w0
(g) is the initial mass, and A (cm2) is the area of the dipped surface.

Qi =
wi − w0

A
(1)

The durability of the FAS coating on marble was evaluated following a test that
combined mechanical and chemical treatment, as follows: the coated marble surface was
gently scratched for 30 s with a brush that had been immersed in acetone. The static contact
angle was measured on the treated marble surface after the cleaning process, which was
repeated until the surface obtained hydrophilic properties.

3. Results and Discussion

According to the results in Table 1, the substrate material that retained the greatest
amount of coating per unit area was that of wood, which was treated with the dip-coating
method. Approximately the same amount of coating was deposited onto the Si wafer
which was treated by brush. A smaller amount of the silane material was fixed on marble,
compared to wood. Considering that the size of the pores and the active porosity are lower
for marble than for wood, we can conclude that more silane quantity was settled on the
marble surface compared to wood surface. Next, with respect to coating uptake, was brass
followed by glass. Paper and silk retained low amounts of silane material. Both paper and
silk are highly hygroscopic materials, and their specimens used in the study were very
thin. Thicknesses were 0.7 mm for the paper and 0.8 mm for the silk samples, respectively.
Because of their small thicknesses, the two organic materials retained only small amounts
of the deposited silane.

Table 1. Quantities of silane deposited on substrate materials.

Substrate Coating Method Uptake
(g Coating/cm2 Substrate)

Marble Brush 0.0045 ± 0.0010
Wood Dip coating 0.0572 ± 0.0050
Glass Brush 0.0375 ± 0.0010

Si wafer Brush 0.0500 ± 0.0020
Brass Brush 0.0042 ± 0.0020
Paper Brush 0.0011 ± 0.0002
Silk Brush 0.0002 ± 0.0001
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The static water contact angles, which were measured on coated substrate materials,
are provided in Table 2 and show a large variation, ranging from superhydrophobicity
to hydrophilicity. In particular, superhydrophobicity (static contact angle > 150◦) was
achieved on the surface of coated marble. Enhanced hydrophobicity was reported on the
surface of coated wood, as evidenced by the large static contact angle (=133.6◦). The surface
structure of a deposited polymer coating is affected by the roughness of the underlying
substrate [8]. As both marble and wood are rough materials, it should be expected that the
resulting surfaces of the deposited FAS coatings will exhibit enhanced roughnesses. As
described in the Introduction, the Cassie–Baxter model predicts that roughness promotes
the hydrophobic character of a material. Hence, the origin of the large static contact angles
achieved on treated marble and wood should be the high roughnesses of the two substrate
materials. As concluded from the results of Table 1, more silane quantity was settled on
the marble surface compared to the wood surface. Consequently, a better coverage was
obtained on the marble surface, compared to wood, and therefore a higher contact angle
was achieved on the coated inorganic material (Table 2). The surfaces of glass and Si wafer
are smooth, corresponding to comparable roughnesses. Therefore, the structures of the
coatings that were deposited on these two substrate materials should be approximately
similar. This argument is supported by the measured contact angles on coated glass and
Si wafer, which were within only 114.8◦–110.7◦. As shown in Table 1, brass retained a
very small quantity of the deposited coating, thus resulting in a very low static contact
angle (=99.1◦), which, however, is within the hydrophobic regime. Finally, according to
the results in Table 2, the deposition of the FAS material on paper and silk did not have
any major effect on their wettabilities. The surfaces of coated paper and silk remained in
the hydrophilic regime, probably because these two substrate materials were able to retain
very small coating quantities (Table 1).

Table 2. Static contact angles and sliding angles of water drops on coated substrates.

Substrate Coating Method Contact Angle (◦) Sliding Angle (◦)

Marble Brush 155.0 ± 2.4 2.7 ± 0.2
Wood Dip coating 133.6 ± 1.3 1.6 ± 0.2
Glass Brush 114.8 ± 2.1 1.9 ± 0.2

Si wafer Brush 110.7 ± 2.6 2.3 ± 0.1
Brass Brush 99.1 ± 1.1 5.3 ± 0.1
Paper Brush <90◦

Silk Brush <90◦

Furthermore, the results of Table 2 show that the surfaces with a static water contact
angle >90◦ exhibited augmented water repellency, as evidenced by the low sliding angles
of water drops. Moreover, focusing on the superhydrophobic surface of marble and the
hydrophobic surfaces of wood, glass, Si wafer and brass, it is seen that there is no correlation
between the static contact angles, which show a large variation, and the sliding angles,
which varied within a very short range, from 1.6◦ to 5.3◦. This result is in agreement
with previously published reports, which suggested that the static contact angle is not
correlated with the adhesive or repulsive performance of a surface [26,27,30–32]. The latter
is described by the sliding angle or contact angle hysteresis [30–32]. Furthermore, it was
demonstrated that fluorosilanes are water-repellent materials, thus corresponding to low
sliding angles [33,34]. The water-repellent character of the fluorosilane used in the present
study is clearly evidenced by the very low sliding angles reported in Table 2.

Photographs of water drops on coated marble, wood, glass, brass and Si wafer are
shown in Figure 1. The photographs reveal the hydrophobic characters of the surfaces
of the aforementioned materials. Superhydrophobicity and enhanced hydrophobicity are
evidenced on coated marble and wood, respectively.



