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Abstract: Since cryptocurrencies are among the most extensively traded financial instruments globally,
predicting their price has become a crucial topic for investors. Our dataset, which includes fluctuations
in Bitcoin’s hourly prices from 15 May 2018 to 19 January 2024, was gathered from Crypto Data
Download. It is made up of over 50,000 hourly data points that provide a detailed view of the price
behavior of Bitcoin over a five-year period. In this study, we used potent algorithms, including
gradient descent, attention mechanisms, long short-term memory (LSTM), and artificial neural
networks (ANNs). Furthermore, to estimate the price of Bitcoin, we first merged two deep learning
algorithms, LSTM and attention mechanisms, and then combined LSTM-Attention with gradient-
specific optimization to increase our model’s performance. Then we integrated ANN-LSTM and
included gradient-specific optimization for the same reason. Our results show that the hybrid model
with gradient-specific optimization can be used to anticipate Bitcoin values with better accuracy.
Indeed, the hybrid model combines the best features of both approaches, and gradient-specific
optimization improves predictive performance through frequent analysis of pricing data changes.

Keywords: cryptocurrency; Bitcoin; forecasting; machine learning; deep learning; LSTM; gradient-
specific optimization; attention; ANN; dataset

1. Introduction

Over the past few years, technological progress and the advent of digital transforma-
tion imply a paradigm shift in various industries, including the business sector [1]. The
rapid progress of digital transformation has undeniably sparked the emergence of fintech
(financial technology). These innovations are considered by many to be among the most
important developments in the financial sector. Also, the financial landscape is facing a
revolution owing to digital solutions, which are challenging and revolutionizing age-old
techniques and practices that have held their ground for a long time.

Moreover, fintech, in fact, provides a broad spectrum of services. These include mobile
banking, digital wallets, peer-to-peer payment systems, e-insurance, e-payments, and even
cryptocurrencies like Bitcoin.

The cryptocurrencies that have taken the world by storm are a relatively complex
form of exchange medium. With Bitcoin being the first form of this development, the
heterogeneous nature of these cryptocurrencies has made it difficult to ascertain a proper
method of prediction of the prices of these currencies using conventional econometric
or even deep learning models, which have been employed to predict trends in other
exchange mediums. Madan et al. [2] used various machine learning methodologies, such
as generalized linear models and random forest, to address the Bitcoin prediction challenge.
Jiang, X. [3] proposed deep learning methods in order to predict the Bitcoin price. His
study shows that long short-term memory (LSTM) provides the best prediction.
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In addition, cryptocurrencies can undergo fast and remarkable cost variances over
short periods, making them an especially hazardous speculation. This instability is driven
by an assortment of variables, including counting theoretical exchanges, advertising estima-
tions, and outside occasions. Another particular characteristic of cryptocurrency markets is
their ceaseless 24/7 exchanging. Not at all like conventional stock markets that have settled
exchanging hours, advanced resources can be bought and sold at any time, and predicting
the price of any digital financial asset is considered one of the most challenging tasks,
which makes it difficult for investors to stay well-informed due to their instability. Our
study contributes to the existing literature by proposing novel approaches for Bitcoin price
prediction using network models and high-frequency data. We employ a network-based
method to capture the interdependencies and relationships between different cryptocurren-
cies and market variables. Additionally, we utilize high-frequency data to capture rapid
price fluctuations and market dynamics. Our approach provides a more comprehensive
and accurate prediction of Bitcoin prices, addressing the limitations of previous models.
The first model integrates long short-term memory (LSTM) and attention mechanisms
that allow sequence learning and optimization to take place. Gradient-aware optimization
has been introduced to improve the model’s ability to make better forecasts and make
informed trading decisions. The second model combines ANN-LSTM with gradient-aware
optimization to improve its forecasting and trading decision-making capabilities. These
models stand out because they use sophisticated techniques that allow them to adapt to
the conditions of the ever-changing Bitcoin market. These models are a helpful tool for par-
ticipants in the currency trading industry because of their adaptive characteristics, which
allow them to maintain a constant in a variety of market conditions. In fact, predicting the
price of this volatile asset is challenging due to its reliance on various external factors. The
dataset in question contains information regarding cryptocurrencies that is dynamic and
subject to change as the world transforms and develops. The search results shed light on
the dynamic nature of Bitcoin data, such as changing market dynamics, constant updates
to cryptocurrency temporal data, and an examination of cryptocurrency rates of return.

