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Abstract: Mathematical aggregation of probabilistic expert judgments often involves weighted linear
combinations of experts’ elicited probability distributions of uncertain quantities. Experts’ weights
are commonly derived from calibration experiments based on the experts’ performance scores,
where performance is evaluated in terms of the calibration and the informativeness of the elicited
distributions. This is referred to as Cooke’s method, or the classical model (CM), for aggregating
probabilistic expert judgments. The performance scores are derived from experiments, so they are
uncertain and, therefore, can be represented by random variables. As a consequence, the experts’
weights are also random variables. We focus on addressing the underlying uncertainty when
calculating experts’ weights to be used in a mathematical aggregation of expert elicited distributions.
This paper investigates the potential of applying an empirical Bayes development of the James–Stein
shrinkage estimation technique on the CM’s weights to derive shrinkage weights with reduced
mean squared errors. We analyze 51 professional CM expert elicitation studies. We investigate the
differences between the classical and the (new) shrinkage CM weights and the benefits of using
the new weights. In theory, the outcome of a probabilistic model using the shrinkage weights
should be better than that obtained when using the classical weights because shrinkage estimation
techniques reduce the mean squared errors of estimators in general. In particular, the empirical Bayes
shrinkage method used here reduces the assigned weights for those experts with larger variances in
the corresponding sampling distributions of weights in the experiment. We measure improvement
of the aggregated judgments in a cross-validation setting using two studies that can afford such
an approach. Contrary to expectations, the results are inconclusive. However, in practice, we can
use the proposed shrinkage weights to increase the reliability of derived weights when only small-
sized experiments are available. We demonstrate the latter on 49 post-2006 professional CM expert
elicitation studies.

Keywords: shrinkage estimation; James–Stein; performance weights; classical model; structured
expert judgment

1. Introduction

When decisions are made under uncertainty, relying on the judgment of a single expert
may not be advisable in practice. Hence, an expert group is usually used in formal expert
elicitations, e.g., [1]. However, often only one single distribution, representing the combined
expert judgments and uncertainty around them, is needed. This is known as an aggregation.
There are two main approaches to aggregation: mathematical and behavioral.

In mathematical aggregation, separate judgments are elicited from the experts and
probability distributions are fitted to each expert’s judgments. Then, separately fitted prob-
ability distributions are combined to form the aggregate distribution using a mathematical

Forecasting 2023, 5, 522–535. https://doi.org/10.3390/forecast5030029 https://www.mdpi.com/journal/forecasting

https://doi.org/10.3390/forecast5030029
https://doi.org/10.3390/forecast5030029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forecasting
https://www.mdpi.com
https://orcid.org/0000-0002-0509-6043
https://doi.org/10.3390/forecast5030029
https://www.mdpi.com/journal/forecasting
https://www.mdpi.com/article/10.3390/forecast5030029?type=check_update&version=1


Forecasting 2023, 5 523

formula (a pooling rule). The behavioral approach requires the group of experts to discuss
their judgments and to produce group “consensus” judgments to which a distribution will
be fitted [1]. Here, we focus on the mathematical aggregation technique, where separately
fitted experts’ probability distributions are combined using an appropriate mathematical
formula. Two mathematical aggregation techniques are commonly used to obtain the
aggregated distribution of an unknown quantity, namely the Bayesian approach and the
opinion pooling approach [2]. In this paper, we discuss and aim to improve the latter.

Opinion pooling can be carried out to obtain an aggregated distribution of an unknown
quantity by allocating equal weights to the experts’ probability distributions (for more
details on opinion pooling, see Section 2.1). However, Cooke [2] showed that the levels
of calibration and informativeness of experts’ elicited distributions can be different in
practice. Therefore, applying equal weights for experts’ elicited distributions may not be
appropriate. Cooke’s method [2], also referred to as the classical model (CM), proposes
performance-based weights that incorporate both the calibration and the informativeness
of experts’ elicited distributions.

Note that experts’ weights can randomly vary depending on experimental conditions,
e.g., the nature and number of seed questions and time limitations. The seed questions
that are used to derive weights are selected so that they are as similar as possible to
the uncertain quantities of interest. Suppose we repeat the experiment under similar
experimental conditions with the same number of new seed questions from the same
background. The derived experts’ weights will most likely be different. Therefore, from a
statistical point of view, it is important to consider experts’ weights as random variables and
address the randomness of the derived weights when computing aggregated distributions
of quantities. Even though performance-based CM weights often outperform equal weights
in practice, they still fail to address the randomness of the derived weights when computing
aggregated distributions of quantities. Addressing the above-mentioned randomness is the
focus of this paper.

