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Abstract: The scheduled maintenance of industrial equipment is usually performed with a low
frequency, as it usually leads to unpredicted downtime in business operations. Nevertheless, this
confers a risk of failure in individual modules of the equipment, which may diminish its performance
or even lead to its breakdown, rendering it non-operational. Lately, predictive maintenance methods
have been considered for industrial systems, such as power generation stations, as a proactive
measure for preventing failures. Such methods use data gathered from industrial equipment and
Machine Learning (ML) algorithms to identify data patterns that indicate anomalies and may lead
to potential failures. However, industrial equipment exhibits specific behavior and interactions
that originate from its configuration from the manufacturer and the system that is installed, which
constitutes a great challenge for the effectiveness of ML model maintenance and failure predictions.
In this article, we propose a novel method for tackling this challenge based on the development of
a digital twin for industrial equipment known as a Remote Terminal Unit (RTU). RTUs are used
in electrical systems to provide the remote monitoring and control of critical equipment, such as
power generators. The method is applied in an RTU that is connected to a real power generator
within a Public Power Corporation (PPC) facility, where operational anomalies are forecasted based
on measurements of its processing power, operating temperature, voltage, and storage memory.

Keywords: predictive maintenance; remote terminal unit; time-series forecasting; anomaly detection

1. Introduction

Industrial systems are currently undergoing a transformation toward an intercon-
nected area referred to as Industry 4.0 [1]. This transformation is supported by intelligent
devices (e.g., sensors, actuators) that communicate seamlessly and in an autonomous
manner through the use of Internet of Things (IoT) and Industrial IoT technologies [2].

To maintain autonomous operation and avoid the need for manual human intervention
in case of potential failures, the regular maintenance of industrial equipment is required.
Determining the maintenance frequency is a challenge and is mainly based on the system
where the equipment is deployed, given that a failure in one piece of equipment may
also cascade and result in additional ones [3], leading to catastrophic damages in entire
industrial systems, such as power plants, with financial, regulatory, and reputational
impacts. Moreover, maintenance also aims at improving the operational accuracy, as well
as protecting the operators who use the equipment [4].

To tackle this challenge, industries are rapidly adopting predictive maintenance (PdM)
solutions [5,6]. PdM is a proactive maintenance technique that utilizes asset data (real-
time and historical) in order to determine whether the asset will fail in the future. This
is performed by (1) gathering all the relevant data and predicting their future values and
(2) performing anomaly detection on the predicted values to intercept potential incidents
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before they actually happen. Such a provision allows mitigation measures to be initiated to
restore the equipment to its full operational status.

However, developing an effective PdM system is challenging, particularly when
dealing with production-oriented industrial components. PdM systems entail predicting
the Remaining Useful Life (RUL) or detecting anomalies in a component’s future behavior.
Based on the existing literature [7], there are currently more than 14 different definitions
of anomalies, 39 anomaly detection techniques, and 20 different mitigation techniques for
detected anomalies. Despite the importance of dealing with these anomalies adequately,
concrete practical guidelines for managing them are scarce, as there is a large variety of
approaches and estimation goals tackling the PdM task, which makes it harder to compare
results and come to definite conclusions. Moreover, acquiring real run-to-failure data is
often difficult, as the long-term tracking of equipment from the initial to the current state
is impractical in some cases, and most equipment with sensors is either well designed or
routinely fixed before failing.

The existing PdM approach involves predicting the RUL of a machine using opera-
tional sensor data by assuming how the system degrades or how a fault evolves. However,
this approach may not be suitable for domains where degradation does not follow a pattern,
and accurate physical or system models may not be available. Hence, the development of a
PdM framework that allows the automation of operational fault detection, as well as the
prediction of performance issues or asset deterioration, is deemed necessary for industrial
organizations. Nevertheless, the computational burden and the complexity of Deep Learn-
ing (DL) models in the literature [8], as well as the overall amount of required data [9],
make existing approaches quite challenging and hinder their adoption by non-experts in
the field.

To address these challenges, this article proposes a concrete PdM framework of an
industrial component, i.e., a Remote Terminal Unit (RTU), in order to monitor and track
its health status. The proposed PdM is data-driven and uses different ML and statistical
models. Specifically, time-series forecasting models are used to predict the RTU’s state as
far into the future as possible, and unsupervised anomaly detection models are employed
to detect possible anomalies in the forecasted data, even in the absence of failure data. In
particular, this article makes the following contributions:

• The design flow of a PdM framework for the detection of potential anomalies leading
to failures in industrial infrastructure equipment, such as RTUs.

• The implementation and comparison of time-series ML models for forecasting the
RTU operational status using features such as processing power, memory, operating
temperature, and voltage.

• The detection of anomalies in the operational status of the RTU based on various ML
models, which are also compared in terms of performance and anomaly prediction
accuracy.

• The real-life application of the proposed PdM framework and integration with a power
generator in the industrial infrastructure of a PPC.

The rest of this article is organized as follows. Section 2 presents background informa-
tion on the electrical infrastructure equipment, specifically focusing on RTU functionalities
as well as a brief overview of the PdM and anomaly detection modules toward building a
DT. Then, Section 3 describes the PdM framework based on individual time-series forecast-
ing and anomaly detection modules. The PdM framework is then validated in Section 4
through a case study using an RTU that is deployed in the industrial infrastructure of a
PPC. Section 5 provides the benefits and limitations of the proposed method, as well as
related work and challenges towards the positioning of the work alongside the current state
of the art. Finally, Section 6 provides conclusions and some perspectives for future work.
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2. Preliminaries

In this section, we provide an overview of the industrial equipment, i.e., RTUs, to
which our method is applied, as well as a description of the PdM and its significance in the
process of building a DT.

2.1. Remote Terminal Units

RTUs are used to remotely monitor and control a variety of electronic equipment
in order to ensure their real-time operational availability. RTUs typically have a network of
embedded devices (e.g., sensors, actuators) to facilitate their connection to the equipment
they are monitoring or controlling. These devices allow them to gather data and analyze
them to facilitate decisions on how the electronic equipment will be operated. Often, when
additional processing resources are needed, the data are also sent to central control stations
for further analysis. This is especially useful in situations where the electronic equipment
is located in remote or hard-to-reach locations, such as distant electrical grid substations,
where it is not practical or cost-effective to have a human operator present at all times.

Figure 1 illustrates an RTU deployed in PPC industrial infrastructure and connected
near a power generator. The generator produces energy from diesel fuel and distributes it
to residential areas. The RTU gathers operational data from the power generator, which
can be later analyzed to deduce performance metrics. The causes of an RTU’s physical
degradation may include thermal and electrical stress, mechanical wear, environmental
corrosion, or firmware/software obsolescence. The operational and environmental stress
factors contributing to each failure mechanism may include temperature variations, voltage
fluctuations, physical vibration levels, humidity, or dust exposure, which depend on the
RTU manufacturer characteristics as well as the deployed environment.

Figure 1. An RTU deployed near a power generator.

As a consequence, degradation may decrease the RTU performance such that it will
be unable to analyze the operational data. In turn, this may lead to a reduction in produced
energy; hence, it is usually necessary that this be predicted before it actually happens.
When predictions are accurate, the RTU or the equipment it controls, such as a power
generator, is promptly scheduled for maintenance, which prevents any degradation in the
performance, as well as any reduction in the amount of produced energy.

When connected to such critical equipment as a power generator, the RTU collects data
such as the operating temperature, voltage, memory, and processing power (i.e., CPU). It is
crucial to continuously monitor these parameters to ensure the safe and efficient operation
of the power generator and other industrial equipment controlled by the RTU, as anomalies
in the data collected by the RTU could lead to information loss and not indicate potential
issues with the power generator, which could go undetected. For example, a sudden increase
in the temperature and CPU usage of the RTU could lead to unexpected behaviors such as
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delays, or the RTU could be overloaded and shut down automatically. Unplanned downtime
of the RTU prevents it from monitoring the health status of the power generator and other
equipment and can have a significant impact on the production of energy and result in
significant financial losses. This work focuses on tackling this challenge through the use of a
PdM framework to ensure the early-stage detection of potential failures in the RTU, as well as
in the equipment it controls. Thus, a brief description of PdM and how it is employed as one
of the core modules of a Digital Twin (DT) is provided in the following section.