Moreover, the effects of social media play an impressive part. A single tweet or news
report can send cryptocurrency costs taking off or falling. This lively relationship between
social media and cryptocurrency markets incorporates an extra layer of complexity.

In recent years, deep learning techniques have been applied to time series forecasting,
especially in popular real-world application areas such as cryptocurrencies, due to the
market’s instability and dynamism. The majority of these models employ advanced deep
learning strategies based on long short-term memory (LSTM), attention mechanisms,
gradient-based optimization techniques, and so many others.

Actually, deep learning models have shown superior performance in predicting cryp-
tocurrency prices compared with traditional machine learning models. Together, these
devices offer a powerful system and well-suited data for exploring the complex and highly
volatile cryptocurrency landscape (Sun et al. [4]). Hence, analysts have committed critical
effort to progressing time series estimating models, investigating different combinations to
distinguish the most successful approach for price forecasts. As it stands now, investing or
even setting exchange rates for cryptocurrencies is a gamble.

In point of fact, our models stand out because they use sophisticated techniques that
allow them to adapt to the conditions of the ever-changing Bitcoin market. These models
are a helpful tool for participants in the currency trading industry because of their adaptive
characteristic, which allows them to maintain a constant in a variety of market conditions.

The paper is organized as follows. In Section 2, we conduct a literature assessment of
the market under consideration, investigating the methods used to estimate cryptocurrency
values. Section 3 describes the methods for estimating Bitcoin prices as well as the research
contributions. Section 4 presents our methodology. Section 5 discusses the research findings.
In Section 6, we describe the results of this study. Finally, Section 7 will conclude the paper.



Forecasting 2024, 6 281

2. Literature Review

The trading and exchanging of cryptocurrencies across the globe have increased
significantly over the last decade. This upsurge has pushed their market value to hundreds
of billions of dollars globally. In January 2021, this figure reached an impressive USD
1 trillion [5]. In financial market modeling, accurate forecasting and investment choices
depend on having a solid grasp of the dynamics of asset prices, entry points, and market
behavior. An attempt was made to build upon the Tramontana et al. model by Gu, E. G. [6].
They built a new two-dimensional discontinuous piecewise linear (PWL) map with three
branches, as well as trend followers that adhere to the most recent price trend, to power
their financial market model.

Forecasting digital currencies’ worth is a challenge, as they are volatile and have
unique systems. The prices keep changing due to emerging technologies with no clear
future monetary value, according to analysts. Media and investors have recently taken
notice of Bitcoin. However, it can be difficult to estimate the prices of Bitcoin and other
cryptocurrencies because they are too volatile and complicated in nature. Earlier findings
propose that deep learning algorithms can boost accuracy in forecasting cryptocurrency
values by uncovering intricate patterns in complex and dynamic datasets. Through these
techniques, behaviors or movements within unstable cryptocurrency markets can be iden-
tified. In order to have a better prediction with good accuracy, Bangroo et al. [7] used
different machine learning algorithms like random forest regressor and gradient boosting
regressor to predict cryptocurrencies like Bitcoin, XRP, Ethereum, and Stellar. Xiaolei
et al. [4] proposed three models: SVM, RF model, and light gradient boosting machine
to forecast the price of the cryptocurrency market. Lahmiri et al. [8] presented two deep
learning methods, a deep learning neural network (DLNN) and generalized regression
neural networks (GRNNs), to forecast the price of Bitcoin. Modi, Parth Daxesh, et al. [9]
investigated the use of deep neural networks, specifically a shallow bidirectional-LSTM
(Bi-LSTM) model, to forecast daily closing prices for Bitcoin. Also, in their research work,
Tripathi, B., & Sharma, R. K. [10] explore how to model Bitcoin values using deep learning,
Bayesian optimization, and signal processing techniques. Chen, J. [11] focused on the
prediction of Bitcoin prices using deep learning algorithms, such as CNN, LSTM, and GRU.