If experts’ weights are modeled as random variables, then estimating their mean
becomes essential. Hence, we can now formulate the problem as a multivariate mean-
estimation problem. Stein [3] showed that shrinkage estimation techniques can be used to
obtain estimators of the mean of a multivariate normal distribution with reduced mean
squared errors. Here, the interest is not to obtain an unbiased estimator, but an estimator
with a reduced mean squared error. The James–Stein shrinkage estimator discussed in
James and Stein [4] was proved to dominate the ordinary least squares estimator with a
lower mean squared error in this context.

We propose using an empirical Bayes development of the James–Stein shrinkage
estimation technique discussed in Zhao [5] that shrinks variables differently depending on
their variances (larger variances correspond to more shrinkage). We apply this shrinkage
to the CM weights to derive new weights that will enjoy reduced mean squared errors. The
shrinkage estimation technique is not restricted to the estimation of mean of a multivariate
normal distribution. Since 1956, a large body of research has focused on the application of
the shrinkage estimation technique to obtain improved estimators of parameters for several
statistical models (see [6] and references within). We nevertheless focus on its application
to the estimation of the mean of a multivariate normal distribution.

2. Materials and Methods
2.1. CM Weights

Suppose n experts have provided their subjective probability distributions of
an unknown quantity X. Let fe indicate the elicited distribution of X by the eth expert,
where e = 1, 2, . . . , n. Opinion pooling uses a simple linear combination of distributions
elicited from n experts, say f1(x), f2(x), . . . , fn(x), to obtain the aggregated distribution
f (x) of an unknown quantity X. Hence, f (x) = ∑n

e=1 we fe(x). Note that we is the weight
allocated to the eth expert elicited distribution fe(x), for e = 1, 2, 3, . . . , n, and the sum
of weights ∑n

e=1 we = 1. Suppose equal weights are allocated to all the experts’ elicited
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distributions. Then, we = 1
n for all e and f (x) will be the simple average of fe(x), for

e = 1, 2, 3, . . . , n.
The CM proposes performance-based weights instead [2]. When using the CM, experts

make separate judgments about the uncertain quantities of interest together with a number
of seed (sometimes called calibration) questions whose true values are known to the
analysts but are not immediately available to the experts during the elicitation. An expert’s
performance (as measured by calibration and informativeness measures) on the seed
questions is used as an indication of the expert’s expected performance on the uncertain
quantities of interest. The seed questions are, therefore, selected so that they are as indicative
as possible about expert performance with regard to the uncertain quantities of interest.
Experts’ weights are then derived proportionally to these performance measures. The
weighted experts’ distributions are then pooled. Deriving performance-based weights in
this manner is the main feature of the CM. Cooke et al. [7] and Cooke and Goossens [8]
have analyzed data sets elicited and combined using the CM and showed that, most often,
CM-weighted pooling performs better than equal-weighted pooling.

The weights of the CM are proportional to the product of the calibration (Cal) and
informativeness (In f ) [2]. Moreover, a threshold α can be used to filter out very poor
calibration scores. For α > 0, let 1α(c) = 1 if c ≥ α, and 0 otherwise. Then, for all α > 0, the
performance-based weight for expert e can be given as

wα(e) = Cal(e) ∗ 1α(Cal(e)) ∗ In f (e).

The weight wα(e) measures how concentrated (through In f (e)) and how calibrated
(through Cal(e)) expert e’s distributions are, while also making sure that the expert’s
calibration is within an acceptable margin. It emphasizes the fact that eliciting concentrated
distributions alone is not useful if they are not adequately calibrated. Hence, weights are
assigned only to experts whose calibration scores exceed the threshold value α [9].

Details about the CM and the exact formulae for the calibration and informativeness
scores can be found in Cooke [2], Quigley et al. [10] and Hanea and Nane [11]. It suffices to
say here that the CM calibration is measured as the p-value or probability with which one
would falsely reject the hypothesis that an expert’s probability judgments were calibrated,
amounting to a hypothesis test. A near-zero calibration means that it is very unlikely for
the discrepancy between an expert’s probability judgments and observed outcomes to be
driven by chance.

Note that the p-value of the test statistic of the hypothesis test on the calibration above
is a constant value and it is computed based on the assumption that the test statistic follows
a chi-square distribution that depends on the number of seed questions (under the null
hypothesis). The indicator function 1α(Cal(e)) is also a constant, namely 1 or 0 based on
a comparison between two constant values α and Cal(e). Moreover, the informativeness is
also a constant. Therefore, overall, the computed experts’ weights are considered as fixed
values in the CM.