2.2. Predictive Maintenance as a Digital Twin Module

DTs are digital representations of physical processes or real systems. They are formed
by gathering data from the real system and applying them to reconstruct its behavior
and provide feedback to the physical process about possible future outcomes, such as
predictions of errors and faults or component maintenance. DT feedback improves the
efficiency of the physical process as well as decision-making. Specifically, a DT framework’s
goal lies in estimating, forecasting, or monitoring a component’s, system’s, or system-
of-system’s state, with an emphasis on estimating the physical system’s response to an
unexpected event before it occurs [10].

DTs usually comprise (1) the physical process, (2) a digital model of that physical
process (e.g., a statistical or an ML model), (3) data analytics techniques, (4) communication
mechanisms between the physical process and the digital model [11]. Many different
techniques have been applied to develop DTs, depending on the available data and the
desired output. The predicted output of a DT can be divided into classification and
regression tasks. Categorical objectives, like machine states, are indicated by a classification
task. Continuous objectives, such as the Remaining Useful Life (RUL) before a machine
breaks, are indicated by regression tasks.

A module that is usually among the core elements making up a DT is PdM. The rea-
son is that PdM is used for real-time predictions of potential equipment errors/faults
or possible maintenance. PdM may also focus on locating potential improvement areas
for the physical processes or its individual components, which can be used to maximize
performance. Overall, four different types of maintenance mechanisms are present, which
are described below:

• Reactive maintenance: A problem that has already happened is fixed to sustain the
system’s nominal operational status.

• Preventative maintenance: Routine maintenance tasks are performed periodically to
prevent failures. However, often, preventative maintenance is performed despite not
actually being necessary, wasting useful resources.

• Rule-based PdM: Maintenance is carried out on the basis of hard-coded threshold rules,
and an alert is sent if a measurement crosses the predefined thresholds.

• Machine learning (ML)-based PdM: Advanced analytics and DT techniques are used to
forecast when the next failure will occur, and, in response, early-stage maintenance
is scheduled.

The most prominent maintenance type is ML-based PdM, which allows the scheduling
of maintenance for components of a physical process before it starts malfunctioning. This
decreases downtime and increases productivity, as repair is scheduled upon observing
potential issues and before the equipment experiences severe faults. Specifically, ML-based
PdM usually consists of two sequential parts. Initially, time-series forecasting ML models are
applied, which allow for forecasting the behavior of the system. Then, health indication
techniques, such as anomaly detection ML models, are applied to the previously forecasted
data in order to detect anomalies or predict the RUL of the component.

2.2.1. Time-Series Forecasting Models

To allow the forecasting of time-series values of industrial equipment, different types
of models can be applied. First, Long Short-Term Memory (LSTM) [12] is an extension
of Recurrent Neural Networks (RNNs), which use previous information for future tasks.



Forecasting 2024, 6 243

However, RNNs suffer from the vanishing and exploding gradient problems, which restrain
their memory capabilities. Extending from RNNs, LSTMs provide the capability of “long-
term memory” by introducing a mechanism called the “memory cell” which can maintain
information for longer periods of time. An LSTM network is composed of a series of LSTM
cells, each of which contains several gates that control the flow of information into and out of
the cell. The gates are used to decide what information should be passed to the cell, what
information should be discarded, and what information should be passed to the output.

Another well-known forecasting model is the Autoregressive Integrated Moving
Average (ARIMA) [13]. ARIMA includes differencing to handle non-stationarity in time-
series data and is a linear model that combines the qualities of both moving average (MA)
and autoregressive (AR) models. ARIMA can also be combined with grid search, which is
a technique used to find the optimal set of hyperparameters for a model by exhaustively
searching through a predefined grid of parameter combinations. The AR and MA models
are defined by Equations (1) and (2), respectively. The ARIMA model is characterized by
three parameters: p, d, and q. The number of lag observations used to predict the current
value is indicated by the parameter p, which stands for the order of the autoregressive
equipment. The number of lag errors used to forecast the current value is represented by
the parameter q, which stands for the order of the moving average component. Finally, ε
indicates white noise. The equation of a typical autoregressive model is

Υt = α + β1Yt−1 + β2Υt−2 + . . . + βpYt−p + ε1 (1)

Likewise, the equation of a typical moving average model is

Υt = c + εt + θ1εt−1 + θ2εt−2 + . . . + θqεt−q (2)

Equation (1) also shows that the future value y(t) is computed as a weighted linear
combination of errors εt made by the model at previous time steps. The value q denotes
the window defining how far into the past we are willing to look to decide the value of
y(t). So, the above model is a moving average model of order q, or simply MA(q). When
performing grid search for ARIMA, the hyperparameters to consider are typically denoted
by p, d, and q, representing the orders of the AR, I (integration), and MA components,
respectively.

Finally, Extreme Gradient Boosting (XGBOOST) [14] is a popular machine learning
algorithm used for both classification and regression tasks. It is a type of gradient-boosting
algorithm that works by iteratively adding new decision trees to the model while adjusting
the weights of the data points based on their performance in previous iterations. XGBoost
is a fast implementation of a gradient-boosted tree. It has obtained good results in many
domains, including time-series forecasting, and has achieved first place in numerous
machine learning competitions on such platforms as Kaggle (https://www.kaggle.com/
(accessed on 23 March 2024)). As an example of its performance and accuracy capabilities,
the authors in [15] demonstrate that XGBoost can outperform neural networks on a number
of time-series forecasting tasks.

2.2.2. Anomaly Detection Methods

In the existing literature [7], there is ambiguity in the definition of an outlier and an
anomaly, which, hence, are often considered the same term. Nevertheless, an “outlier” is
an observation that is distant from the mean or the location of a distribution. Hence, it
does not necessarily represent abnormal behavior or behavior generated by a different
process. On the other hand, “anomalies” are data points or data patterns that are generated
by different processes and deviate from the expected behavior. Hence, anomaly detection
(AD) is the process of finding unusual patterns or data deviations that do not match the
anticipated behavior. Anomalies can be caused by various factors, such as errors, outliers,
or even malicious activities.

https://www.kaggle.com/
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Three main categories of anomalies can be identified: (1) point anomalies, which are
individual data points standing out from the rest of the data, (2) contextual anomalies,
which consist of patterns or behaviors that are unusual within a specific context, and
(3) collective anomalies, linking to a series of points that are unusual. Knowing a priori
which anomaly category the data contain aids in data analysis and model selection; hence,
it is easier to find an appropriate model. Moreover, certain approaches that are able to
detect point anomalies fail to identify collective or contextual anomalies [16].

In terms of AD, four main categories of methods can be used:

• Univariate AD, where a univariate anomaly is an observation or data point that deviates
significantly from the expected or normal behavior for a single feature or variable.
Univariate AD methods are used to identify these observations by analyzing the
distribution of data for a single feature. These methods assume that the data for each
feature are independent of the data for other features, or that the dataset consists of
only one feature. These methods usually consist of statistical models, such as the
median absolute deviation (MAD), the Z-score, or Grubbs’ test, and distance-based
models, such as the Mahalanobis distance, which calculate the distance between each
observation and the mean of the feature. Univariate AD methods are used to detect
anomalies in a single feature or variable and are useful when the dataset consists of
only one feature or multiple features that are not highly correlated with each other,
as, in this case, the relationships between the variables are not very important for the
analysis.

• Time-series univariate AD, where, in contrast to typical AD, the goal is to locate anomalies
in a sequence of continuous measurements over time, which are usually picked up
in equidistant time intervals. The measurements may form a static dataset or a set of
independent data points. Furthermore, it is presumed that the most recent time-series
data points in the sequence have an impact on the timestamps of the data points that come
after them. Afterward, the sequence’s values may shift gradually or follow a predictable
pattern. As a result, sudden shifts in the sequence will usually be considered anomalous.
This category includes statistical techniques (such as z-score and moving average), model-
based techniques (such as exponential smoothing and ARIMA), and machine learning
techniques (such as LSTM). These methods account for the temporal patterns, trends,
seasonality, and dependencies within the time series, enabling them to detect anomalies
that manifest as deviations from the expected patterns over time.

• Multivariate AD, which focuses on observations or data points that deviate significantly
from the expected or normal behavior in multiple features or variables. In other words,
values that become surprising when several dimensions are taken into account are
called multivariate anomalies. Multivariate anomalies are very important and harder
to detect. Multivariate AD methods are more sophisticated and useful when the data
have multiple features or variables that correlate with each other and we want to
detect anomalies in the relationships between them. These methods account for the
dependencies between features and use techniques such as Principal Component
Analysis (PCA) [17], clustering, or machine learning algorithms to identify anomalies.