Additionally, in their revolutionary study, Zhou et at. [12] focus on deep learning
within the financial markets and offer perceptive details regarding the potential applications
of deep learning techniques for Bitcoin returns.

Our findings build on previous research using deep learning approaches to estimate
the price of Bitcoin and other cryptocurrencies. Indeed, various deep learning models have
been used over the previous five years, and they have shown to be the finest technology
for forecasting cryptocurrency prices. Kristjanpoller and Minutolo’s [13] research has
significant advanced the area by introducing a hybrid MLP neural network-GARCH model
for predicting Bitcoin price volatility. In their work, they conducted a comprehensive
assessment of multiple GARCH models and discovered the benefits of combining linear
and nonlinear models for better forecasting of Bitcoin price volatility. Also, Nakano
et al. [14] used an MLP neural network to estimate Bitcoin returns based on a variety of
technical indications.

Further, in 2023, Akila et al. [15] recommended LSTM networks, a deep learning
technique to forecast prices of cryptocurrencies. Their method consisted of using historical
price data and technical indicators as input to the LSTM model. This decision was prompted
by LSTM’s ability to identify underlying patterns and trends in data. It was revealed by
the outcomes that LSTM uses significantly and effectively predicted future cryptocurrency
prices. Moreover, Gurgul, V. et al. [16] integrate their method with recent research on
artificial intelligence risk measurement and safe artificial intelligence, emphasizing the
significance of considering both financial and textual data when projecting cryptocurrency
prices. This is especially important for investors, traders, and politicians, who rely on
accurate forecasts to make sound judgments.
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One of the foremost important and decentralized cryptocurrencies is Bitcoin, which
was presented by Satoshi Nakamoto [17] on 31 October 2008. Also, we can find another
notable study by Liu et al. [18] focused on Bitcoin. Building on the advancements in deep
learning for cryptocurrency price prediction, they used a separate deep learning technique,
stacked denoising autoencoders (SDAEs), to forecast Bitcoin’s price. SDAE outperformed
other models in forecasting the price of Bitcoin in both the directional and level prediction.

Furthermore, deep learning algorithms have achieved great advances in past research,
producing excellent results in a variety of domains such as image-to-language conversion,
speech recognition, and computer vision. According to research, combining deep learn-
ing algorithms results in the lowest anticipated mistakes. For example, Patel et al. [19]
proposed a hybrid cryptocurrency prediction system based on LSTM and GRU in their
study. The results demonstrate great price accuracy, and the combination of LSTM and
GRU can be used to predict the prices of multiple cryptocurrencies (Monero, Litecoin, and
Bitcoin). In the same context, a range of hybrid deep learning techniques are employed
for estimating cryptocurrency prices, combining the strengths of different deep learning
models to produce better predictable results.

A variety of hybrid approaches have been utilized in order to achieve better per-
formance. For example, the combination of a convolutional neural Network (CNN) and
stacked gated recurrent unit (GRU) suggested by Kang et al. [20] was evaluated on three
different cryptocurrency datasets including Bitcoin, Ethereum, and Ripple.

In addition, Petrovic et al. [21] proposed a novel combined method to predict the price
that is based on hybrid machine learning and the swarm intelligence approach, combining
the power of both techniques. In a similar vein, in their study, Li et al. [22] proposed a
novel data decomposition-based hybrid bidirectional deep learning model for forecasting
the daily price change in the Bitcoin market. Results show that the model outperforms
other benchmark models such as econometric models, machine learning models, and deep
learning models. Likewise, Li et al. [23] conducted a study on the Bitcoin price forecasting
method based on a CNN-LSTM hybrid neural network model. The findings demonstrate
that the proposed model performs well in forecasting Bitcoin.

Along the same lines, Zahouani and Boubaker [24] investigated the efficacy of several
mixed forecasting models to predict daily oil prices, including ANN-LSTM, CNN-LSTM,
BRNN-LSTM, and LSTM-Attention. The investigation shows that the hybrid LSTM-Attention
model beats other hybrid models in terms of accuracy, with the lowest error rate.