Heritage 2021, 4 2672

Heritage 2021, 4 2672 
 

 

Silk  Brush <90o  

Photographs of water drops on coated marble, wood, glass, brass and Si wafer are 
shown in Figure 1. The photographs reveal the hydrophobic characters of the surfaces of 
the aforementioned materials. Superhydrophobicity and enhanced hydrophobicity are 
evidenced on coated marble and wood, respectively. 

(a) (b) (c) 

(d) (e) 

Figure 1. Photographs of colored water drops on coated substrates: marble (a), wood (b), glass (c), 
brass (d) and Si wafer (e). 

The interaction of liquid water with coated wood was further investigated by per-
forming the capillary water absorption test. For comparison, uncoated wood specimen 
was included in the study. The results are provided in Figure 2, which shows the amounts 
of water per unit area (Qi) absorbed by the two wood specimens after being in contact 
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Figure 2. Results of the water capillary absorption test on coated and uncoated wood samples. The 
plot shows the amount of absorbed water per unit area (Qi) as a function of the square root of treat-
ment time ti. 
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Figure 1. Photographs of colored water drops on coated substrates: marble (a), wood (b), glass (c),
brass (d) and Si wafer (e).

The interaction of liquid water with coated wood was further investigated by per-
forming the capillary water absorption test. For comparison, uncoated wood specimen
was included in the study. The results are provided in Figure 2, which shows the amounts
of water per unit area (Qi) absorbed by the two wood specimens after being in contact with
water for time ti. Despite the water-repellent character of the coated wood surface (Table 2),
the results of Figure 2 suggest that the FAS coating offered practically no protection against
the capillary rise of water. This result elucidates the weak durability of the FAS coating
when it is in contact with liquid water for prolonged time.
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Figure 2. Results of the water capillary absorption test on coated and uncoated wood samples.
The plot shows the amount of absorbed water per unit area (Qi) as a function of the square root of
treatment time ti.

The results of colorimetry measurements are presented in Table 3. It can be seen that
the FAS coating caused a minimal color change on the marble specimen (∆E* < 1). The color
change of wood (∆E* = 3.2) induced by the application of the coating was nearly invisible, as
it just exceeded the limit (∆E* = 3) above which the human eye can perceive a color change.
Similarly, the color of the paper specimen did not change after its processing (∆E* = 0.46).
A noticeable color change (∆E* = 5.3) is reported in Table 3 for glass, originating primarily
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by the large change of brightness (∆L*). The high values of the latter (∆L*) contributed
to the significant color changes observed on the surfaces of Si wafer (∆E* = 19.77), brass
(∆E* = 14.9) and silk (∆E* = 13.2). However, major contributions to the calculated ∆E* for Si
wafer and brass were provided by the large changes of the yellow-blue component (∆b*).

Table 3. Color measurements.

Substrate Coating Method ∆L* ∆a* ∆b* ∆E*

Marble Brush 0.07 0.22 0.26 0.30 ± 0.05
Wood Dip coating 3.04 0.55 0.64 3.20 ± 1.47
Glass Brush 5.02 0.81 1.59 5.30 ± 0.10

Si wafer Brush 19.37 0.09 4.00 19.77 ± 0.50
Brass Brush 8.75 0.17 12.06 14.90 ± 0.60
Paper Brush 0.46 0.05 0.05 0.46 ± 0.10
Silk Brush 13.14 0.72 −1.09 13.20 ± 0.30

In order to test the durability of the treatment, the coated marble surface was brushed
for 30 s. Before using it, the brush had been immersed in acetone. According to the
results of Table 2, the static contact angle on coated marble was around 155.0◦. After the
application of the cleaning process (first cycle), the contact angle was reduced to 147.3◦.
The cleaning process was repeated three more times. After the second, third and fourth
cleaning cycles, the contact angle on treated marble became 126.6◦, 103.5◦ and 89.46◦ ,
respectively. Therefore, it took four cycles to record a transition from superhydrophobicity
to hydrophilicity.

4. Conclusions

1H,1H,2H,2H-perfluorooctyl-triethoxysilane was applied on marble, wood, glass,
silicon wafer, brass, paper and silk samples. Static water contact angles ranging from 155◦

(for coated marble) to values lower than 90◦ (for coated paper and silk) were measured on
the different treated materials. Low sliding angles of water drops (<6◦) were measured on
coated materials, except for the hydrophilic paper and silk. Consequently, it is reported
that water repellency was achieved on coated marble, wood, glass, silicon wafer and brass.
The application of the FAS coating induced negligible and considerable color changes to
marble and paper (∆E* < 0.5) and to wood and glass (3.0 < ∆E* < 5.5), respectively. The
treatment had a major effect on the aesthetic appearances of silicon wafer, brass and silk
(∆E* > 13). The capillary rise test was carried out on coated wood and showed that the FAS
coating offered practically no protection against the absorption of water. Finally, a quick,
preliminary test showed that the FAS coating on marble exhibits good durability. However,
the durability and the behavior of the FAS coating after accelerated aging conditions or
prolonged natural aging should be tested in the future.
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