• Time-series multivariate AD, which, as opposed to the single variable or feature in uni-
variate detection, is used to detect anomalies between multiple features or variables
and are useful when the variables in the dataset are highly correlated, as some seem-
ingly usual observations may lead to an unusual combination thereof. Time-series
multivariate AD focuses on dependencies in time-series data.

The choice of the method depends on the nature of the data, such as the number of
features and the dependencies between them, as well as on the goal of the task. Furthermore,
a considerable challenge in the prediction of failures or anomalies is usually the absence
of real run-to-failure data. However, through the PdM framework that is presented in
Section 3, we can train the AD models without the need for such data.
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3. Proposed Predictive Maintenance Framework

In this section, the design flow for building a PdM framework of an RTU is thoroughly
presented. The RTU monitors and keeps track of the health status of a power generator.
To build a data-driven PdM framework, different ML and statistical models are examined
for two main modules: (1) time-series forecasting, where statistical and ML models are
utilized to predict the RTU’s future state by using performance metrics such as temperature,
memory usage, or central processing unit (CPU) usage, and (2) AD, where unsupervised
models are used to detect possible anomalies in the forecasted data.

The initial process of the PdM framework involves data gathering from industrial
components, such as an RTU. This is performed through sensors collecting temperature,
CPU usage, and memory usage data from the RTU. The communication of the sensor
readings is facilitated by a Message Queue Telemetry Transport (MQTT) broker [18], which
is part of the PdM framework and is used by the RTU in order to publish the sensor readings,
which are then stored in a MongoDB database [19]. The proposed framework flow including
the involved steps of the processes is illustrated in Figure 2. Specifically, upon gathering the
time-series data, our method proceeds with the following steps:

1. The first step of our method is linked to the Exploratory Data Analysis (EDA) pro-
cess [20]. This process leads to the selection of the most important features that are
required by the framework. Moreover, through EDA, statistical characteristics of the
data, such as the seasonality and the correlation of the features, are explored.

2. EDA leads to the selection of the features required for the prediction of the future
values of the time-series data, hence allowing the estimation of the operational (i.e.,
health) status of the RTU. The features are selected based on their correlation and
significance in impacting the health status of the RTU.

3. Upon the selection of features, ML models are trained offline with the gathered time-
series data to predict future values. Specifically, for this time-series forecasting step,
the algorithms in Section 2 are employed to analyze the future distribution of the data.
Subsequently, the AD models are applied to the previously forecasted data in order to
classify potential anomalies.

4. For the AD step, unsupervised clustering, ML, and DL algorithms are trained to
reconstruct the time-series data corresponding to the healthy state of the RTU. The se-
lected AD models work in a multivariate way, meaning they are trained by taking
the distributions of all the selected features at once as input. Then, depending on the
model, a certain threshold is set for the clustering and ML approaches, or in the case
of DL approaches, the reconstruction error is used to evaluate the state of the system
and to detect anomalies.

5. To evaluate the AD models’ performance, the incidents that caused the RTU to mal-
function are captured, and the behavior of the ML model features during those
incidents is appended to the gathered data. Finally, the AD models are evaluated by
trying to identify those incidents.

Steps 3 and 4 are followed iteratively as the PdM framework continuously receives
new data. To enable early and precise AD, the models are fine-tuned on the updated
data through incremental learning. If the system detects an anomaly upon evaluating the
predicted data, then it can alert maintenance personnel and provide them with informa-
tion about the issue, such as its location and severity. By using the combination of AD
and forecasting models, maintenance teams can plan their maintenance schedules more
efficiently, ensuring that they are able to repair/replace equipment before it fails, reducing
its downtime. The specific procedure and models employed for AD are detailed in the
following section.
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RTU Data Gathering

Data Preprocessing

Time-series Forecasting

Anomaly Detection

Performance comparison
and Best Model selection

Maintenance Verdict +
Notification to Operator

(1) Exploratory Data Analysis

(2) Feature Selection

(3) Future data prediction

(4) Residual Calculation

(5) Final PdM Models

Figure 2. Proposed Predictive Maintenance framework flow.

3.1. Anomaly Detection Module

For the AD module, four main algorithms are considered, namely, (1) the LSTM
Autoencoder, (2) the Deep Convolutional Autoencoder, (3) Isolation Forest (IF), and
(4) Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The algo-
rithms are detailed in the following sections.

3.1.1. LSTM Autoencoder

The LSTM Autoencoder algorithm is formed by an unsupervised Deep Learning
Recurrent Neural Network and is useful for unsupervised AD tasks on time-series data [21].
It includes two key components in its architecture, namely, LSTM (Section 2) and the
Autoencoder. The Autoencoder is a type of neural network that is trained to recreate its
input by including two main components: the encoder and the decoder. The encoder
maps the input to a lower-dimensional representation, called the bottleneck or latent
representation, and the decoder maps the bottleneck representation back to the original
input space. An Autoencoder’s primary objective is to learn a concise representation of the
input data that highlights the most crucial information. To achieve this, the Autoencoder
calculates the reconstruction loss between the initial input and the reconstructed output of
the model and tries to minimize it using a reconstruction loss like mean squared error or
cross-entropy. The reconstruction loss is often used for AD tasks.

Different topologies, such as convolutional and recurrent networks, can be used
to create the encoder and decoder elements of an Autoencoder. The implementation
of the LSTM Autoencoder that is developed within the proposed PdM framework uses
the encoder to obtain the sequence of high-dimensional input data as a fixed-size vector.
Using the memory cells of LSTM, the data processed by the encoder scheme retain the
dependencies across multiple data points within a time-series sequence while reducing the
high-dimensional input vector representation to a low-dimensional representation until it
reaches the latent space. The decoder reproduces the fixed-size input sequence from the
reduced representation of the input data in the latent space using reconstruction error rates
to set a threshold. This threshold is used to detect anomalies. The max reconstruction loss
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will be set as a threshold, designating any samples whose reconstruction loss goes beyond
the specified threshold as anomalies.

3.1.2. Deep Convolutional Autoencoder

The Deep Convolutional Autoencoder is a type of neural network architecture that
combines convolutional layers and Autoencoder principles to learn efficient representa-
tions of input data. The main difference in this algorithm when compared to the LSTM
Autoencoder is that it uses convolutional layers instead of LSTM layers [22]. Convolutional
layers are a fundamental building block in Deep Convolutional Autoencoders. These layers
perform convolution operations on the input data, which are in the form of a feature map.
The input data are subjected to a series of filters (also known as kernels or weights) in a
convolutional layer. Each filter generates a dot product between its weight and the local
patch of input data that it is currently looking at as it slides over the input. The outcome is
a feature map that draws attention to particular patterns or features of the input.

Compared to fully connected layers, which are frequently used in conventional neural
networks, convolutional layers have a number of benefits. First, they allow the sharing of
weights, which means processing each local patch of the input data using the same set of
weights. As a result, there far fewer parameters to learn, which makes the network more
effective and less prone to overfitting. Second, because they can detect regional patterns
and spatial dependencies, convolutional layers are well suited for processing spatially
structured data, such as images.

Pooling layers, which downsample the feature map by taking the maximum or average
value within a fixed window, can be added to convolutional layers to further improve
their performance. As a result, the feature map’s spatial dimensionality is decreased while
maintaining the most important features. Pooling layers can also help reduce overfitting
and increase the network’s ability to generalize to new data.

3.1.3. Isolation Forest

The Isolation Forest algorithm is used for AD on multivariate time-series data and is
based on the idea of isolating individual observations by randomly selecting a feature and
a split value between the maximum and minimum values of the feature [23]. Moreover, IF
does not make any assumptions about the underlying distribution of the data, and it can
handle high-dimensional data. Anomalies in the data that are difficult to identify using
conventional methods, such as linear or Gaussian models, can also be found using IF.

To identify anomalies based on anomaly scores, an appropriate threshold needs to
be set. Anomaly scores are calculated using the decision function of the Isolation Forest
model. This function returns a score for each sample, indicating the extent of the anomaly.
Specifically, a higher score indicates that the sample is more likely to be normal, while a
lower score indicates that the sample is more likely to be an outlier.

3.1.4. DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a clustering
algorithm used in unsupervised machine learning, especially helpful in locating clusters of
arbitrary shapes in data that might contain noise or outliers [24]. To ensure the algorithm’s
functionality, neighboring points in a high-dimensional space are grouped together through
the density concept, where a cluster is referred to as a dense group of points divided by
less dense regions. Outliers and noise are points that are not located in a dense area.

