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Abstract: Assessment and evaluation of damage in cultural heritage structures are conducted pri-
marily using nondestructive and noncontact methods. One common deployment is laser scanners or
ground-based lidar scanners that produce a point cloud containing information at the centimeter
to the millimeter level. This type of data allows for detecting surface damage, defects, cracks, and
other anomalies based only on geometric surface descriptors using a single dataset, which does
not rely on a change detection approach. Moreover, geometric features are not influenced by color,
which is essential for heritage structures because they are nonuniform in color due to anthropologic
and environmental effects (e.g., painting or moisture). In this work, a damage detection method
developed based on local geometric features is evaluated and expanded for crack detection within the
example fresco walls of Sala degli Elementi in the Palazzo Vecchio. The workflow’s performance is then
compared in a qualitative manner to that of manual crack mapping results identified using images.

Keywords: damage assessment; lidar; vision-based structural health monitoring; pattern recognition;
differential geometry

1. Introduction

Technologies to collect remotely sensed data based on active and passive data acquisi-
tion approaches have evolved in the last decade, enabling users to utilize these technologies
for various applications. Within the field of engineering, remote sensing technologies are
mainly used to create two-dimensional (2D) or three-dimensional (3D) representation of
regions of interest (ROI) for applications such as capturing complex geometry of structures,
scenes, or objects and structural health monitoring tasks, including deformation monitoring
and damage detection and quantification at various level of detail (LODs) [1–4]. Among
the available remote sensing platforms, ground-based light detection and ranging (lidar)
platforms (also referred to as terrestrial lidar or laser scanner) are used as a nondestructive
assessment technique to analyze the ROI at the member level. Ground-based lidar (GBL)
platforms can collect highly detailed and geometrically accurate 3D representations of
the ROI and may contain the true color and the intensity return values. GBL outputs a
3D point cloud, a set of points in 3D space representing objects’ surface. Due to the un-
structured nature of the point clouds, these data representations are initially used for tasks
such as measurement and visualizations. As a result, multiple methodologies have been
introduced to process and analyze point clouds for damage detection by extracting and
exploiting various features such as local geometric variations of points, color, or intensity
value variation of the points, as well as comparing temporal datasets for change detection
analysis [5–9].

This study aims to analyze the point cloud representation of the walls of a culturally
prominent structure, namely Palazzo Vecchio, which is located in the city of Florence, Tus-
cany, Italy (Figure 1). Palazzo Vecchio is a historical building where many of the interior
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walls contain culturally important frescos (paintings with waterborne colors). The analyzed
wall segment is located in a room at the southeast corner structure, known as Sala degli
Elementi. The analyzed wall segment sustained significant cracking on its interior walls,
where a single point cloud data of the wall segment is processed using an extension of
the method introduced by Mohammadi et al. [9]. Single point cloud data here empha-
sizes that the analysis is performed without relying on comparison between two or more
datasets collected at different times. The developed method relies on the local geometric
variations that are not affected by color, which is essential for heritage structures due to
color nonuniformities introduced by anthropologic and environmental effects. The damage
detection and results using remote sensing point cloud data enable objective damage
detection analysis, provide immediate guidance for in-person condition assessment, can
be used as a baseline to monitor the damage and its progress. These are essential tools
for heritage structure evaluations by providing insight into understanding the potential
damage mechanisms and identifying potential rehabilitation. Lastly, it provides digital
documentation of the scene in case of an emergency or unforeseen events to rehabilitate
the damaged areas of cultural importance [10].
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Figure 1. Palazzo Vecchio’s structure as located in the city of Florence, Tuscany, Italy. 

  

Figure 1. Palazzo Vecchio’s structure as located in the city of Florence, Tuscany, Italy.