Our study seeks to increase the forecast accuracy by introducing extra optimization
and a refining algorithm into hybrid models. Our goal is to improve prediction accuracy
and ensure reliable results.

3. Proposed Algorithms
3.1. Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) networks are a type of deep learning technique and
a refined version of the recurrent neural network (RNN). LSTM has been employed in
prediction tasks such as forecasting cryptocurrency prices, including Ethereum, Litecoin,
and particularly for Bitcoin (Livieris, Ioannis E., et al. [25]). Its utility encompasses activities
related to time series and sequential prediction issues like machine translation and speech
recognition. The fundamental component of LSTM is the memory module, and the other
components are three gates: input gate, output gate, and forget gate.

Calculation formula is:

ft = σ
(

W f xt + U f ht−1 − 1 + b f

)
(1)

it = (Wixt + Ucht−1 + bc) (2)

Ct = tanh(Wcxt + Ucht−1 + bc) (3)

Ct = ft · Ct−1 + it · Ct (4)
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ot = σ(Wox1 + Uoht−1 + bo) (5)

ht = ot · tanh(Ct) (6)

where xt is the input at time t, ht is the hidden state at time t, Ct is the cell state at time t, σ
is the sigmoid function, and tanh is the hyperbolic tangent function.

3.2. Artificial Neural Network (ANN)

Artificial neurons, also called ANNs, are AI tools enabling robots to simulate human
cognitive abilities. The application of ANN as a powerful AI computing tool is manifest
in fields like telecommunications, material research, health care, neurology, and finance
(Hong et al. [26]). It is referred to as an algorithm for classification and regression problems
by ANN. The output layer collects information from the input layers of the ANN through
its hidden layers.

A neural network may include three layers. The first one is the input layer, where the
activity of input units represents raw data delivered to the network. The second layer is the
hidden layer, which controls the activities of each hidden unit. The number of hidden layers,
as well as the activities of the input units and the weights assigned to their interactions
with the hidden units, can vary. Finally, the output layer’s behavior is determined by both
the activity of the hidden units and the weights between the hidden and output units.

3.3. Attention Mechanisms

Attention mechanisms are a crucial component of deep learning models and have
been proven to be effective in various sectors.

In medical image analysis, Li, Xiang, et al. [27] have examined deep learning models to
investigate inter-spatial information and improve the accuracy of image classification and
segmentation. And in the area of cryptocurrency price forecasting, Yazhini, V., et al. [28]
combined attention mechanisms with long short-term memory, bidirectional-LSTM, and
gated recurrent unit models to anticipate the future closing price of Bitcoin and Ethereum.

Several recent publications have demonstrated how attention mechanisms can boost
the predictive ability of deep learning models of virtual currency prices. In addition, atten-
tion mechanisms allow models to focus on specific areas of input or output data, resulting
in improved performance for tasks such as machine translation, sentiment analysis, and
time series prediction. In fact, they can help deep learning models focus on relevant data in
order to improve their accuracy and efficiency.

3.4. Gradient Descent

Gradient descent is used widely as an optimization method to train machine learning
models and neural networks. It reduces discrepancies between predicted and actual
outcomes and could be combined with deep learning algorithms like LSTM to enhance
prediction precision (Elsayed et al. [29]). In fact, gradient descent is based on a convex
function that can be thought of as finding the lowest point within a linear curve by moving
along its steepest slope direction. The technique updates model parameters depending on
the estimated gradient, providing the ability for the model to learn and become better over
time. It is similar to estimating the line of best fit in linear regression.

Additionally, the selection of an appropriate gradient descent type plays a significant
part in the training process of machine learning in the domain and relies on some key things
like dataset size, jamming, and stability, as well as hyperparameters. Furthermore, there
are three different gradient descent learning algorithms: batch gradient descent (BGD),
stochastic gradient descent (SGD) and mini-batch gradient descent. BGD is characterized
by traditional methodology that produces a stable error gradient and convergence; it is also
suitable for smaller datasets that can fit into memory. On the contrary, stochastic gradient
descent (SGD) repeats a training epoch for every instance in the dataset, modifying the
parameters of each individual sample at a time, and hence it is suitable for larger datasets.
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Lastly, mini-batch gradient descent combines ideas from both BGD as well as SGD. This
kind balances the speed of SGD with the computational efficiency of BGD.
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where:
θ denotes the parameters under optimization.
η is the learning rate that determines the step size in the parameter space.
J
(

θ; x(i); y(i)
)

is the cost function that measures the model’s performance for a specific

training example
(

x(i)y(i)
)

.