The algorithm takes two main input parameters: epsilon or eps, which is the max-
imum distance between two points for them to be considered part of the same cluster,
and min_samples, which is the minimum number of points required to form a dense region
or cluster. More specifically, eps defines the radius around each point within which to
search for neighboring points and sets the scale of what it means for points to be considered
“close” to each other. Furthermore, DBSCAN starts with a random point in the dataset and
finds all other points that are within an epsilon distance of it to perform clustering. A new
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cluster is created if the number of points in this area exceeds or is equal to the min sample
threshold. The algorithm then recursively adds points that are within the epsilon distance
of every point in the cluster, expanding the cluster.

Afterward, it chooses a different unexplored point in the gathered data and repeats
the process until no more points can be added to the cluster. Points that have at least
min_samples neighbors are considered core points, while points that have fewer neighbors
than min_samples but belong to the same cluster as a core point are called boundary points.
Points that are not assigned to any cluster are considered anomalies or noise. They may be
distant from any cluster, or they may be surrounded by points that do not form a dense
region. This is the reason DBSCAN is considered very useful for AD tasks.

DBSCAN has several advantages over other clustering algorithms: (1) robustness
to noise and outliers, (2) identification of any shape clusters, and (3) does not require a
predefined number of clusters. Although it can be sensitive to the choice of parameters,
particularly epsilon, and may not perform very well in high-dimensional spaces or with
data that have widely varying densities, it is a very useful algorithm for unsupervised
clustering and AD through ML models, particularly for datasets with complex structures
and noise.

3.2. Framework Evaluation Metrics

In this section, we detail the evaluation metrics for the proposed PdM framework.
As the framework performs PdM through time-series forecasting and an AD process, in the
following part, we present the metrics for each individual process.

3.2.1. Time-Series Forecasting Evaluation Metrics

Several metrics are present in the literature for evaluating the performance of the
time-series forecasting process [25], from which we have selected and present a specific
set that is relevant for PdM. To facilitate the reader’s comprehension, in the following
equations, n denotes the sample size, y the observed, and ŷ the predicted variable:

1. Mean Absolute Error (MAE), which is a measure of the average magnitude of errors
in the forecasts and is calculated based on the average of the absolute error values.
The lower the MAE value, the better the model.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (3)

2. Mean Squared Error (MSE), which is a measure of the average magnitude of the errors
in the forecasts and is calculated as the mean of the squared errors. Additionally, it is
sensitive to large errors and always non-negative.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (4)

3. Root Mean Squared Error (RMSE), which is defined as the square root of the MSE, hence
measuring the square root of the average of the squared differences between the actual
and predicted values. As with MSE, RMSE is also very sensitive to large errors and
always non-negative. In general, the lower the RMSE, the better the fit of the model.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (5)

4. Mean Absolute Percentage Error (MAPE), which measures the average percentage
difference between the actual and predicted values. It is calculated by determining
the absolute difference between the actual and predicted values, then dividing the
result by the actual value for normalization, and finally computing the mean over the
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division results. The formula often includes multiplying the value by 100% to express
the number as a percentage.

MAPE =
1
n

n

∑
i=1

|yi − ŷi|
yi

(6)

5. Symmetric Mean Absolute Percentage Error (SMAPE), which measures the average
absolute percentage difference between the actual and predicted values, but it is
calculated differently from MAPE. SMAPE takes the sum of the absolute differences
between the actual and predicted values, divides it by the sum of the absolute values of
the actual and predicted values, and then multiplies it by 2. SMAPE uses a symmetric
weighting of actual and forecasted values and hence is less affected by small actual
values. Additionally, it often includes multiplying the value by 100% to express the
number as a percentage.

SMAPE =
1
n

n

∑
i=1

|yi − ŷi|
(yi + yi)/2

(7)

6. Coefficient of Determination (R2): R2 is a measure of the goodness of fit of the model
and is calculated as the proportion of the variance in the target variable. R2 values
range from 0 to 1, with higher values indicating a better fit. Various R2 definitions are
found in the literature. Kvalseth [26] reviewed eight such definitions, recommending
the following formula:

R2 = 1 − ∑n
i=1(ŷ − yi)

2

∑n
i=1(yi − yi)2 (8)

where y is the observed variable, y is its mean, and ŷ is the predicted variable. Hence,
R2 measures the residual size for the model compared to the residual size for a null
model where all predictions are the same. The numerator in the fraction is the Sum of
Squared Residuals (SSR). In principle, good models have small residuals. Squaring
the residuals before summing ensures that positive and negative residuals are counted
equally, rather than canceling each other out; thus, for a good model, the SSR will
be low.

3.2.2. Anomaly Detection Evaluation Metrics

An AD task can be interpreted as a binary classification problem, where the first class is
linked to the healthy data, whereas the second is anomalous. Furthermore, the problem can
be evaluated using a confusion matrix, which visualizes and summarizes the performance
of a classification algorithm [27]. Specifically, a confusion matrix first includes true positive
(TP) values, representing measurements that are properly classified as anomalies. False pos-
itive (FP) represents the number of measurements misclassified as anomalies when in fact
they are healthy. True negative (TN) represents measurements that are properly classified
as healthy (not anomalous). False negative (FN) represents the number of measurements
misclassified as healthy when in fact they are anomalies.

The most commonly used performance metrics when comparing different AD tech-
niques are Accuracy, Precision, Recall, F1 Score, and Area Under the Receiver Operating Char-
acteristic curve (AUC-ROC), which are calculated according to TP, TN, FP, and FN. These
metrics measure the effectiveness, robustness, and accuracy in identifying anomalies.

1. Accuracy: This metric is used to evaluate the efficiency of the system and is defined
as the ratio of correctly classified measurements (TP + TN) to the total measurements
(TP + TN + FP + FN). Hence:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)
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2. Precision: This metric measures the correctly predicted positive cases. It is represented
as the ratio of the correctly classified anomalies (TP) to the total predicted anomalies
(TP + FP) and is measured by:

Precision =
TP

TP + FP
(10)

3. Recall: This metric (also referred to as sensitivity) is defined as the ratio of the correctly
classified anomalies (TP) divided by the total number of anomalies in the dataset
(TP + FN). Therefore:

Recall =
TP

TP + FN
(11)

4. F1 Score: This metric (also referred as F Measure) is defined as a weighted mean
between Precision and Recall. Its maximum value is 1, showing the best performance
of the classifier, and its minimum is 0 and is calculated by:

F1 Score = 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(12)

5. AUC-ROC: This metric is denoted by a curve plotting the trade-off between the true
positive rate (TPR) and the false positive rate (FPR). A perfect classifier has TPR = 1
and an FPR = 0, resulting in an AUC-ROC of 1. Specifically, if we have a set of N
points (FPRi, TPRi) that define the ROC curve, the AUC-ROC can be approximated
using the trapezoidal rule:

AUC − ROC =
N

∑
i=1

(TPRi + TPRi+1)(FPRi+1 − FPRi)

2
(13)

In principle, the technique that achieves the highest score is usually considered the
most effective in detecting anomalies. Moreover, the choice of the performance metric also
depends on the application domain and the main objective of the AD task. For instance,
if false negatives (missing true anomalies) are more important than false positives (identifying
normal occurrences as anomalies), Recall is more important than the other metrics.

4. Validation in Industrial Infrastructure

We implemented the PdM method on an RTU supplied by Schneider Electric (https:
//www.se.com/ww/en/ (accessed on 23 March 2024)) during the TERMINET project
(https://terminet-h2020.eu/ (accessed on 23 March 2024)) and deployed within PPC
infrastructure. Moreover, the RTU is connected to large power generator (Figure 3), which
is essential for electricity production, and any unexpected downtime has a significant
financial/operational impact.

The gathered dataset was based on sensor readings from the RTU available through
MQTT and stored in a MongoDB Database. This process spanned over a period of two
months, during which the RTU did not develop severe faults. This is usually common
in industrial environments, as components are manufactured with enhanced safety and
security features in order to ensure their continuous availability. Hence, the entire dataset
is deemed to comprise healthy and normal readings, and our method was applied in order
to identify early-stage anomalies that may lead to potential faults.

https://www.se.com/ww/en/
https://www.se.com/ww/en/
https://terminet-h2020.eu/
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Figure 3. Power generator (left) and RTU integration within PPC infrastructure (right).

4.1. Application of Digital Twin Method

The proposed framework in Section 3 was applied in the industrial infrastructure of a
PPC, and the resulting architecture upon deployment is presented in Figure 4.