2. Background

Within the field of vision-based structural health monitoring, damage detection from
point clouds has been investigated as a nondestructive assessment technique through mul-
tiple workflows. These workflows are developed based on pattern recognition, supervised
or unsupervised machine learning, or change detection analysis approaches. Therefore,
these studies can be classified into four broad groups based on the approach used to detect
damaged areas discussed in this section. In addition to the approaches used to detect
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damaged areas, multiple studies use both active (i.e., lidar) and passive (i.e., imagery)
remote sensing technologies to collect data from the damaged areas and further process
these data to detect and quantify damaged areas and compare each technology. As one
of the early studies, Olsen et al. collected lidar point clouds of a full-scale beam-column
joint [2]. Within the study, the authors quantified the volumetric losses by adding the cross-
sectional areas at multiple locations and studied the application of the GBL platform to
perform crack mapping via collected colored images (i.e., color information) and intensity
return values. However, as Olsen et al. reported, the crack mapping developed through
color and intensity information was not able to represent the exact location of the cracks
due to parallax [2]. Laefer et al. investigated the application of GBL and high-resolution
photogrammetry to detect cracking and compared the results with a manual or visual
inspection. To collect lidar data, the authors positioned the GBL platform at various dis-
tances, which resulted in point clouds with point-to-point distances of 1.00 to 1.75 mm
within the ROI. The research concluded that lidar-derived point clouds with such point-to-
point spacing were not reliable nor efficient data sources to detect cracking in comparison
to digital images [11]. Laefer et al. further investigated the application of GBL-derived
point clouds in detecting cracks by developing mathematical equations that characterize
the minimum detectable crack widths based on orthogonal distance offset between GBL
platform and ROI, interval scan angle, the crack orientation, and crack depth [12]. Based
on the developed equations and the verification study, the authors have reported that the
GBL-derived point clouds collected at a distance of fewer than 10.0 m can reliably detect
the vertical cracks of at least 5 mm or larger. This was supported by the earlier study
of Laefer et al. [11]. However, the authors observed that quantified crack widths were
consistently overestimated. In addition, it is where the crack detection was performed
using a semi-manual process. More recently, Chen et al. developed an experiment similar
to that created by Laefer et al. in 2014 to evaluate the Structure-from-Motion (SfM)-derived
point clouds [13]. Within this study, the authors varied the camera locations to study the
effects of different angles and distances to ROI in the final SfM-derived point cloud. To
compare the accuracy of the SfM-derived point cloud, five features were selected with
the test specimen and then shifted, and the displacement of these features was measured
and compared to the values computed from the lidar-derived point clouds. The authors
reported that the SfM-derived point cloud that is created based on images collected at
multiple distances and angles resulted in the most accurate measurements.

The studies that incorporate a pattern recognition approach are comprised of two main
components. The first component of these workflows includes the feature extractors that
analyze input data based on its properties and provide features useful for the classification
of damaged and undamaged areas. The second component of these workflows is the
classifier which analyzes the extracted features and assigns a label to the input instant. The
main difference between pattern recognition and machine learning approaches is that the
machine learning workflows employ feedback from the predicted labels to the classifier
and, in some cases, to the feature extractors (e.g., convolutional neural network (CNN))
to develop the classifier. Several studies have used pattern recognition to detect damage
from point clouds. For example, Torok et al. introduced a damage detection method
based on a point cloud of a column with planar surfaces [14]. Within the introduced
workflow, a mesh representation of the input point cloud was identified and transformed
such that the vertical direction of the column is parallel with the global vertical direction.
Within this study, the features were computed by calculating the angle between each
mesh element normal vector and the selected reference normal vector. Torok et al. used
a straightforward classifier to identify damaged regions, where a region is considered
damaged if the corresponding calculated angle was within the predefined threshold limit.
Kim et al. presented a method to detect and spalling damage of a flat concrete surface [15].
Like Torok et al., the proposed workflow used a variation of normal vectors with respect to
a reference vector as one of the damage-sensitive features. However, the normal vectors
were computed for each point through Principal Component Analysis (PCA) approach. In
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addition to normal vectors, Kim et al. used the variation of vertical distances between each
point and best-fitted plane to the concrete block surface as the second damage-sensitive
feature. Lastly, the classifier combined the result of each damage sensitive feature through
an equation to identify the damaged areas. Valenca et al. presented a more advanced
workflow to detect cracks on a concrete surface through combining detection results from
2D images in addition to computing the distance variation of points to a reference plane [16].
To detect damaged areas, the proposed method initially evaluated the distance variations
to identify damaged areas based on point clouds. Then, image-based damage analysis
results were supplemented with the results of distance variation to improve the damage
detection accuracy. Erkal and Hajjar proposed workflow identified damage areas through
various methods, including the variation of point normal vectors as well as supplementing
normal vector based results with damage detection result based on color and/or intensity
information [3]. Within this study, the damage detection results were based on normal
vector followed a similar procedure to that of Kim et al. [15]. However, Erkal and Hajjar
recommended three different options to determine the reference vector, which provides
more flexibility than previous studies [3]. The damage identification using intensity or
color information was conducted by classifying the points based on each point’s selected
neighbors’ threshold value.