2.2. Shrinkage Estimation of Weights

The concept behind considering experts’ weights as being random variables leads to
a claim that the estimated experts’ weights from an experiment are realized values from the
corresponding random variables. If the experiment was repeated under similar conditions,
then other realized weights could be observed. Estimating the unknown population mean
of experts’ weights using the observed set of experts’ weights (in given experiments) is
a natural follow-up consideration. Thus, if we consider w1, w2, . . . , wn as the estimated
weights for n experts and θ1, θ2, . . . , θn as the unknown population mean weights of experts,
then we need to estimate the vector of population mean weights, θ = {θ1, θ2, . . . , θn},
using a single realization of experts’ weights, w = {w1, w2, . . . , wn}, in a given experiment.
According to Stein [3], this represents a small sample situation of which, in terms of
mean squared error, the usual ordinary least squares estimates of mean parameters are
not optimal and the James–Stein shrinkage estimator [4] can dominate the ordinary least
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squares estimator with a lower mean squared error in practice. We next review the James–
Stein shrinkage estimation technique as presented in James and Stein [4]. This will provide
the necessary background for applying the empirical Bayes development of the James–
Stein shrinkage estimation technique proposed by Zhao [5]. It is this development that we
propose using in order to derive shrinkage CM weights.

Suppose X is an n−variate normally distributed random variable with a vector θ
of unknown means and a known covariance matrix σ2 I. Here, I is the (n× n) identity
matrix and σ2 is the assumed constant variance for all n variables of X. It follows that
X ∼ N(θ, σ2 I). Consider the scenario of using a single n−variate observation of X to
obtain an estimate θ̂ of θ in this context. Hence, θ̂LS = X is the ordinary least squares (OLS)
estimator of θ in this situation considering the observations as estimates of θ themselves.
This estimator is suboptimal in terms of mean squared error. It led to the development of
the following James–Stein (JS) shrinkage estimator for θ by shrinking the OLS estimator
towards the mean. The JS estimator (θ̂JS) for known σ2 is given by

θ̂JS1 =
(

1− (n− 2)σ2

‖ X ‖2

)
X, (1)

and it dominates θ̂LS in terms of lower mean squared error for any n ≥ 3. If σ2 is unknown
and an estimator Sl of σ2, independent of X and distributed as σ2χ2

l , is available (where l is
the degrees of freedom of the χ2 distribution), then the JS estimator of θ is given by

θ̂JS2 =
(

1− (n− 2)Sl

(l + 2)‖ X ‖2

)
X. (2)

In the most realistic situation, X ∼ N(θ, Σ), Σ being unknown. Suppose there is an
independent estimator S of Σ, which is distributed as Wl−1(s, Σ), where W is the Wishart
distribution and (l − 1) indicates its corresponding degrees of freedom. James and Stein
have proposed the following JS estimator in this situation as

θ̂JS3 =
(

1− (n− 2)
(l − n + 3)XTS−1X

)
X. (3)

It is worth noting that the the shrinkage estimators from Equations (1)–(3) are obtained
by multiplying the original observations by a constant value. Thus, if we apply this
technique on a set of derived experts’ weights, then the resulting shrinkage weights will
be proportional to the originally derived weights. Hence, normalized CM weights before
and after shrinkage will be identical. Instead, we could employ a shrinkage procedure
that shrinks weights differently depending on a suitable factor. It seems practically useful
to shrink weights differently depending on their variances, acknowledging the different
levels of weights’ uncertainty through the shrinkage process. To do that, we propose using
the empirical Bayes approach of obtaining shrinkage estimators of multivariate means
discussed in Efron and Morris [12].

Suppose we|θe ∼ N(θe, σ2
e ) are independent for e = 1, 2, 3, . . . , n, where σ2

e are known
but different from one another. Furthermore, assume that θe ∼ N(0, σ2

θ ) are independent
for e = 1, 2, 3, . . . , n with an unknown constant variance σ2

θ . It follows that

θe|we ∼ N((1− Be)we, (1− Be)σ
2
e ); e = 1, 2, 3, . . . , n,

where Be = σ2
e /(σ2

θ + σ2
e ). Here, the empirical Bayes shrinkage estimator of θe is the poste-

rior mean E(θe|we) = (1− Be)we, with the Bayes risk V(θe|we) = (1− Be)σ2
e being less than

the risk σ2
e of the least square estimator θ̂e = we. The shrinkage factor 1− Be = σ2

θ /(σ2
θ + σ2

e )
here avoids the above-discussed problem of shrinking towards the origin by the same factor
(the larger the value of σ2

e , the larger the shrinkage). Even though this model produces
different shrinkage factors for different variables we, the variances σ2

e are unknown in
practice. Furthermore, assuming a specific value (zero) for the mean of the distribution
of θe may not be applicable in general. Therefore, it would be practically more useful to
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find a general Bayes approach that deals with unknown means and variances of both the
distributions of variables and the distributions of θe and e = 1, 2, 3, . . . , n in the analysis.