Specifically, first, the EDA process was performed (Step 1 in Figure 2), where data
analysis and visualization techniques were applied in order to gain insights, understand
patterns, explore correlations and dependencies between different features, as well as
between lagged values of the same features, and summarize the main characteristics of the
dataset. Then, the feature selection process took place (Step 2 in Figure 2), where a subset
of the features that were the most informative and contributed the most to the predictive
modeling task was selected, thus reducing the dimensionality of the dataset and improving
the model’s performance by focusing on the most important features. Afterward, for the
AD step, the four unsupervised learning models presented in Section 3 were evaluated,
i.e., (a) DBSCAN (clustering-based), (b) Isolation Forest, (c) the Convolutional Autoencoder
(DL model with convolutional layers), and (d) the LSTM Autoencoder (DL model with
LSTM layers).

Figure 4. Deployment architecture overview.
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As anomalies are rare events in a real industrial environment, we could not obtain
a labeled dataset; hence, we opted for unsupervised learning models. Specifically, unsu-
pervised AD models rely on identifying patterns that deviate from the normal behavior
observed in the training data. To assess and evaluate the AD models, we managed to
capture the feature distribution of the RTU during incidents that caused abnormal behavior.
We then evaluated the models based on their ability to accurately capture this abnormal
behavior. This evaluation process allows us to identify any weaknesses in the models, such
as their inability to detect certain types of anomalies or their tendency to produce false
positive or false negative results. Furthermore, it helps us understand how the model’s
parameters and hyperparameters may need to be adjusted to enhance its performance.
Evaluating the model’s robustness and generalization ability is essential for its success in
practical scenarios.

4.2. Data Preprocessing

Upon completing the data gathering procedure, we initiated the first step of our
method (EDA), which led to the selection of 3 features from the 22 initial features of
the dataset. The selection was based on the variation in and domain knowledge of the
parameters affecting the RTU and power generator operation and performance. The three
features that were chosen are as follows:

1. CPU_USAGE: This feature is the processing power being used by the central process-
ing unit (CPU) of the RTU at a given time. It represents the proportion of time the
CPU is busy executing tasks compared to the total time.

2. MEM_USAGE: This refers to the amount of system memory (RAM) being utilized by
the RTU at a given time. It indicates the amount of memory resources that are actively
being used by programs, applications, and the operating system itself.

3. TEMP: Temp refers to the temperature measured inside the RTU by installed sensors,
which is generated by various hardware equipment. Monitoring the temperature
is crucial to ensuring proper functioning, preventing overheating, and maintaining
system stability in the RTU.

Furthermore, the data analysis that was performed after data gathering was crucial
for the model selection process. In order to decide which models are most suitable for
AD, a deep understanding of the gathered data characteristics is very important. Initially,
as time-series data were gathered, time-series AD methods were employed. As the next
step, a decision had to be made regarding the selection between univariate and multivariate
AD methods (Section 2). To facilitate this decision, a set of metrics were investigated
as follows:

Correlation: First and most important is the correlation between the features. If the
features in the dataset are highly correlated with each other, then it may make more sense
to use a multivariate AD method, as the features are likely to be affected by the same
underlying patterns and outliers. Figure 5 presents a heatmap to visualize and better
understand the correlation between the three selected features of the collected dataset.
Specifically, the heatmap illustrates that the variables in our dataset are not even slightly
correlated, and the variables MEM_USAGE and TEMP have a strong negative correlation.

Seasonality: This metric checks whether the features in the dataset have different
seasonal patterns; in this case, it may make more sense to use a univariate AD method for
each feature, as the features are likely to be affected by different underlying patterns and
outliers. A method that can be used to check the seasonality of our time-series dataset is
the autocorrelation plot. The autocorrelation plot is a commonly used method to check
for randomness and seasonality in a time-series dataset and shows the correlation of a
given variable with itself at different time lags. A significant positive autocorrelation at a
specific lag indicates that there is a repeating pattern at that lag, showing that this feature
has strong seasonality.
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Figure 5. Heatmap of the correlation between the variables.

The autocorrelation plots for the dataset features allow their seasonality to be examined.
In particular, the horizontal axis in Figure 6 depicts the lag value, which is the number of
previous observations measured for each autocorrelation value. A lag equal to 70 was set, as
it better depicts the trends of the identified features. On the vertical axis, the autocorrelation
coefficient is depicted within the range of −1 to 1, with −1 being a 100% negative correlation
and a value of 1 being a 100% positive correlation. The blue-shaded region is the confidence
interval, with a default value of α = 0.05. Anything within this range represents a value
that has no significant correlation with the most recent values of our features. Furthermore,
the red-dotted line represents a significance boundary or threshold i.e., indicates the
bounds within which the autocorrelation values are not considered statistically significant.
Furthermore, the plot displays a strong positive autocorrelation at initial lags that slowly
diminishes as the lag increases, which is typical for temperature data.

Figure 6. Autocorrelation of the temperature measurements.

Seasonality can be identified through alternating patterns, such as positive and nega-
tive lags. The seasonality (cycle) is usually determined by the strongest lag in the set of
positive lags following the first set of negative lags. Seasonality is always calculated on
detrended lags to remove the effect that trending data has on autocorrelations. So, prior to
calculating the autocorrelation graphs, we applied linear detrending to our features. Based
on the conducted experiments, until lag = 70, all values lie outside the confidence interval,
meaning that they have a strong correlation with the current value. While this is helpful for
the AD task, no strong seasonal pattern for the TEMP feature was identified.

Here, while most of the values lie inside the confidence interval, which means that
they are not of statistical significance, we observe that there is a strong observable pattern
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in which past values can be used to forecast future values. So, we see that CPU_USAGE
has a strong seasonality pattern.

For the MEM_USAGE feature, similar to the TEMP feature, we see that there is a
strong correlation of past values with the current one, but no seasonal pattern is obvious.

Taking into consideration the very low correlation values between our features, as well
as the fact that 2 of them have strong seasonality patterns, we will mostly explore uni-
variate time-series AD methods, as well as DL models that work for both univariate and
multivariate anomalies.

4.3. Model Training

For training the developed models, a technique called “sliding window” was im-
plemented, where the problem of forecasting the upcoming values of each variable is
structured as a supervised learning problem by using the previous time steps as input
variables and the following time step as the output (target) variable. In the sliding-window
approach, a window of inputs and expected outputs is shifted forward in time to create
new “samples” for our supervised learning model. When splitting the dataset, it is very
important not to leak “future” data to our model, so techniques that mix future and past
observations, like k-fold cross-validation, cannot be implemented.

For the evaluation of the models, a technique called walk-forward validation was
used. Walk-forward validation is usually used to evaluate the performance of a predictive
model, particularly in the context of time-series forecasting. Unlike traditional cross-
validation techniques, walk-forward validation simulates the real-world scenario of making
predictions based on new, unseen data as they become available over time. The basic idea
of walk-forward validation is to train the model using historical data up to a certain point,
make predictions for the immediate future, and then update the model with the true
outcome for that period. This process is repeated sequentially, iteratively advancing the
evaluation window and updating the model with new information. We evaluated all our
models using a walk-forward validation of 100 time steps.

4.4. Experiments

For each model, 9 different experiments were conducted, each for a different fore-
casting horizon (FH) and for a different dataset feature. Depending on the FH, the model
is evaluated by training on the training dataset and predicting as many steps in the test
dataset, as the FH suggests. Then, a real observation from the test set can be added to the
training dataset, after which the model is refit and, accordingly, makes new predictions
on the test dataset. Multi-step forecasting is crucial for the early detection of anomalies
and the notification of the maintenance team. This type of problem can be considered a
univariate time-series forecasting problem, and this method is separately applied to each
feature with statistical significance on the health of the RTU. On top of a set of predefined
evaluation metrics, the execution time of each model will also be calculated. The execution
time includes the time needed for the training and the evaluation with the walk-forward
validation method previously described. Calculating the execution time of each configu-
ration and each model is crucial for the PdM framework, which aspires to give real-time
prognoses in harsh industrial environments.

After the evaluation of the AD and time-series forecasting tasks is finished and the
best models are selected, the thresholds provided by the best AD model are applied to
the data forecasted by the best time-series forecasting model. This procedure is being
continuously executed, and when an anomaly is detected, the maintenance team is notified
to take appropriate action. Furthermore, once every week, the models are fine-tuned on the
newly collected data with incremental learning methods. The experiments for time-series
forecasting and AD are presented in the following part.
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4.4.1. Time-Series Forecasting

After data preprocessing, time-series forecasting models are applied to gathered data
in order to forecast the feature values. In the following part, the results of each time-series
model (presented in Section 3) are analyzed.