The next group of studies is developed based on the supervised machine learning
approaches, where the input instances are associated with known labels. The main com-
ponent in the machine learning-based workflows is to develop a classifier that learns the
mapping from the input instances based on the extracted features to the output correctly
by updating the learnable classifier parameters. The features within supervised machine
learning approaches are identified based on engineered feature extractors or learned during
developing the classifier (i.e., training) and the classifier. For example, Vetrivel et al. used
SfM-derived point clouds and oblique aerial images to detect damaged areas using multiple
kernels supervised learning approaches [17]. Within this study, Vetrivel et al. extracted
features from point cloud instances through PCA and further analyze the features using
CNN. In parallel, the corresponding image of 3D point cloud instances was analyzed by a
support vector machine classifier to identify the damaged areas. This proposed workflow
was developed and tested at the building level [18]. More recently, Nasrollahi et al. utilized
a well-established deep learning network, PointNet [19], to detect cracks in a flat concrete
block [20]. While the deep learning-based models eliminated the need to develop and
design damage-sensitive features, these models’ success was tied to a large number of
training instances. To train the classifier, Nasrollahi et al. normalized the coordinates
and incorporated the color information to improve the detection results and concluded
that the developed model could achieve a detection accuracy of 88%. More recently, Hau-
rum et al. investigated the application of two well-established deep learning classifiers,
namely Dynamic Graph CNN (DGCNN) [21] and PointNet [19], to detect damaged areas
within synthetic point cloud datasets that simulate damage within sewer pipelines [22]. In
this study, the point cloud instances were initially preprocessed to remove the erroneous
points based on statistical outlier removal presented by Barnett and Lewis [23]. As the
machine learning-based models required the input instances to have a consistent number
of instances, the input instances were either downsampled or upsampled to meet this
criterion. Haurum et al. labeled the points based on three types of defects predominantly
observed within the sewer pipelines and reported that DGCNN could detect damaged
labels with precision and recall accuracy of 60%.

A fourth group of studies is developed based on unsupervised learning algorithms.
Contrary to supervised learning algorithms, the labels are not known in an unsupervised
learning approach. Therefore, the unsupervised learning algorithm’s main component
is identifying the criteria or regulations that categorize the input instances into separate
groups or clusters. In these workflows, the spatial location of points, color information,
and/or intensity return values of points are utilized directly as features or processed to
provide a more robust set of discriminative features to classify points within the damaged
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areas. For example, Kashani and Graettinger (2015) introduced a damage detection method
k-mean clustering algorithm [24]. The authors used various regulations to cluster points
based on their intensity information and features computed from color information and
reported that the developed method could achieve an accuracy of 80%. Hou et al. (2017)
used a set of features similar to Kashani and Graettinger to detect metal corrosion, loss of
section within walls or structural elements, and water staining marks on the walls [7,24].
However, Hou et al. evaluated multiple clustering algorithms, including k-means, fuzzy c-
means, subtract, and density-based spatial clustering algorithms. The authors reported that
the k-means and fuzzy c-means clustering algorithms outperformed other unsupervised
learning algorithms, and intensity information is more sensitive for detecting damage
points within their dataset than color information under varying lighting conditions [7].

The last group of studies uses a change detection analysis to identify the temporal
changes for a selected ROI by comparing the point cloud datasets that are collected at differ-
ent intervals or times. The main components of performing change detection analysis are to
align the datasets for different times to the reference dataset with the desired level of accu-
racy and quantify changes by comparing the corresponding areas in two different datasets.
One of the early studies that investigated the application of change detection analysis to
identify the temporal changes was conducted by Girardeau-Montaut et al. [25]. Within this
study, the point clouds of different time intervals were initially organized through an octree
data structure by assigning a code to each point that is calculated based on the maximum
subdivision level of the octree data structure. Afterward, the corresponding cells were
compared based on three methods: average distance, best fitting plane orientation, and
Hausdorff distance. Girardeau-Montaut et al. reported that the results change analysis
based on Hausdorff distances resulted in the most accurate change detections. Following
Girardeau-Montaut et al., Lague et al. introduced a change detection algorithm to quan-
tify the temporal changes based on a direct comparison between two point clouds [26].
To perform a direct comparison between the two-point cloud datasets, the point cloud
data were initially divided into multiple small segments, and the normal vector for each
segment and its corresponding orientation is identified. Afterward, the corresponding
segments were compared to identify the surface changes along the direction of the normal
vector. Lague et al. reported that the developed method could be used to detect changes as
small as 6 mm over a distance of 50 m. Olsen introduced a more comprehensive change
detection analysis workflow based on georeferenced point clouds collected at different
time intervals [8]. Within this study, the point clouds datasets were initially segmented into
smaller cells and organized using the hashtable data structure for efficient access during
the comparison process. Afterward, the datasets were transferred into a unified coordinate
system through a georeferencing process, and the corresponding cells were compared, and
changes within the cells were identified. Within this study, the cells’ dimension can be
adjusted based on the desired LOD and accuracy of the georeferencing process. Lastly, the
author reported that the developed workflow can detect changes within mm level within a
controlled environment.