Zhao [5] discussed an empirical Bayes approach of obtaining shrinkage estimators of
multivariate means with unknown and unequal variances for n variables. The proposed
double-shrinkage estimator shrinks both means and variances. According to Zhao [5],
extensive numerical studies indicate that the double shrinkage estimator has lower Bayes
risk than (i) the shrinkage estimator of means alone and (ii) the naive estimator with
no shrinkage at all. In this approach, each variable we is assumed to follow a normal
distribution with mean θe and unknown variance σ2

e , which differ across all the variables,
and each θe, with e = 1, 2, 3, . . . , n, is assumed to follow a common prior distribution
N(µ, τ2) with unknown mean µ and variance τ2. Therefore, the assumptions of this model
appear to be more general than the assumptions of the model in Efron and Morris [12].

Suppose we derive the posterior distribution of θe using the model we|θe, with
σ2

e ∼ N(θe, σ2
e ) and θe ∼ N(µ, τ2) for e = 1, 2, 3, . . . , n, and assuming all the parameters of

the model are known. Then, the posterior distribution of θe will be derived as

θe|we, σ2
e ∼ N(Mewe + (1−Me)µ, Meσ2

e ),

where Me = τ2/(τ2 + σ2
e ). Therefore, for the known σ2

e case, the estimator for θe is
Mewe + (1−Me)µ, which is the posterior expectation of θe given we and σ2

e . This estimator
shrinks we towards mean µ and the shrinkage factor Me = τ2/(τ2 + σ2

e ) depends on the
variance σ2

e of we. However, σ2
e , µ and τ2 are assumed unknown in this context. Therefore,

Zhao [5] derived the following double shrinkage estimator for θ in the form of

θ̂e = M̂ewe + (1− M̂e)µ̂; (4)

where M̂e = τ̂2/(τ̂2 + σ̂2
e ), for e = 1, 2, 3, . . . , n, and µ̂ = ∑n

e=1
we/σ̂2

e
∑n

e=1 1/σ̂2
e

. Observe that
two estimators

τ̂2 =

(
∑n

e=1 (we − µ̂)2 − S2
e exp(−me − σ2

ch,e/2)

n

)
+

and

σ̂2
e = exp

(
M̂v,e(log(S2

e )−me) + (1− M̂v,e)µ̂v

)
are used to derive double shrinkage estimator of θe for e = 1, 2, 3 . . . , n in Equation (4)
above. This empirical Bayes shrinkage estimator shrinks we, for e = 1, 2, 3, . . . , n towards
the weighted average µ̂ and the variance shrinkage estimator σ̂2

e also shrinks S2
e /exp(me)

for e = 1, 2, 3, . . . , n towards their geometric mean.
We now further review the double shrinkage estimator from Zhao [5]. First note that S2

e
is a statistic that is independent of we, and which contains information of the unknown σ2

e .

It is assumed that S2
e |σ2

e ∼ σ2
e

χ2
de

de
, where de represents the degrees of freedom corresponding

to the eth statistic S2
e . It leads to log

(
χ2

de
de

)
being distributed according to the N(me, σ2

ch,e)

distribution with mean

me = E

[
log

(
χ2

de

de

)]
= ψ

(
de

2

)
− log

(
de

2

)
and variance

σ2
ch,e = V

(
log

χ2
de

de

)
=

d
dx

ψ

(
de

2

)
,
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where ψ(x) = d
dx log(Γ(x)) is known as the digamma function.

The two distributional assumptions, S2
e |σ2

e ∼ σ2
e

χ2
de

de
and log

(
χ2

de
de

)
∼ N(me, σ2

ch,e), lead to

log(S2
e )|log(σ2

e ) ∼ N(me + log(σ2
e ), σ2

ch,e). (5)

Furthermore, this model assumes that log(σ2
e ) is a normal random variable with unknown

mean µv and variance τ2
v . Thus,

log(σ2
e ) ∼ N(µv, τ2

v ). (6)

Combining the information from Equations (5) and (6) leads to the following expression
for log(σ2

e )|log(S2
e )

log(σ2
e )|log(S2

e ) ∼ N
(

Mv,e(log(S2
e )−me) + (1−Mv,e)µv, Mv,e σ2

ch,e

)
, (7)

where Mv,e = τ2
v /(τ2

v + σ2
ch,e). Thus, the shrinkage variance estimate of σ2

e can be obtained
as the posterior mean from Equation (7) as

σ2
e = exp

(
Mv,e(log(S2

e )−me) + (1−Mv,e)µv

)
. (8)

Note that both me and σ2
ch,e can be computed once the degrees of freedom de cor-

responding to the statistic S2
e are identified. Therefore, once µv and τ2

v are estimated
appropriately based on data, σ̂2

e can be estimated as indicated above. This allows the esti-
mation of µ̂ and τ̂2 and, hence, of M̂e, which in turn allows the calculation of the shrinkage
weights (More details about the estimation of relevant parameters of the double shrinkage
estimator due to Zhao [5] are provided in the Supplementary Material accompanying this
paper). Here, we use this approach to derive shrinkage estimators of experts’ weights.
Some recent applications of the double shrinkage estimation technique can be found in
Kwon and Zhao [13], Wang et al. [14], Ragain et al. [15] and Jing et al. [16].