∇θ J
(

θ; x(i); y(i)
)

denotes the gradient of the cost function with respect to the parame-
ters for a specific training example.
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4. Methodology
4.1. Dataset

This paper delves into a robust dataset obtained from a reputable platform called
Crypto Data Download and focuses on Bitcoin’s hourly price movements from 15 May 2018
to 19 January 2024, and it contains approximately 50,000 hourly data points and provides a
detailed snapshot of Bitcoin price behavior over five years. We split our data into training
and testing sets to evaluate the performance of our model. We purposefully started our
sample in 2018 for a number of reasons. Among these are the early stages of the global
health crisis, which had an impact on financial markets, including cryptocurrency markets.
The COVID-19 pandemic in 2018 caused a global economic catastrophe that resulted in
exceptionally high market volatility and trading in various asset classes, including Bitcoin.

Figure 1 illustrates the fluctuations in the price of Bitcoin over time, using an hourly
time scale on the x-axis and the corresponding values of price on the y-axis. This visual
representation enables us to interpret the data’s behavior.
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4.2. Model Evaluation Metrics

Model evaluation is important to assess the effectiveness of a model in the early
stages of research and also plays a role in model monitoring. In this study, we evaluated
model performance using three common evaluation metrics used in machine learning and
predicting tasks to determine the model’s predictive efficacy: mean absolute error (MAE),
mean squared error (MSE), and mean absolute percentage error (MAPE).

MAE =
1
N ∑N

i=1|(yi − fi)| (10)

MSE =
1
N ∑N

i=1(yi − fi)
2 (11)

MAPE =
100
N ∑N

i=1

∣∣∣∣ (yi − fi)

yi

∣∣∣∣ (12)

where N is the quantity of data to be assessed, yi is the ith true value, and fi is the ith
forecast value. The degree of variation between the expected and actual values is shown by
the MAE, MSE, and MAPE. The prediction’s accuracy increases with decreasing values of
MAE, MSE, and MAPE.

Similarly, to compare the prediction accuracy of two competing forecasts defined by
DM, we use the Diebold and Mariano (1999) [30] test. This test verifies the null hypothesis
that the expected differential loss is zero, or E(Dt) = 0, when the loss differential Dt =
h
(
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absolute error loss or squared error loss function. The hypotheses of interest are presented
as follows:
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where h ≥ 1 is the forecast horizon. The DM test has a standard normal-limiting distribution
under the null hypothesis.

5. Numerical Results
5.1. ANN-LSTM Model

This part focuses on applying the hybrid ANN-LSTM model, using each algorithm
outlined in Section 3. The hybrid technique seeks to forecast Bitcoin’s hourly price. Table 1
displays the projected and actual values for the most recent 20 observations.

Table 1. Observed and forecasted values using the hybrid model ANN-LSTM.

Actual Predicted

5120.5478 5649.6938
46,654.0937 48,140.0664
9241.9111 8981.3798
7969.3315 9699.6728

20,127.7910 22,190.9277
27,133.3750 27,901.8046
8536.1484 9837.6806

36,502.5000 36,591.8046
30,007.5839 28,368.1035
6704.4072 7346.3334

55,574.5429 56,156.3632
6446.1113 7381.1372

41,622.1718 40,637.3632
6435.0322 7440.0507

33,293.7695 36,562.5507
56,173.0546 55,089.2617
7142.3266 9165.1494

56,248.4531 47,392.8398
7826.2421 9040.2226
9263.9414 10,036.6669

Figure 2 compares the supplied and actual values for the ANN LSTM model, providing
a straightforward evaluation of its performance across 400 observations. In order to evaluate
the model’s effectiveness, three performance metrics were used: mean square error (MSE),
mean absolute error (MAE), and mean absolute percentage error (MAPE). Table 2 displays
the MSE, MAE, and MAPE values to demonstrate how well the hybrid model predicts.