As discussed, previous studies have proposed various methods based on different
approaches and properties of lidar- and SfM-derived point clouds to detect damaged areas
with varying degrees of efficiency, flexibility, and scalability for real-world applications.
The studies that use pattern recognition or unsupervised learning workflows are mainly
limited by the features used as the damage-sensitive features. On the contrary, supervised
machine learning and deep learning-based approaches are mainly limited by the number
of training instances and limitations associated with classifier or model. For example, the
input instances’ number of points shall be consistent within supervised learning classifiers,
requiring either a downsampling or upsampling process. This process can affect the
instance accuracy, in particular during the upsampling process. As for features used as
damage-sensitive features, the studies that use color information can be limited due to
environmental and lighting conditions. The intensity information has been reported to
be less affected by the environmental or lighting conditions, but in multiple lidar scans,
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the intensity information can have a different value for the same object, which requires
a calibration process. Besides color and intensity information, multiple studies use local
geometric features as the damage-sensitive features. However, the methods based on
these features are limited to evaluating planar surfaces or, at the highest point, clouds
representing single geometry (e.g., cylindrical shape). Additionally, the point density
varies throughout a dataset and may result in geometric features that are similar to those
representing damaged areas, therefore reducing the overall accuracy of the workflow.
Damage data are commonly illustrated by random and unique shapes and dimensions.
Therefore, instances that represent damage are rarely represented in a dataset. As pattern
recognition approaches can be efficiently optimized for the classification of datasets with
rare instances, these methods can be used for the task of damage detection.

3. Dataset and Methodology
3.1. Dataset

The dataset used within this study to introduce the developed method is comprised of
GBL data collected from the town hall of Florence, in the province of Tuscany, Italy, known
as Palazzo Vecchio. Palazzo Vecchio is a prominent Romanesque town hall and was originally
constructed in 1299. However, the structure was expanded in the following centuries. The
structure consists of a chamber with a length of 52 m and a width of 23 m known as Salone
dei Cinquecento, three courtyards, and three apartments on the second floor, including Sala
degli Elementi or Room of the Elements. Figure 2 shows the planar view of the second floor.
The Sala degli Elementi, which is located at the southeast corner of the structure (Figure 2b),
sustained significant cracking on its interior walls. Various studies have investigated the
application of different sensors for Italy’s cultural heritage sites. For example, Ottoni and
Blasi performed a statistical analysis based on data of various sensors to monitor crack
widths and horizontal and vertical displacements [27]. However, Alessandri et al. focused
on Palazzo Vecchio. The authors have investigated the deterioration and concluded that
the sustained damage in the Sala degli Elementi is due to structural changes made to the
building [28].
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Sala degli Elementi has been previously investigated to assess damage through high-
resolution imagery, ground-penetrating radar, infrared thermography, and GBL [29,30].
Wood et al. used Gigapan Epic Pro robotic panoramic platform to collect a total of 70 images
of the walls of Sala degli Elementi and perform manual crack mapping after correcting the
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images for distortion, as shown in Figure 3 [29]. Wood et al. also collected lidar scans using
a Faro Focus 3D X120 GBL platform, and a total of 15 GBL scans were collected from the
second floor, seven of which were collected in Sala degli Elementi to minimize the occlusion.
While most of the lidar scans were collected with a resolution setting of 1:4 and quality of
4×, one lidar scan conducted at the center of Sala degli Elementi with a higher resolution
(resolution setting of 1:2 and quality of 4×), which resulted in a point cloud with an average
point to point spacing of 1 mm [29]. Wood et al. employed the lidar-derived point cloud to
perform floor level assessment by assigning the elevation of zero to the lowest point of the
floor. The authors have reported that the result of floor level analysis matched the observed
pattern of damage, which was due to structural retrofits applied to the structure. This
finding was similarly observed in a follow-up study conducted by Napolitano et al. using
a GBL and high-resolution thermal imaging using FLIR A615 camera to detect cracking
within the walls of Sala degli Elementi [30]. However, it was reported that the width of
cracks was approximated. Within the study, a total of six lidar scans and 72 thermal images
were collected. To identify the cracks, the thermal images were registered to lidar data
based on a method proposed by Hess et al. [31]. However, it was noted that only some of
the cracks were visible in the thermal images.

Heritage 2021, 4 FOR PEER REVIEW  8 
 

 

  

(a) Point cloud representation of the wall (b) Cracking mapping superimposed on RGB photo (courtesy 
of Wood et al. [29]) 

Figure 3. East wall of Sala degli Elementi. 

3.2. Overview of the Damage Detection Method 
The point cloud damage detection method presented in this study is proposed by 

Mohammadi et al. [9]. Within the study, the authors proposed a damage detection work-
flow based on a pattern recognition approach and used only local geometric features to 
identify the damaged points with a point cloud irrespective of input point clouds under-
lying geometry. This section briefly discusses this method which consisted of three stages, 
preprocessing, extraction of damage-sensitive features, and classification (Figure 4).  

 
Figure 4. Synopsis of the proposed methodology by Mohammadi et al. [9]. 

3.3. Preprocessing 
Mohammadi et al. proposed workflow starts by regularizing the point-to-point spac-

ing (i.e., point density or point cloud resolution) within the point cloud data through a 

Figure 3. East wall of Sala degli Elementi.