2.3. Deriving and Implementing Shrinkage CM Weights

As discussed in Section 1, CM imposes a threshold value to select experts whose
calibration scores exceed a certain cut-off value for allocating weights. Using this cut-
off value, CM proposes an optimization procedure which finds the optimal cutoff that
guarantees the best DM performance. However, Dharmarathne [17] explored the statistical
power of assessing such cut-off levels of experts’ calibration and suggested that employing
a p-value-based weight optimization procedure does not always guarantee that the larger
weights are allocated to well-calibrated experts.

Instead of using the CM optimization procedure, one could employ the multinomial
equivalence test proposed in Dharmarathne [17] to select a subset of experts whose true
probability vectors of elicited percentiles remain within an acceptable margin of deviation
from the intended probability vector. Using the CM weights for the selected set of experts
and avoiding the optimization may provide a more defensible procedure. Another alterna-
tive to the optimization is deriving shrinkage weights from normalized CM weights with
the intention of further improving the group’s aggregated probability distributions.

The expert judgment database of expert elicitations conducted using CM, initially
maintained by researchers at Delft University of Technology [8], is now hosted and freely
available on Prof. R.M. Cooke’s website http://rogermcooke.net/ (accessed on 8 June 2023).
The database grew organically and subsets of data sets were used in various meta-analysis
studies, e.g., Eggstaff et al. [18], Marti et al. [19] and Cooke et al. [20]. Most of the data
sets use 10-seed questions, as various analyses showed that this number of seeds strikes
a good balance between achieving fairly stable weights and keeping the elicitation burden
manageable. In this paper, we will first use two data sets that we were aware of with a very

http://rogermcooke.net/
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large number of seed questions and then move on and use the most recent collection of
49 curated studies with the commonly used (smaller) number of seeds.

This research addresses two questions: (1) can the shrinkage CM weights calculated
from 10 seeds improve the group’s aggregated probability distributions? and (2) When
fewer than 10 seeds are available, can the shrinkage CM weights achieve the same perfor-
mance as the standard CM weights would have obtained using the standard 10 seeds?

We investigate the first research question in Section 2.4. We use the two old data sets
with the most seed questions (35 and 31) to derive weights from 10 seed questions and
assess their performance on a set of testing questions (with known realized values as well).
The former set of questions will be referred to as the training questions, and the latter as
the testing questions for the analysis.

Section 2.5 outlines the research plan for tackling the second research question. We use
49 post-2006 data sets. The studies from this subset are often preferred to the earlier studies
since they are more recent, curated (due to other analyses) and likely better documented.
All 49 studies were also used in Cooke et al. [20], and 44 of these 49 studies were used in
Marti et al. [19] (the 44 available at the time of the analysis). The details of these 44 studies
are available in Marti et al. [19]. The five extra studies, two from 2018 and three from 2019,
are listed below Table 1:

Table 1. Five data sets to complement the forty-four in Marti et al. [19].

Data Set ID Experts Seeds Date Subject

Brexit food 10 10 2019 Food price change after Brexit
Tadini_Clermont 12 13 2019 Somma–Vesuvio volcanic geodatabase
Tadini_Quito 8 13 2019 Volcanic risk
PoliticalViolence 15 21 2018 Political violence
ICE_2018 20 16 2018 Sea-level rise from ice sheets melting due to global warming

2.4. Shrinkage CM Weights Based on 10 Seeds

We applied the empirical Bayes shrinkage procedure described in Zhao [5] to derive
shrinkage CM weights. To do so, we needed a statistic S2

e independent of the eth normalized
CM weight we (derived from the training questions) that contained the information about
the variance σ2

e of we for e = 1, 2, 3, . . . , n. Therefore, 10 random samples of 10 questions
were obtained from the testing questions to calculate S2

e = 1
9 ∑10

i=1 (wi − w)2 as the sample
variance in weights, where wi is the normalized CM weight derived from the ith sample;
i = 1, 2, 3, . . . , 10; and w = 1

10 ∑10
i=1 wi. Therefore, the degrees of freedom de will be equal

to 9 for each statistic S2
e for e = 1, 2, 3, . . . , n; where n is the number of derived experts’

weights in the analysis.
The user-defined weights option of the Excalibur package [21] which implements the

CM can be applied with an assigned set of experts’ weights. We used the shrinkage CM
weights to calculate the aggregated distribution. In Excalibur and the CM, these are called
the Decision Maker (DM) distributions, presuming that these will be the distributions that
a Decision Maker will adopt. The DMs’ distributions can also be assessed in terms of
calibration and informativeness. We conjectured that the performance of the DM should
improve by improving the calculation of weights. Therefore, the impact of deriving
shrinkage weights was assessed by comparing the performance scores of testing questions
computed using the normalized classical and shrinkage CM weights. Overall, the steps of
deriving weights with 10 seed questions were as follows.