Figure 3 depicts how the model’s performance has increased with time. As the number
of epochs increases, the loss lowers, indicating that the model is becoming more accurate in
its predictions.

The model’s overall accuracy is 99.46%.

Table 2. Evaluation metrics results of ANN-LSTM model.

MSE MAE MAPE Accuracy DM

4,926,484 1,451,432 0.086 99.462 3.956
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5.2. ANN-LSTM with Gradient Specific Optimization

The section focuses on using a hybrid ANN LSTM model with gradient-specific
optimization to estimate Bitcoin’s hourly price, with better predictions to improve the
model’s performance. Table 3 shows the gradient variations and ANN-LSTM levels for the
10 most recent data points.
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Table 3. Gradient-specific optimization variations and ANN-LSTM values.

Gradient ANN-LSTM

1.649061 × 108 5649.693848
1.502198 × 109 48,140.066406
2.976053 × 108 8981.379883
2.566309 × 108 9699.672852
6.481075 × 108 22,190.927734
8.736724 × 108 27,901.804688
2.748812 × 108 9837.680664
1.175338 × 109 36,591.804688
9.662159 × 108 28,368.103516
2.159031 × 108 7346.333496

Figure 4 depicts the actual results for the ANN LSTM model in forecasting Bitcoin’s
hourly price, allowing for obvious evaluations of its performance across 400 observa-
tions and demonstrating market volatility and variations. And Figure 5 demonstrates the
gradient variation in projecting Bitcoin’s hourly prices using 400 datasets.
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To directly compare the model’s performance with the gradient-specific optimization,
Figure 6 displays both the curve of ANN-LSTM values and the curve of gradient variations,
allowing for obvious observations of higher precision.
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5.3. LSTM-Attention Model

This chapter emphasizes using a hybrid LSTM-Attention model, which was presented
in Section 3, to forecast the hourly price of Bitcoin. Table 4 shows the projected and real
values for the latest 20 observations.
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Table 4. Observed and forecasted values using the hybrid model LSTM-Attention.

Actual Predicted

5120.5478 5531.2138
46,654.0937 47,682.2695
9241.9111 8946.5625
7969.3315 8668.0683

20,127.7910 20,753.0839
27,133.3750 27,377.1914
8536.1484 9172.5039

36,502.5000 36,831.0781
30,007.5839 29,270.3437
6704.4072 6901.3188

55,574.5429 57,208.1953
6446.1113 7006.7988

41,622.1718 38,420.3828
6435.0322 6944.4438

33,293.7695 33,079.6406
56,173.0546 56,308.3984
7142.3266 7801.5083

56,248.4531 51,545.9687
7826.2421 8299.3515
9263.9414 10,046.9921

Figure 7 contrasts the given and actual values for the LSTM-Attention model, allowing
for a clear evaluation of its performance over 200 observations. To evaluate the effectiveness
of the LSTM-Attention model, this study used three performance evaluation metrics: mean
square error (MSE), mean absolute error (MAE), and mean absolute percentage error
(MAPE). Table 5 shows the hybrid model’s accuracy in projecting outcomes for MSE, MAE,
and MAPE.
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Table 5. Evaluation metrics results of LSTM-Attention model.

MSE MAE MAPE Accuracy DM DM

1,465,833.911 816,256 0.048 99.841 4.253

A lower MSE suggests better accuracy in prediction. A lower MAPE suggests better
accuracy. And the DM statistic of 4.253 is a measure of the difference in forecast accuracy
between two competing models or approaches.
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Figure 8 shows how the model’s performance has improved over time. As the number
of epochs increases, the loss decreases, showing that the model is becoming more accurate in
its predictions. The model’s overall accuracy of 99.84% reflects its outstanding performance
in properly predicting outcomes.
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5.4. LSTM-Attention with Gradient Specific Optimization

The section focuses on applying the hybrid LSTM-Attention model with gradient-
specific optimization to forecast Bitcoin’s hourly price. Table 6 illustrates the gradient
variations and LSTM-Attention values for the most recent ten observations.

Table 6. Gradient-specific optimization variations and LSTM-Attention values.