In this manuscript, the seven lidar scans collected by Wood et al. [29] from Sala degli
Elementi are used for analysis. The lidar scans were registered using the Faro Scene software
version 2020.0.5. The registration process was initially conducted based on visual matching,
which enables an approximate alignment with high registration errors. Once the scans
were roughly aligned, the registration process was further optimized via a cloud-to-cloud
optimization technique to minimize the registration error. This process resulted in a point
cloud with a mean registration error of 1.8 mm and a maximum error of 6.1 mm. The final
point cloud consisted of 740 million points.

3.2. Overview of the Damage Detection Method

The point cloud damage detection method presented in this study is proposed by
Mohammadi et al. [9]. Within the study, the authors proposed a damage detection workflow
based on a pattern recognition approach and used only local geometric features to identify
the damaged points with a point cloud irrespective of input point clouds underlying
geometry. This section briefly discusses this method which consisted of three stages,
preprocessing, extraction of damage-sensitive features, and classification (Figure 4).
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3.3. Preprocessing

Mohammadi et al. proposed workflow starts by regularizing the point-to-point
spacing (i.e., point density or point cloud resolution) within the point cloud data through
a voxelating process where a representative centroidal point is computed and used to
represent all the points within a voxel [9]. Afterward, the sparse and erroneous points are
eliminated through a statistical outlier removal [32]. The workflow’s damage-sensitive
features are then computed based on exploiting each point’s local spatial distribution
with respect to its neighboring points using two spatially invariant and one direction-wise
feature. The idea here is that the points in the point cloud’s damaged areas have a different
spatial distribution compared to the undamaged areas.

3.4. Extraction of Damage-Sensitive Features

The first computed feature is the covariance-based damage-sensitive feature. This
feature is based on eigenvalues of each point and its selected neighboring points covariance
matrix. Therefore, the workflow performs an eigendecomposition for each point and
its selected neighboring points covariance matrix and then computes the corresponding
eigenvalues. Afterward, the smallest eigenvalue ratio with respect to the summation of
all eigenvalues is calculated and reported as the surface variation value [33]. The second
damage-sensitive feature is computed based on each point’s normal vector variation with
respect to a reference vector. The normal vectors are computed based on the weighted
average method, where the weights are computed according to the area of adjacent triangles
as described by Jin et al. [34]. As for the reference vector, the developed method can use
two reference vectors based on the input point cloud’s geometry. The local reference
vectors are created for each point and its selected closest neighboring points based on
the eigenvectors resulting from the covariance matrix eigendecomposition. On the other
hand, the global reference vector is identified based on eigenvectors resulting from the
eigendecomposition of the covariance matrix of entire input point cloud. The third damage-
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sensitive feature is computed based on the mean curvature for each point to its selected
closest neighboring points. The mean curvature within this study is computed based on
averaging the curvature in vertical and horizontal directions of the global coordinate system.
Mohammadi et al. compute the curvature in each direction by initially slicing the point
cloud into segments parallel to vertical and horizontal directions based on the resolution
selected for the voxelating process. Afterward, the algorithm identifies the osculating circle
for each point and its selected closest neighboring points and estimates each segment’s
curvature. As a result, for each point, the algorithm will estimate two curvature values (per
each direction). Lastly, the average or one of these computed curvature values is considered
as the third damage-sensitive feature.

3.5. Damage Evaluation and Reevaluation

Once the three features are computed, the classifier initially categorizes the points
based on each feature as potential damaged and undamaged classes. This is conducted
through estimating the Kernel Probability Distribution Function (PDF), where a point
is considered as damage if its computed feature value probability is equal to or larger
(or smaller depending on the skewness value of the PDF) than the probability of the
PDF’s inflection point [35]. Once the points are classified into undamaged and potentially
damaged categories based on each damage-sensitive feature, a damage identifier (DI) of 0
or 1 is assigned to each point, where 0 and 1 indicate undamaged and damaged classes,
respectively. Then, the damage evaluation step evaluates each point’s DIs and classifies a
point as a damaged point if and only if the point is considered as damage by all damage-
sensitive features. Lastly, the workflow refines the damage detection results in the damage
reevaluation step by reassessing the points one additional time to compare its classification
with its eight neighboring points. As a result, each point classification is updated as
damage if and only if 75% or more of its eight closest neighboring points were classified
as damage. Then, the classifier categorizes the damaged points into a selected number
of confidence intervals to illustrate the detection algorithm’s inherent uncertainty. The
confidence intervals are determined based on each point’s damage probability, computed
based on the median probability values that correspond to each damage-sensitive feature.
Therefore, the points are categorized into selected bins that represent the median confidence
intervals.