XGBoost: The algorithm was applied to perform one-step- and multi-step-ahead
time-series forecasting. Figure 7 depicts the memory usage predicted by XGBoost for
FH = 1.

Figure 7. Forecast plot of memory usage for FH = 1.

As the models were independent for each feature, a different set of hyperparameters
resulted in the best fit for each feature. Specifically, after multiple experiments with the XG-
Boost algorithm, the following hyperparameters were deemed to provide the best results:

• CPU_USAGE: The eta (learning rate) was set to 0.1, the max_depth parameter, which
specifies the maximum depth of each tree, was chosen to be equal to 2, n_estimators
specifies the number of trees in the forest of the model and was set to 100, the subsampling
parameter is the subsample ratio of the training instances and was set to 0.9, and finally,
colsample_bytree, which is the subsample ratio of columns when constructing each tree,
was set to 0.9. All the other parameters were left at their default values.

• MEM_USAGE: The eta was set to 0.7, the max_depth parameter was chosen to be equal
to 2, n_estimators was set to 100, the subsampling parameter was set to 0.9, and finally,
colsample_bytree was set to 0.9. All the other parameters were left at their default
values.

• TEMP: The eta was set to 0.1, the max_depth parameter was chosen to be equal to
4, n_estimators was set to 100, the subsampling parameter was set to 0.9, and finally,
colsample_bytree was set to 0.9. All the other parameters were left at their default values.

Furthermore, Table 1 provides comparative results in terms of each feature for different
FHs (i.e., FH = 1, FH = 2, and FH = 20) computed using the XGBoost algorithm.
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Table 1. Comparative results of XGBOOST for FH = 1, 2, 20.

XGBOOST

Feature RMSE MAE MSE MAPE SMAPE R-Squared Execution Time (s)

FH = 1

CPU_USAGE 16.081562 9.700686 258.616642 0.802285 0.584453 0.031290 8.310523
MEM_USAGE 1.034193 0.176332 1.069555 0.006980 0.006310 0.927815 5.695299

TEMP 1.340489 0.448495 1.796911 0.015917 0.016448 0.703249 5.633248

FH = 2

CPU_USAGE 16.002779 9.632965 256.088941 0.799449 0.580069 0.040758 7.252350
MEM_USAGE 1.503786 0.281199 2.261373 0.011225 0.009777 0.847379 6.215471

TEMP 1.729988 0.742301 2.992858 0.027374 0.028026 0.505744 5.150763

FH = 20

CPU_USAGE 16.359582 9.910116 267.635921 0.801527 0.598313 −0.002494 7.562836
MEM_USAGE 4.198917 1.677488 17.630903 0.067008 0.055366 −0.189915 6.721824

TEMP 3.661425 3.206860 13.406029 0.123073 0.132476 −1.213940 8.982070

LSTM: Afterwards, relevant experiments were conducted with the LSTM model,
focusing on the selected features. The hyperparameters indicate the characteristics of the
model, including the epochs, which indicate the number of times that the model passed
forward and backward through the neural network. Then, the number of training samples
utilized in one iteration is indicated by the batch size, the loss function measures the difference
between the input and the reconstructed output, and finally, the optimizer parameter is used
in the model to minimize the reconstruction error during training.

• CPU_USAGE: For the forecasting of the TEMP feature, the best results were given
when the following combination of hyperparameters was implemented: batch size = 16,
epochs = 30, optimizer = adam, loss function = mse. All the other parameters were left
at their default values.

• MEM_USAGE: For the forecasting of the TEMP feature, the best results were given
when the following combination of hyperparameters was implemented: batch size = 16,
epochs = 30, optimizer = adam, loss function = mse. All the other parameters were left at
their default values.

• TEMP: For the forecasting of the TEMP feature, the best results were given when
the following combination of hyperparameters was implemented: batch size = 16,
epochs = 30, optimizer = adam, loss function = mse. All the other parameters were left at
their default values.
Furthermore, based on the conducted experiments, the plots of the forecasted values
are illustrated in Figure 8 for a forecasting horizon of 3 time-steps (i.e., FH = 1, FH = 2,
and FH = 20), similarly to the XGBoost algorithm.

Figure 8. Predicted measurements of the RTU processing power.
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Additionally, Table 2 provides comparative results in terms of each feature using the
LSTM model for the same FHs as with the XGBoost algorithm (i.e., FH = 1, FH = 2, and
FH = 20).

Table 2. Comparative results of LSTM for FH = 1, 2, 20.

LSTM

Feature RMSE MAE MSE MAPE SMAPE R-Squared Execution Time (s)

FH = 1

CPU_USAGE 16.073372 9.709294 258.353302 0.836435 0.605460 0.032276 112.032020
MEM_USAGE 1.030191 0.352668 1.061293 0.098696 0.095972 0.928373 71.629515

TEMP 1.638954 0.721787 2.686171 0.1012347 0.102347 0.556392 128.378663

FH = 2

CPU_USAGE 16.204136 9.708505 262.574038 0.761380 0.582942 0.016467 347.660933
MEM_USAGE 1.697829 0.961628 2.882623 0.031552 0.030110 0.805451 78.131862

TEMP 1.757734 0.943940 3.089630 0.034834 0.035762 0.489763 330.843.088394

FH = 20

CPU_USAGE 16.354352 9.958240 267.464814 0.822262 0.602185 −0.001853 843.880262
MEM_USAGE 3.966356 2.169013 15.731983 0.079472 0.069425 −0.061757 319.939965

TEMP 3.687103 3.320900 13.594732 0.127556 0.135518 −1.245103 67.485768

ARIMA: The grid search process for the ARIMA model involves evaluating the
model’s performance for various combinations of hyperparameters and selecting the com-
bination that yields the best results according to a predefined evaluation metric (e.g., AIC,
BIC, RMSE). The space of (1–10) was grid-searched for all 3 of these hyperparameters,
and through the use of AIC as the evaluation criterion, the main outcome was that the
combination (p, d, q,) = (4, 2, 1) yielded the best results. Specifically, the predicted measure-
ments for the RTU temperature using the ARIMA model are illustrated in Figure 9.

Figure 9. Predicted measurements of the RTU temperature.

Moreover, similarly to the previous models, a results comparison for the three FHs
(i.e., FH = 1, FH = 2, FH = 20) was also conducted with the ARIMA model and is depicted in
Table 3.
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Table 3. Comparative results of ARIMA model for FH = 1, 2, 20.

ARIMA

Feature RMSE MAE MSE MAPE SMAPE R-Squared Execution Time (s)

FH = 1

CPU_USAGE 15.592139 9.793359 243.114811 0.758768 0.572132 0.089356 224.088571
MEM_USAGE 1.029314 0.157386 1.059488 0.006203 0.005560 0.928495 41.088703

TEMP 1.589654 0.501119 2.527000 0.018194 0.018254 0.582678 14.763636

FH = 2

CPU_USAGE 16.383431 10.045988 268.416812 0.754295 0.573199 −0.005419 115.935327
MEM_USAGE 1.505646 0.270228 2.266971 0.010786 0.009342 0.847001 21.665949

TEMP 1.815535 0.667675 3.296167 0.024418 0.024343 0.455654 8.728107

FH = 20

CPU_USAGE 16.295188 8.816155 265.533143 0.518343 0.516078 0.005383 10.434541
MEM_USAGE 4.198917 1.677488 17.630905 0.067008 0.055366 −0.189915 1.958414

TEMP 2.170193 1.560512 4.709738 0.059187 0.061940 0.222210 0.826459

4.4.2. Anomaly Detection

Upon completing the time-series forecasting process for future data prediction, we
experimented with the AD models in Section 3. For each AD model, we set relevant
thresholds in order to capture the early stage of potential faults. Such faults could indi-
cate unusual temperature fluctuations in the RTU with the TEMP feature or a significant
increase/decrease in CPU_USAGE and MEM_USAGE values, leading to abnormal pro-
cessing and storage conditions of the RTU, respectively. The results from the conducted
experiments are presented in the following part.

LSTM Autoencoder: Among the parameters that were used for training the model,
initially, 20 epochs were selected. Then, the batch size was equal to 16, MAE was used as a
loss function, and the adam algorithm was used as an optimizer. Furthermore, the model
was trained to minimize the MAE loss between the input and the reconstructed output,
as other losses like MSE will punish data outliers more during the loss optimization step
compared to MAE since it is the outliers that we are trying to find.