1. Select two data sets with more than 10 seed questions.
2. Consider the first 10 seed questions of each data set as training questions for deriving

normalized CM weights.
3. Consider the remaining questions of each data set as testing questions of the analysis.
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4. Estimate the sample variances of normalized CMs weights using a randomly selected
sample of 10 questions, from the testing questions, for each expert.

5. Derive shrinkage CM weights from the normalized CM weights calculated using the
training questions and the above-estimated sample variances of the CM weights.

6. Obtain normalized shrinkage weights.
7. Compute the DMs’ calibration and informativeness scores of testing questions us-

ing the normalized classical and shrinkage CM weights by applying the user define
weights option of the Excalibur package.

8. Compare the overall calibration and informativeness scores above to assess the impact
of deriving shrinkage weights.

Extra analysis (following similar steps) using 20 instead of 10 seeds was performed as
well (The results of this analysis are presented in the Supplementary Material accompanying
this paper). The results from the analysis using 10 seeds are presented in the body of the
report. Some of these results are part of the PhD dissertation of [17].

2.5. Shrinkage CM Weights Based on Fewer than 10 Seeds

To tackle the second question, we used 49 studies. The reason we are interested in
this question is purely practical. Often, during elicitations, some of the seed questions
are identified as poorly framed, not fair, or not representative for the questions of interest.
When that is the case, such questions are not used in calculating the weights, reducing the
set of seeds even more, and with it the reliability of the aggregated distributions. If the
shrinkage CM weights can achieve the same performance using a reduced set of questions,
the above-mentioned situations can be mitigated against.

In this part of the analysis, we followed the following steps:

1. Select a data set from the 49 post-2006 studies.
2. Choose a number of samples, N; a number of calibration questions, k; and degrees

of freedom, d. For the following analysis, we used N ∈ {10, 100}, k ∈ {5, 7} and
d ∈ {2, 3, N − 1}.

3. Use all seed questions of each data set to derive normalized CM weights.
4. Sample without replacement k seed questions N times. Calculate the normalized CM

weights each of the N times for each expert, using the subset of k seeds.
5. Derive the sample variance of the normalized CM weights calculated as before.
6. Derive shrinkage CM weights using the variance above and the choice of d.
7. Obtain normalized shrinkage CM weights.
8. Compute the DMs’ calibration and informativeness scores using the normalized CM

and shrinkage CM weights.
9. Compare the DMs’ calibration and informativeness scores above to assess the impact

of deriving shrinkage CM weights.

In this analysis, the choice of training and testing sets of questions was not possible
due to the small set of seed questions per study (most studies have only 10 seed questions).
Moreover, Excalibur was replaced by an R implementation of the CM, which was previously
used in an extensive analysis of the performance of the COVID-19 forecast models by
Colonna et al. [22]. The code for that research (which was slightly adapted for this research)
is archived within a Zenodo repository (https://doi.org/10.5281/zenodo.6799698 (accessed
on 8 June 2023)).

3. Results
3.1. Deriving Weights Using 10 Seed Questions

Two data sets (PBINTDOS and RETURNa f ter) were selected for the initial analysis.
Data contained experts’ elicited 5%, 50% and 95% percentiles of the probability distributions
of quantities corresponding to the seed questions in both data sets. The experts who
answered the majority of seed questions were selected from each data set. Data from the

https://doi.org/10.5281/zenodo.6799698
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first 35 seed questions from five experts with their expert IDs (from two to six) were selected
from the PBINTDOS data set. Data from all 31 seed questions and all five experts were
used from the RETURNa f ter data set. The first 10 questions of each data set were used to
derive weights and the remaining questions were used to estimate variances of weights and
to compare the overall calibration and informativeness scores of classical and shrinkage
CM weights.

The Excalibur package was used to obtain the normalized CM weights of the DM
from the training data. The version of the DM (used in this analysis) was the aggregation of
all experts, without imposing a threshold value to include only experts whose calibration
scores exceeded a certain cut-off value for allocating weights. Therefore, each expert’s
distribution had a non-zero weight proportional to the expert’s combined score based on
calibration and informativeness.

Results Addressing the First Research Question

To reiterate, the first research question was: can the shrinkage CM weights calculated
from 10 seed questions improve the group’s aggregated probability distributions?