3.6. Detected Damage Segmentation

As stated, the proposed workflow to detect damage by Mohammad et al. [9] is able
to detect and locate the damaged areas; however, it cannot separate the damaged regions
into individual damaged parts for further analyses. As a result, a new and additional
processing step is added to further categorize the damaged areas into individual segments
within this study. The damage characterization method proposed within this study utilizes
the analyzed point clouds containing potentially damaged areas. Afterward, the developed
workflow uses a density-based clustering algorithm based on ordering points to identify
clustering structures (OPTICS) to categorize the detected damaged regions [36]. OPTICS is
an unsupervised learning classifier and does not require a predefined number of clusters
similar to that of the k-means clustering algorithm [37]. The OPTICS classifier only requires
two input parameters: the minimum number of points and the maximum distance needed
to create a cluster. The advantage of the OPTICS classifier is that it can detect clusters with
varying shapes and spatial distribution in 3D space, making it suitable to classify damaged
areas that exhibit random patterns, and there is no prior knowledge existing of how many
damaged areas are presented within the ROI.

3.7. Performance Evaluation of the Method

As the team could not perform a manual inspection from the walls in the Sala degli
Elementi, the performance of the developed method was investigated based on another
dataset that was collected from a historic religious structure located in Lincoln, Nebraska.
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The dataset was collected using a Faro Focus S350 GBL platform, and the laser scanner was
placed at a distance of fewer than 4 meters from the cracking. The team minimized the
offset angle between the GBL platform and the ROI. The scanner setting chosen to collect
data was 1:4—4×, which resulted in a point cloud with a point-to-point spacing of less
than 5 mm. Note that the parameter 4× within the scanner setting controls the number of
measurements (oversampling) and does not contribute to the collected point cloud dataset
point density. The selected segment is shown in Figure 5a. The chosen segment consisted of
11,600 points and was chosen as it demonstrates cracking damage similar to that observed
within the Sala degli Elementi. The cracking had a varied width of approximately 1.5 cm at
the top to 0.60 cm at the bottom. To analyze this dataset, initially, the data were voxelated
with a grid step of 5.0 mm. It was then analyzed based on the eight closest points for surface
variation, normal vector variation based on local reference planes (as the selected segment
was curved surface), and curvature-based damage-sensitive features. As demonstrated in
Figure 5c,d, the method could detect cracking of the selected segment. The precision for all
confidence intervals was approximately 20 percent, while the recall value was 100 percent,
where the precision for the cracked area was 70 percent.
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4. Discussion and Results
4.1. Analysis Results

To assess the workflow performance in detecting and segmenting the cracks, defects,
and other surface anomalies, two segments of the Sala degli Elementi’s east wall are selected
and analyzed in this manuscript (Figures 6 and 7). The selected ROIs were extracted
from the single high-resolution scan that was collected at the center of the room with
the resolution setting of 1:2 and quality of 4× to eliminate inaccurate detections due to
registration error. The ROIs are comprised of a predominantly planar surface, but this wall
does contain local nonplanar deformities. Segment A is close to the southeast corner of the
room, and segment B represents the entire top portion of the wall [28,29]. As illustrated
in Figure 3b, Figure 6c, and Figure 7b, the selected ROIs sustained multiple cracking at
centimeter and millimeter levels, identified through manual crack analysis of the images.
In addition, it was noted that the walls represented many nonuniformities in out-out-plane
protuberances at various locations.
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The point cloud representation of segment A contained approximately 1.5 million
points and was analyzed for 5 mm or 10 mm surface anomalies. As a result, the cloud
was voxelated using 5 mm and 10 mm dimension cubes during the preprocessing step.
Segment B contained approximately 7 million points and was analyzed for 10 mm or larger
cracking and other surface anomalies. Therefore, Segment B was only voxelated using
10 mm dimension cubes. The surface variation (or covariance-based), normal vector-based,
and direction-wise (or curvature-based) damage-sensitive features were then utilized based
on 8, 8, and 2 closest neighboring points, respectively. Note that as the selected regions
contained localized bulges, as it is not entirely planar, the reference vectors were computed
based on local planes that were identified based on 24 closest neighboring points. The
neighboring number of 24 was found empirically and used to compute the local reference
planes as this minimized the surface imperfections while enabling the workflow to detect
cracking that resulted in a change in local geometry. Figure 8 depicts the estimated PDF for
the surface variation and normal vector variations with respect to local reference planes that
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damage-sensitive features resulted during the point cloud analysis with 5 mm resolution.
Once the features were computed, the damage evaluation and reevaluation steps identified
the potentially damaged areas. The identified damaged points were then classified into
11 intervals. The analysis results for segment A based on three damage-sensitive features
are shown in Figure 9a,b. After evaluating the damage detection results based on each
damage-sensitive feature, it was observed that surface variation-based and curvature-based
features are predominately able to detect surface imperfections and nonuniformities.