Upon the completion of model training, the reconstructed outputs for the training data
are obtained. Then, the reconstruction loss for each data sample is calculated by computing
the mean squared difference between the original input and the reconstructed output. Next,
a threshold is set for AD. We set the threshold as the maximum reconstruction loss achieved
by a healthy training sample. This way, our threshold can be automatically adjusted each
time the PdM framework is updated, which is very important for real-time applications
and a big advantage over the other AD techniques that are discussed. Data samples with a
reconstruction loss greater than the threshold are considered anomalies. Finally, the best
results for hyperparameter selection were achieved with the following combination: Adam
as an optimizer, MAE as a loss function, epochs equal to 20 and batch size equal to 12.

Figure 10 illustrates the MAE distribution of the developed model. Specifically, the
blue line represents the Kernel Density Estimate (KDE) of the MAE values and it is a
smoothed version of the histogram, used for visualizing the distribution of observations.
Additionally, the purple area represents the histogram of the MAE values, categorized in
data points (horizontal axis) whose density is depicted in the vertical axis. Furthermore,
the concentration of data around the left side of the graph, near zero, indicates that the
model predicts values that are very close to the actual values, indicating a good model
performance.
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Figure 10. LSTM MAE distribution.

Deep Convolutional Autoencoder: The implemented algorithm was parameterized
with a threshold value, defining the maximum reconstruction error of the healthy data
used for training the model as an anomaly. Multiple instances of the developed model
were simulated, each with a different set of hyperparameters. As an outcome, the set that
achieved the best results is the following: adam algorithm as the optimizer, MAE as the loss
function, epochs equal to 40, and batch size equal to 12.

Isolation Forest: For the implementation of this algorithm, the decision function was
initially defined, returning a score for each sample in order to indicate how anomalous
it is. A higher score indicates that the sample is more likely to be normal, while a lower
score indicates that the sample is more likely to be an outlier. Furthermore, the first
hyperparameter that was mostly used in our experiments was “n_estimators”, which
reflects the number of base isolation trees that will be built. In detail, an isolation tree is
a binary tree that splits the data points randomly until each data point is isolated in its
own leaf node. The second hyperparameter used in the experiments was “contamination”,
referring to the expected proportion of anomalies in the dataset. Moreover, it was used
to set the threshold for AD. A threshold was set where 2% of the dataset’s samples are
considered anomalies, and 100 isolation trees were used. This threshold was chosen based
on extensive experiments that resulted in the most true positives with the fewest false
positives, without overfitting, and hence, −0.05 was selected as the best candidate based
on experimentation. Figure 11 depicts the anomaly scores of the Isolation Forest algorithm
when compared against the specified threshold. From the figure, we can observe that
anomalies are identified in the initial values (around 0 on the horizontal axis) as well as in
the later values in the dataset (from 3000 and onward on the horizontal axis).

Figure 11. Isolation Forest: anomaly scores vs. threshold.
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DBSCAN: The implementation of DBSCAN for AD was based on clustering data
points into two main clusters. Anomalies are considered noise points, which are assigned a
label of −1 by the DBSCAN algorithm. Points that are not labeled as −1 are considered
normal. Moreover, the eps parameter determines the maximum distance between two
samples for them to be considered neighbors, and the min_samples parameter sets the
minimum number of samples required for a point to be considered a core point. After
adjusting the eps and min_samples parameters based on the characteristics of the dataset and
the desired level of sensitivity for AD, we concluded that an eps = 2 and min_samples = 2%
out of the total number of samples in the dataset gave us great results without overfitting.
Similarly to the Isolation Forest algorithm, Figure 12 illustrates the processing power values
over time and a usage value near 100% indicates that the CPU is working at its maximum
capacity during that interval. The anomalies, marked with red dots, are significantly
different from the typical pattern observed in the rest of the data. Specifically, they are
identified in the initial part of the dataset (around 0 on the horizontal axis) as well as in
later values in the dataset (from 3000 to approximately 3500 on the horizontal axis).

Figure 12. Anomaly detection for processing power with DBSCAN.

As a next step, in order to facilitate the reader’s comprehension when comparing
the implemented AD models, we calculated the results of the evaluation metrics for AD
that were provided in Section 3 for each AD model. Hence, the calculated results for the
Accuracy, Precision, Recall, F1 Score, and ROC-AUC metrics are depicted in Table 4.

Table 4. Comparative results for the anomaly detection models.

Model Accuracy Precision Recall F1 Score ROC-AUC

Isolation Forest 0.956119 0.895522 0.3 0.449438 0.648888

LSTM Autoencoder 1.0 1.0 1.0 1.0 1.0

Convolutional Autoencoder 0.946865 1.0 0.11 0.198198 0.555

DBSCAN 0.998507 0.975609 1.0 0.987654 0.999206

4.5. Results Comparison

In this section, the results of the conducted experiments are discussed. Initially, for the time-
series forecasting process, both the ARIMA and XGBOOST models demonstrated very good
results for the TEMP and MEM_USAGE features, while they struggled to accurately predict the
distribution of the CPU_USAGE feature. As opposed to these models, LSTM underperformed
in most cases. Nevertheless, it displayed comparable results for bigger forecasting windows,
indicating that it could be a useful prediction model, especially when trained with larger datasets.

Moreover, based on the findings, when the forecasting window (FH) was set to 1,
the ARIMA model yielded the best results for the CPU_USAGE and MEM_USAGE features.
However, for the TEMP feature, the XGBOOST model showed slightly superior results
compared to the ARIMA model as well as had significantly less execution time. When the
FH was set to 2, the ARIMA model performed best for the MEM_USAGE feature, while
XGBOOST outperformed the other models for the CPU_USAGE and TEMP features, as
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well as exhibited a notable advantage in execution time. Furthermore, the performance
difference between ARIMA and XGBOOST was marginal.

Lastly, for FH = 20, the ARIMA model showcased superior performance for the
CPU_USAGE and TEMP features. XGBOOST also performed well for these features, while
ARIMA and XGBOOST demonstrated identical performance for the MEM_USAGE feature.
However, for the MEM_USAGE feature, the LSTM model displayed better performance in
metrics such as MAE, MSE, and RMSE, which focus on the absolute or squared differences
between predictions and actual values while requiring significantly more execution time.
On the other hand, the LSTM model performed marginally worse in metrics such as MAPE,
SMAPE, and R2, which provide relative measures of the forecasting error.

Overall, for the TEMP and MEM_USAGE features, both the ARIMA and XGBOOST
models demonstrated very good results. However, the XGBOOST model showed slightly su-
perior results for the TEMP feature while requiring less execution time. For the CPU_USAGE
feature, all of the models struggled to accurately predict its distribution.

For the AD task, the LSTM Autoencoder stands out as the best model overall, achieving
perfect scores across all metrics. Additionally, the DBSCAN model correctly classified all the
actual anomalies that were present in the dataset. However, it did misclassify a few normal
data points as anomalies. On the other hand, the Isolation Forest and the Deep Convolutional
Autoencoder demonstrated comparable and commendable results in detecting true anomalies
without misclassifying normal data points. However, they had significantly lower Recall scores
of 0.3 and 0.11, respectively, indicating a considerable number of missed anomalies.

5. Discussion

This section introduces the main benefits and limitations of the proposed PdM frame-
work, as well as provides related work and challenges to allow its positioning alongside
the current state of the art.

5.1. Benefits of the Proposed Framework

The use of the proposed PdM framework in Section 3 to achieve the PdM of industrial
equipment such as RTUs provides enhancements in the availability and reliability of the
power generator operation, as well as cost savings and operational optimization, while also
improving safety.

Specifically, by using advanced forecasting models to predict the values of the RTU
and by continuously monitoring its behavior, the PdM framework can quickly identify
anomalies or deviations from the expected behavior, thus reducing the risk of equipment
failures. This aids in the early-stage detection of potential issues, hence allowing for prompt
corrective mitigation actions. In turn, this leads to reduced downtime and improved
reliability for the RTU as well as for the equipment it supervises, i.e., the power generator,
whose downtime could lead to extensive financial losses and potential blackouts from the
lack of energy production.