Gradient LSTM-Attention

1.649061× 108 5311.915039
1.502198 × 109 949,456.746094
2.976053 × 108 8867.231445
2.566309 × 108 9396.068359
6.481075 × 108 20,537.972656
8.736724 × 108 27,425.609375
2.748812 × 108 9568.349609
1.175338 × 109 37,590.984375
9.662159 × 108 29,360.189453
2.159031 × 108 7206.061523

Figure 9 shows the real results for the LSTM-Attention model in forecasting Bitcoin’s
hourly price, providing clear evaluations of its performance across 200 observations and
displaying the market’s volatility and fluctuations. And Figure 10 depicts the gradient
variation in forecasting Bitcoin’s hourly prices across 200 data points.

In Figure 11, the gradient-specific optimization curve and the LSTM Attention values
curve are displayed side by side, enabling a direct comparison of the model’s performance
and demonstrating improved accuracy.
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6. Discussion

Our study discovered that hybrid deep learning techniques, such as LSTM-Attention,
outperform ANN-LSTM at predicting cryptocurrencies like Bitcoin, as shown in Table 7.
With the combination of LSTM and attention, we attained an accuracy of 99.84 percent.
Furthermore, our findings suggest that, in this scenario, boosting optimization specificity
can enhance forecasting accuracy, as illustrated in Figures 6 and 11.

Table 7. Evaluation metrics results of both models.

Hybrid
Model MSE MAE MAPE Accuracy DM

ANN-LSTM 4,926,484 1,451,432 0.086 99.46 3.956

LSTM-
Attention 1,465,833.911 816,256 0.048 99.841 4.253

Deep learning approaches, such as LSTM-Attention, have shown potential in predict-
ing Bitcoin prices due to their capacity to detect complicated patterns and correlations in
data. Gradient-specific optimization is a strategy that uses gradient information gathered
during the training process to optimize model parameters. Using this strategy allows the
model to learn more efficiently and precisely, resulting in higher forecasting accuracy.

In summary, the LSTM-Attention hybrid model generally outperforms the ANN-
LSTM hybrid model in terms of forecast accuracy, as evidenced by lower error metrics and
a higher accuracy rate. Furthermore, the LSTM-Attention model shows a greater difference
in forecast accuracy than the ANN-LSTM model, as evidenced by the higher DM statistic.
A higher DM value of 4.253 indicates a substantial difference in forecast accuracy against
the ANN-LSTM model.

7. Conclusions

Predicting Bitcoin values is a difficult task owing to numerous market variables. For
this reason, recent advances in deep learning and artificial intelligence have yielded more
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accurate and reliable predictive models than formerly effective methods such as time series
analysis or econometric modeling. Hybridization can increase the precision of predictions
of Bitcoin prices by adopting mixed approaches to the use of these two modeling systems.

Firstly, as previously stated, we employed the LSTM with attention mechanism,
followed by gradient-specific optimization, to enhance our predictions of Bitcoin prices
over the last five years. Secondly, we merged the ANNs and LSTM and incorporated
gradient-specific optimization. The findings show that LSTM-Attention with gradient-
specific optimization performs well in Bitcoin forecasts, making it more appropriate for
Bitcoin predictions, producing results that are very similar to reality when compared with
the second model.

Therefore, our findings have major implications for investors, traders, and politicians,
who rely on precise forecasting to make educated decisions. Although our hybrid LSTM-
Attention model with gradient-specific optimization was quite successful, it is important to
realize that no model is perfect. In some situations, the model may underperform or fail to
appropriately anticipate cryptocurrencies. In fact, our models have a few limitations: they
do not take into consideration sentiment analysis in the Bitcoin market, and they cannot
measure the intensity of sentiment from text-based sources like social media platforms,
which is why there is always opportunity for development in terms of forecast accuracy,
prediction error reduction, and model robustness to changing market conditions. In the
future, we want to increase the accuracy of forecasts by adding more models, adjusting
hyperparameters, and improving hybrid models that are already in place. We need to have
better forecasting models so that they can easily be relied upon. As a result, our goals are
to increase forecast accuracy, produce trustworthy outcomes, and account for changes in
the market.
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