First, consider the analysis of the PBINTDOS data. The seed questions were selected
so that they were as similar as possible to the uncertain quantities of interest. As expected,
the derived CM weights from different random samples from the seed testing questions
were different even though they were derived from the same number of questions from the
same background. The empirical Bayes shrinkage approach discussed helped us address
the uncertainty in the weights.

The plot on the left hand side of Figure 1 compares the normalized classical and
shrinkage CM weights from the PBINTDOS training data. Each dot corresponds to one
expert. There are some differences between weights for larger classical CM weights. A
similar analysis was carried out, following the same procedure, for the RETURNa f ter data
set. The plot on the right hand side of Figure 1 shows that the classical and shrinkage CM
weights are different for both larger and smaller classical weights. This demonstrates the
impact of shrinking the CM weights considering their variability.

Figure 1. Normalized classical and shrinkage CM weights.

As expected, the sets of weights will be different and, theoretically, the shrinkage CM
weights are better. We expect these differences to affect the performance of the calibration
and informativeness of the DM for the testing data. Table 2 summarizes the DM scores
for both testing data sets. While, for the PBINTDOS data set, the DM calibration and
information scores are slightly higher for the shrinkage weights compared with the classical
weights, for the RETURNa f ter data set, the shrinkage weights have produced a lower DM
calibration but still a higher information score.

The above results are inconclusive when scrutinized from the DM performance per-
spective. Not only they did not behave consistently, but also, the magnitude of the dif-
ferences between scores was completely irrelevant. For example, no real distinction can
be made between a calibration of 0.75 and one of 0.76, especially when calculated on
10 calibration questions. Contrary to expectations, practically, we cannot yet observe an
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improvement in the DMs’ performance that will justify using the shrinkage weights. Such
results, however, boost one’s confidence in current practices.

Table 2. Overall Decision Maker scores of testing questions.

Data Set Types of Weight Calibration Score Information Score

Classical 0.7496 1.044
PBINTDOS Shrinkage 0.7587 1.077

Classical 0.01487 0.2433
RETURNafter Shrinkage 0.004452 0.2837

When more seed questions are used in the training set, the results remain as inconclu-
sive as above. Two more data sets with a very large number of seed questions (THRMBLD
and TNODISPR) were selected for analysis using 20 seeds, and the results are presented
in the Supplementary Material, as mentioned in Section 2.4 above.

Unfortunately, the investigated data sets are the only ones (to the authors’ knowledge)
with enough seed questions to peruse this type of analysis further. However, the results
above suggest that the DMs’ performance is not as sensitive as we expected to the unac-
counted variance in weights. This suggests a different use (potentially more important
from a practical perspective) of the proposed methodology, namely improving situations
when fewer than the advised number of seed questions are available.

3.2. Deriving Weights Using Fewer than 10 Seed Questions

To tackle the conjecture formulated at the end of the previous section, we can in fact use
a larger set of studies. For the 49 studies described in Section 2.3, we used the methodology
detailed in Section 2.5 for all possible combinations of N = 10 and N = 100 samples;
five and seven seed questions; and 2, 3 or N − 1 degrees of freedom. All generated results
tell a coherent story and are available upon request. The results presented here are the ones
for 100 samples, seven seed variables and three degrees of freedom. The reason for the
these choices are that we expect sampling 100 times to be more reliable than sampling only
10 times; 7 seed questions is a plausible situation (when 3 of the 10 asked were found to be
unusable) and three degrees of freedom was one of the choices from Zhao [5] .

Results Addressing the Second Research Question

It is worth reiterating that the classical CM weights are calculated using 10 seeds and
the shrinkage weights use 7, but incorporate information about the weights’ variance.

Figure 2 shows the spread of the mean (per study) absolute difference between the
weights and the spread of the maximum (per study) absolute difference. The median values
of both these differences are below 0.05, with the median average difference being 0.01.
These very low values, although expected, suggest that shrinkage weights calculated from
a smaller number of seeds may potentially achieve very similar results when compared with
the classical CM weights. A small number of seeds is not unusual in practical settings, and
the above results suggest that applying the shrinkage technique could improve performance
to the level of the best practice in terms of the number of seeds.

Before investigating how the difference in weights translates to the difference in the
DMs’ performance, we note four outlier studies (corresponding to the four red crosses) for
which larger differences were observed.

Figure 3 shows the weights calculated for two of the studies corresponding to the
larger mean absolute difference. In both studies, all weights changed moderately: the
largest classical weights are slightly reduced by shrinkage and the smallest weights become
larger to compensate.
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Figure 2. Mean and maximum absolute differences between the classical and shrinkage CM weights.

Figure 3. Particular studies with large differences between the classical and shrinkage CM weights.