Furthermore, the proposed PdM framework was trained using a realistic dataset
obtained through the RTU’s deployment in PPC industrial infrastructure, and a sufficient
time-frame was used to capture all possible system behaviors. This ensures a good model
accuracy, in contrast to existing PdM models, facing poor quality as well as insufficient data
to capture anomalous behavior [9]. Further improvements in accuracy may be possible
when deployed in a larger-scale environment as well as additional PPC power plants.

5.2. Limitations

The most important limitation of the proposed model is the inability to perform RUL
prediction. This limitation originates from the limited available data on equipment failures,
as they occur in very rare instances. Hence, the development of accurate predictive models
is very challenging. Moreover, the lack of run-to-failure data prevents the development of
supervised models that could (1) accurately predict the RUL of industrial equipment such
as the RTU in this article and (2) link it to the various faults detected [28].
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Another limitation is identified in the overall time and effort required for the develop-
ment of an accurate PdM framework, which is usually a complex process due to the multitude
of behavioral characteristics that should be captured and are specific to the industrial equip-
ment under study [29]. This complexity is usually imposed by (1) the process the equipment
is controlling, (2) the proprietary technologies used by equipment manufacturers, and (3) the
configurations or customizations made by the operator who uses it in business processes
(such as the PPC in this article). Furthermore, such complexity can be a barrier to the frame-
work’s adoption, particularly for organizations with limited resources or technical expertise
and without domain knowledge about the equipment under maintenance.

Furthermore, a very important challenge derived from the lack of real failures in
industrial equipment lies in the accuracy validation of the PdM framework, which requires
the comparison of model predictions to actual occurrences. Finally, a considerable issue in
the adoption of AD models in industrial operations lies in the assessment of the criticality
of the identified anomalies [30] and the decision-making process on their overall impact on
the deployed system, e.g., if they impose financial or reputational losses.

5.3. Related Work and Current Challenges

This section discusses the state-of-the-art literature work using PdM for fault detection.
Initially, the authors in [31] illustrate that ML approaches can handle high-dimensional and
multivariate data and find hidden patterns within datasets that are produced in complex
environments such as industrial facilities. Thus, by utilizing ML approaches in PdM appli-
cations, more accurate and robust predictions can be achieved. However, the performance
of these applications depends on the choice of the appropriate ML technique, as well as on
the available training data.

In [32], Wang et al. provide a brief introduction to RUL prediction and review the
state-of-the-art DL approaches in terms of four main representative deep architectures,
including AutoEncoder, Deep Belief Network (DBN), Convolutional Neural Network
(CNN), and RNN, coming to the conclusion that DL-based techniques were mainly used
for fault diagnostics, and very few studies applied DL to RUL prediction until recent years,
foreseeing a promising future for DL in RUL prediction. Furthermore, ref. [33] suggests a
methodology for estimating the RUL of machinery equipment by utilizing physics-based
simulation models and a DT. The proposed approach utilizes data coming from the real
machine’s controller and embedded sensors, as well as data coming from the simulation of
the digital models, which is then used to assess the resource’s condition and to calculate
the RUL. Moreover, the authors in [34] developed a deep CNN model and conducted a
preliminary exploration of the depth of the networks on RUL prediction, which achieved
great results. Finally, ref. [35] proposed a novel data-driven approach consisting of deep
convolution neural networks (DCNNs) that use time windows for better feature extraction.
RUL estimation is achieved without training the model with failure data by utilizing data
from consecutive time samples at any time interval, achieving great results.

Nevertheless, to allow the accurate prediction of the RUL through data-based PdM
techniques, enormous amounts of historical failure data are needed. This is not always
possible, especially with older equipment where maintenance logs were not kept or with
machinery that is either very new, and thus no faults have yet developed, or very important,
so no run-to-failure scenarios are allowed. In these situations, various other techniques are
implemented to simulate the behavior of the tool in various states.

Alternative unsupervised ML methods for PdM have also been studied, such as Zhang
et al.’s work in [36]. The proposed model is an AE that uses a Convolutional Neural
Network (CNN) and LSTM neurons called Multi-Scale Convolutional Recurrent Encoder–
Decoder (MSCRED), which performs AD and diagnosis using multivariate time-series data,
achieving state-of-the-art results. Similar work [37] proposed the use of a transfer learning
framework inspired by U-Net, where a deep CNN for time-series AD was built, and the
model was pretrained on a large synthetic univariate time-series dataset before fine-tuning
its weights on small-scale datasets, achieving satisfactory results.
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ML models for AD are also well-studied in the literature. Specifically, in similar
work [38], ML techniques were used to detect anomalies in hot stamping machines. So,
as is often the case when PdM is applied in real industrial environments, the collected
dataset lacked failure data, and all the data were unlabeled. From the algorithms tested,
the AutoEncoder, a certain type of unsupervised DL architecture, outperformed the rest,
achieving the fewest false positive instances. The results show the potential of ML and
DL in the field of PdM, especially when the fault characteristics are unknown, and the
possibility of implementing ML techniques for AD, even by non-ML experts, utilizing
readily available programming libraries and APIs.

With respect to PdM being used within a DT, the authors of [39] proposed a data-driven
DT model that highlights the performance of the data analytics in model construction, together
with a hybrid prediction method based on DL (Deep Stacked GRU (DSGRU)) that enables
system identification and prediction. The proposed method creates a prediction technique
for enhanced machining tool condition prediction. Furthermore, in [40], De Pascale et al.
showed that a DT can be used to precisely detect faults and predict failures, negating the need
for extensive historical run-to-failure data by accurately simulating the functional patterns
of the actual equipment. Moreover, the authors in [41] present a two-phase DT-assisted
fault diagnosis method using deep transfer learning (DFDD) that realizes real-time fault
diagnosis. First, potential problems can be discovered by front running the model in the
virtual space, while a deep neural network (DNN)-based diagnostic model is fully trained.
Then, the previously trained diagnostic model is migrated from the virtual to physical space
using deep transfer learning for real-time monitoring and PdM. Finally, similar work in [42]
proposed a DT approach that simulates the physical properties of the device, generating
virtual sensor data that are combined with the real sensors’ data, and by using Prognostics
and Health Management (PHM) techniques, an RUL prognosis is generated.

A current challenge of the existing PdM frameworks is that specialized expert knowl-
edge of the target device’s operation is necessary in order to develop an accurate equipment
model. In reality, production machinery is always changing to meet evolving customer
needs, and so should the corresponding DTs. Many DL techniques require huge datasets
and/or are too complex to be replicated by non-experts in the field. The authors in [43]
propose a solution to address this challenge by introducing an architecture with an update
service that would permit the integration of new equipment into both the actual infrastruc-
ture and DT frameworks. The framework also includes a Human–Machine Interface (HMI),
enabling humans to classify machine errors as they occur, with the goal of developing a
supervised ML model for this task. Moreover, in [41] the authors propose a framework
based on the DT during the development phase of the actual equipment, which eliminates
the requirement for specialist subject knowledge. A Deep Stacked Sparse AutoEncoder is
trained to recognize various phases of failure in this case by simulating different failure
modes in the virtual environment prior to production. Deep transfer learning is then used
to further adjust the parameters to the new distribution of the real data after the product is
launched, and data can be gathered in real time, yielding extraordinary accuracy.

Overall, the PdM framework is useful for forecasting the behavior of an RTU and
detecting anomalies, but there are several challenges in its application that need to be
considered when applying this approach. The accuracy and applicability of the method
depend on the availability and quality of data, the complexity of the model, and the
resources and expertise required to develop and deploy the model.

6. Conclusions

This article presents a novel method for building a PdM framework for RTUs. The
method consists of different modules, including (1) time-series forecasting for predicting
the future values of the processing power, memory, operating temperature, and voltage, as
well as (2) anomaly detection for capturing potential faults in an early stage before they
actually occur. The early-stage detection of potential faults aids operators in scheduling
predictive maintenance in the equipment where anomalies have been predicted. The model
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was applied for the predictive maintenance of RTUs that are deployed in the industrial
infrastructure of PPC, allowing anomalies to be identified before they lead to failures in
industrial infrastructures.

In terms of next steps, we are planning to use the proposed framework predictions
to autonomously adjust the operating parameters of the RTU in order to form a DT. Fur-
thermore, we will apply the proposed model to further industrial equipment, allowing us
to build a complete framework for the predictive maintenance of electrical infrastructure.
Moreover, extensions of the proposed framework are also in scope, such that it will be able
to conduct “what if” and planning scenarios for the optimal operation of the infrastructure,
as well as for the addition of new equipment to the infrastructure, as described by the use
cases defined by NIST for smart manufacturing based on the ISO 23247 standard [44].
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