In contrast, the detected damaged areas based on the normal-based features could
locate the cracking with higher accuracy (Figure 9c,d). This was primarily concluded based
on a qualitative analysis of the results of detected cracking areas at the selected confidence
intervals with the manual crack mapping, as shown qualitatively in Figure 3, as no ground
truth dataset exists for this dataset. However, the confidence interval analysis supports this
conjecture. When using three damage-sensitive features to detect damaged areas, the first
confidence interval contains the majority of features corresponding to cracking and several
minor surface defects and nonuniformities present. Conversely, when only normal-based
damage-sensitive features are considered, the first two confidence intervals need to be used
to identify the cracks while fewer surface nonuniformities are present.

As a result, the crack detection process was investigated based on the normal-based
damage-sensitive features. Figures 10 and 11 represent the analysis result of segment
A and segment B that are voxelated at 10 mm grid steps, respectively. The detected
damaged areas are then classified into 16 confidence intervals allowing to isolate further
the features that primarily represent the detected cracking areas. Figures 10a and 11a depict
the superimposed detected damaged areas for segments A and B based on all confidence
intervals, respectively. Figure 10a,b and Figure 11b illustrate the superimposed detected
cracking for segments A and B, respectively, based on the first three confidence intervals.
As shown in Figure 10a,b and Figure 11b, while the damage detection method minimized
the detection surface nonuniformities, some of the surface nonuniformities that represent
feature values similar to that of cracking were classified as cracking. As a result, and to
separate the cracking, the detected areas from segments A and B were further analyzed
through the OPTICS clustering method as introduced in Section 3.6. To implement the
OPTICS clustering process, two input parameters required the inclusion of the minimum
number of points and the maximum distance. The minimum number of points to create
a cluster and the maximum distance in this study were set to four points and 10 mm,
respectively, and determined empirically. As shown in Figures 10c and 11c, the clustering
algorithm was able to segment the detected cracking.
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4.2. Performance Analysis

The method used within this study to detect the cracking areas utilizes local geo-
metrical descriptors as damage-sensitive features. Therefore, only the cracks that create a
change in geometry can be detected from point clouds. These changes in local geometry
can be represented by the points laid in a distinctive pattern from that of the wall [12].
However, not all the observed and identified cracks identified manually are represented
by such changes within the walls of Sala degli Elementi, which includes cracks with small
widths. Therefore, only detected cracks within the point cloud data that result in local
geometrical changes of 5 mm or higher can be qualitatively compared to that identified
by Wood et al. [29]. Moreover, as Laefer et al. reported, crack widths of at least 5 mm or
larger can be reliably detected from lidar-derived point clouds assuming the GBL platform
location was optimal during the data collection. As a result, the selected segments were
voxelated based on 5 mm and 10 mm grid steps, which resulted in the detectability of
cracks with geometrical variations of 5 mm and 10 mm or larger, respectively. While
Mohammadi et al. [9] provided a detailed discussion on how to select the input parameters
for the damage detection method, a brief discussion is presented here for the normal vector
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feature that is used to detect the cracking areas. Within this study, the neighboring number
of eight was used to compute the normal vectors. Within the voxelated point cloud, the
eight neighboring points correspond to eight vertices located with the distance of one
voxelating gird step (i.e., 5 mm or 10 mm). As a result, these features were assessing the
spatial or geometric variation of each point with respect to the points that are located at
5 mm or 10 mm.

Following identifying the detected cracking areas, various damage confidence inter-
vals are evaluated for the 5 mm and 10 mm segments. As each of these intervals essentially
captures similar spatial distributions, the goal here is to identify the confidence interval
that captures the spatial distribution of the points that correspond to the cracking. The
goal of evaluating these intervals is to identify the confidence interval that represents the
cracking while minimizing the presence of surface anomalies and bulges, which allows
comparing the detected damaged regions with manual crack mapping results, as shown
in Figures 6c and 7b. Figure 9d, Figure 10b, and Figure 11b show superimposed detected
damaged regions of the first three confidence intervals into the colored point cloud, rep-
resenting the significant diagonal cracking identified from the images based on manual
analysis. Moreover, it was noted that the selected confidence intervals for the spatial
resolutions of 5 mm also represent major surface defects and localized bulges, potentially
due to humidity or construction style, within the bottom of the selected ROI. However, by
comparing Figure 9c,d, Figure 10a,b, and Figure 11a,b, it can be observed that the majority
of the minor surface defects and anomalies, shown by the other confidence intervals, can
be distinguished and eliminated as large cracks. Based on the detailed comparison for
segment A analysis results at 5 mm, it was observed that the developed method was able
to identify two of the diagonal shear cracking at the top of the segment (shown by A and
B in Figure 12) as well as vertical cracking at the top left of the doorway (shown by C
in Figure 12) and shear cracking at the right of the entrance (shown by D in Figure 12).
Additionally, it was noted that some of the smaller cracks at the middle of the segment
were identified.
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4.3. Discussion