Figure 4 shows the outlier study in terms of the largest maximum difference. Here,
only the maximum weight changes drastically and is being reduced by shrinkage, to be
redistributed among the smaller weights.

Just as in the previous analysis, what we are interested in in practice is how different
weights affect the performance of the DM. Figure 5 shows the calibration scores (lhs) and
the informativeness scores (rhs) of the DMs calculated with 1) the classical DM weights
based on 10 seeds (on the x-axis) and 2) the shrinkage DM weights calculated based on
7 seeds (on the y-axis).

The majority of the calibration score pairs are on the main diagonal, suggesting no
change in performance. Moreover, the majority of the pairs that are not on the main
diagonal are very small and within a restricted region around the main diagonal. This
region is bounded by the two dashed lines. Akin to the discussion in Hanea and Nane [11],
we consider scores within this region to represent equivalent performance. Interestingly,
in two studies the shrinkage weights generate a much better calibration score for the DM.
The informativeness scores tell a similar story, but in this case, the majority of scores are
better when calculated with the classical weights. This is not surprising giving that extra
calibration is usually obtained by losing informativeness.
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Figure 4. Particular study with the largest absolute differences between the classical and shrinkage
CM weights.

Figure 5. The DMs’ performance when using classical and shrinkage weights.

4. Conclusions

Experts’ weights are derived from experiments to obtain aggregated probability distri-
butions of unknown quantities. Therefore, they are random variables and should be treated
as such. The focus of the present analysis was to address this underlying uncertainty of the
derived experts’ weights from experiments in computing aggregated distributions of quan-
tities. The James–Stein shrinkage estimation technique discussed in James and Stein [4] can
be applied to estimate the mean of a multivariate normal distribution with reduced mean
squared errors. An empirical Bayes development of the James–Stein shrinkage estima-
tion technique discussed in Zhao [5] that shrinks variables differently depending on their
variances was employed to derive weights in this analysis. Hence, larger shrinkage was
applied to derived weights with larger variances.

If we consider the practical context of deriving experts’ weights, it can be observed that
a small number of seed questions is used in general. While we acknowledge the potential
difficulties of eliciting more seed questions, we would like to emphasize the unstable nature
of the weights when calculated from a small set of seed questions. The variability in experts’
weights calculated using limited amounts of information (due to the lack of seed questions)
is equated with deviation from the unknown mean values of the random distributions
of weights. Therefore, the smaller the number of seed questions, the larger the variances
in weights. We proposed deriving shrinkage weights to reduce the mean squared errors
of estimated mean weights when a limited number of seed questions are used to derive
these weights.
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The results of our analysis show promise not only theoretically, but also from a practical
perspective. Not having enough seed questions for a study can be remedied by shrinking
the weights and achieving the same performance of the DM.

As a theoretical limitation, we can discuss one assumption needed during the es-
timation procedure proposed. When applying the double shrinkage estimator defined
in Equation (4) in Section 2.2 to derive shrinkage weights, the original weights were as-
sumed to be normally distributed. The original weights were, however, non-negative
and, according to Equation (4), the resulting shrinkage weights were also non-negative.
The assumption of normality for non-negative weights can be justified as follows. If we
repeat the experiment a large number of times under similar conditions and observe the
weights, then it is reasonable to assume a bell-shaped curve in general, as there will be
more moderate values of weights in general, and few extreme values of weights in the
right and left tails. In addition to that, theoretically, we consider the limits of a normal
random variable to be negative and positive infinity. However, in this application (like in
many others), the range of a given normal random variable can be restricted to a lower
range considering the fact that almost all observations of a normal random variable remain
within four standard deviation units from the mean. Thus, assuming a normal distribution
for non-negative experts’ weights, even though not intuitive, can be justified.

In terms of practical limitations, we must acknowledge that additional sets of seed
questions to estimate the sample variances of weights (to derive the shrinkage weights)
may not be available in practice. However, 95% of the estimated variances were less than
0.04. A further analysis may need to investigate if a fixed variance can be used, or if any
characteristics of an elicitation can explain different variances. Another potential approach
would be to apply the non-parametric jackknife resampling method discussed in Efron
and Stein [23] for estimating the variances of experts’ weights using a given set of seed
questions. It allows the estimation of sample variances of weights for experts through
separately derived weights from separate samples of seed questions that are obtained by
applying the jackknife resampling method on a given set of seed questions.

The same jackknife resampling method may be used instead of the fourth step of
the procedure from Section 2.4. This would correspond to relaxing the independence
assumption in the double shrinkage procedure from Zhao [5] and developing a new robust
shrinkage approach that allows for a general estimate of variances in weights. Another
potential future direction of this study is investigating the variance in (and the potential
shrinkage of) calibration scores rather than the variance in the weights.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/forecast5030029/s1.
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