The developed method within this study uses local geometric variations computed
based on voxelated point cloud to identify the damaged areas. Consequently, the detection
is limited to the cracks and other surface defects that result in a change in geometry equal
to or larger than that of voxelating grid step size. For example, the analysis results of
segments A and B at 10 mm demonstrates that the developed method was able to identify
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cracks that result in local geometry change of 10 mm or larger. This includes the significant
shear cracking at the top right of the wall (shown by A in Figure 12), highlighted by cluster
7 in Figure 10c and cluster 12 in Figure 11c. Furthermore, only a section of the vertical
cracking (shown by C in Figure 12), the shear cracking on the top right of the doorway
(crack D in Figure 12), and a portion of the cracking at the left and middle walls (clusters
1, 5, and 6 in Figure 11c) were detected. While other studies, such as Valenca et al. or
Hou et al. [7,16], demonstrate workflows that can detect cracking with a higher level of
accuracy, these methods rely on crack detection based on intensity or color information,
which is not ideal for fresco walls, particularly within Sala degli Elementi.

5. Conclusions

This manuscript analyzed the lidar-derived point clouds of a culturally prominent
structure, Palazzo Vecchio, through evaluating and expanding the damage detection and
characterization workflow proposed by Mohammadi et al. [9]. The lidar data were collected
from one room, known as Sala degli Elementi. The damage detection method evaluated
within this study uses three damage-sensitive features to detect surface damage and cracks
from the point clouds at the three separate resolutions. The method combines these three
surface feature descriptors that are invariant to the point cloud’s underlying geometry,
which results in a more scalable damage detection algorithm that does not rely on color or
intensity data from a lidar scanner or supplemental sources. Furthermore, the developed
method classifies the detected damaged areas into a selected number of confidence intervals.
Through detailed evaluation of results based on each damage-sensitive feature, it was
observed that only the normal-based damage-sensitive features were able to detect the
cracking and minimize the presence of surface anomalies and bulges. Therefore, only
normal-based damage-sensitive results were used within this study. Furthermore, to
separate the detected cracking from the surface anomalies that represent feature values
similar to that of cracking areas, a workflow based on the OPTICS clustering method
was used.

To validate the workflow’s performance and scalability, two-point cloud segments
of the east wall of Sala degli Elementi that sustained heavy cracking were evaluated at
two resolutions and qualitatively compared with crack mapping conducted based images
through manual analysis. This was done as the team could not perform crack assessment
and quantify data due to access limitations. The selected segment represents a predom-
inately planar surface. As reported by Laefer et al. and observed based on the analysis
results of the wall segments within this study, it can be concluded that GBL-derived point
clouds can be used to detect cracking of size 5 mm or higher that results in a change in
local geometry [11,12]. However, various nonuniformities existed throughout its surface.
The damage detection analysis was performed at two different spatial resolutions of 5 mm
and 10 mm. The detected damaged areas are further classified into multiple confidence
intervals. The detected damaged areas demonstrated that the developed method could
detect not only the cracking but also all minor surface anomalies, making visualizing
and detecting cracking difficult at this initial stage. As a result, the various confidence
intervals were investigated. It was determined that the first three intervals for both spatial
resolutions could depict the cracking while minimizing the presence of detected surface
anomalies. Moreover, the identified damaged areas included cracking and other surface
nonuniformities, were further separated using the OPTICS clustering algorithm for both
segments at a 10 mm resolution, which enabled direct comparison of the detected crack
with manual crack mapping results.

The analysis results demonstrated if the cracking results in local geometric changes
equal to or greater to that of the voxelization grid step, the proposed method can be
used to detect these defected areas. However, it was noted that minor surface anomalies
that represent feature values similar to that of cracking could be classified with cracking,
in particular for resolution or voxelating gird steps of 5 mm. A segmentation step was
proposed to combat the issue and isolate the larger cracks of interest. This workflow enables
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a more objective comparison between the manual cracking mapping and identified areas
using the workflow. However, a number of limitations were identified within this study.
The first limitation of this study corresponds to the type of features used within this study.
As the damage-sensitive features used within this study are developed based on identifying
changes in local geometric features, these are susceptible to point density and its variation
within a point cloud. While the point density variation effect is minimized through the
voxelating process (as suggested by Mohammadi et al. [9]), the smaller voxelating grid
steps may not reduce the point density variation in comparison to a larger grid step. This
can be observed based on comparing the damage detection results of segment A at 5 mm
to 10 mm resolutions. The second limitation of this study corresponds to isolating the
cracks from surface nonuniformities. While the OPTICS clustering algorithm separated
the primary shear cracking from other defects, most sparse detections were grouped with
cracked areas. As a result, the primary future research direction includes developing a
method to improve the clusters via region growing. This can be done by considering the
location and other surface similarities and enabling direct quantifying the damaged area,
including area, depth, length, and width based on the segmented damaged regions.
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