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Abstract: The paper is focused on predicting the financial performance of a small open economy
with an automotive industry with an above-standard share. The paper aims to predict the probability
distribution of the decomposed relative economic value-added measure of the automotive production
sector NACE 29 in the Czech economy. An advanced Monte Carlo simulation prediction model is
applied using the exact pyramid decomposition function. The problem is modelled using advanced
stochastic process instruments such as Levy-driven mean-reversion, skew t-regression, normal inverse
Gaussian distribution, and t-copula interdependencies. The proposed method procedure was found
to fit the investigated financial ratios sufficiently, and the estimation was valid. The decomposed
approach allows the reflection of the ratios’ complex relationships and improves the prediction
results. The decomposed results are compared with the direct prediction. Precision distribution tests
confirmed the superiority of the decomposed approach for particular data. Moreover, the Czech
automotive sector tends to decrease the mean value and median of financial performance in the future
with negative asymmetry and high volatility hidden in financial ratios decomposition. Scholars can
generally use forecasting methods to investigate economic system development, and practitioners
can obtain quality and valuable information for decision making.

Keywords: financial performance; automotive sector; prediction; Monte Carlo simulation; pyramid
decomposition; Levy-driven mean-reversion process

1. Introduction

Predicting and measuring a sector’s or firm’s performance is a critical problem in
planning and managing economic growth. A practically valuable group of performance
measures is based on the economic profit term, or alternatively, the profit level after the
deduction of an alternative cost of capital. In this case, market and accounting data are
combined, and economic value added (EVA) is a practically useful financial performance
measure. This measure is complex and reflects many factors and their interrelationships.
Therefore, a decomposition approach can be fruitful.

A probability distribution forecast can give more valuable information in comparison
to a point forecast. For instance, the authors of [1] state that the “density forecast especially
provides a complete description of the uncertainty associated with a prediction and stands
in contrast to a point forecast, which contains no description of the associated uncertainty”.

The automotive sector, with an above-standard share in the Czech economy, is an
important economic segment influencing the effectiveness and performance of the national
economy. The sector is designated 29 in the NACE categorisation—Manufacture of motor
vehicles, trailers and semi-trailers. Sector share in the C-Manufacturing sector is significant
and is as follows: assets, 25.44%; fixed assets, 24.80%; current assets, 27.45%; equity, 21.57%;
debt, 28.86%; sales, 37.60%; cost, 39.10%; salaries, 29.51%; EBIT, 30.30%; and value added,
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30.48%. With regard to production, other sectors are also connected. Therefore, the analysis
and prediction of the performance measure of sector 29 constitute a very important problem.

This paper’s objective is to predict the relative EVA measure probability distribution
of sector 29 in the Czech economy using advanced methods, including distribution preci-
sion testing. The proposed model and procedure consist of the following elements: (a) a
decomposed financial performance measure, (b) forecasting via the Monte Carlo simula-
tion method, (c) a mean reversion random process with NIG (normal inverse Gaussian)
distribution, (d) modelling the statistical interdependencies with t-copula, and (e) testing
the precision of distribution forecasting. To be more precise:

(a) Approaches for measuring a sector’s performance have evolved and reflect the
technical-economic type of economy, information possibilities, data reachability, and
knowledge of economic systems management. Among performance indicators, tradi-
tional groups based on accounting profitability measures can be found, such as ROE,
ROA, ROC, ROI, and RONA, as well as measures based on financial cash flow, such
as CFROI, NPV, and CROGA. Researchers deal with various financial performance
measures (see, e.g., [2,3]). The compromise between accounting and market data is
the measures combining both data types, so economic value added (EVA) and refined
economic value added (REVA) measures were developed. Three authors [4–7] have,
for instance, applied EVA performance measures. A financial performance measure
can be decomposed by the pyramid (DuPont) method in several financial ratios and
simulated as their function with correlations, obtaining a more robust prediction
(see [8–13]).

(b) A crucial problem in financial decision making is achieving good financial forecasting,
and researchers have verified various methods (see [14–19]). Interesting forecasting
approaches were introduced in [20–23]. One of the forecasting approaches and concep-
tions is applying the simulation method with dependencies modelled by the copula
function [24–26]. The generalised random processes are mean-reversion processes,
e.g., [27,28].

(c) The probability distributions of financial variables are asymmetric, with fat tails,
leptokurtic distributions, jumps, and mean reversion. To model such variables, Levy
distributions were proposed and verified. A suitable probability distribution for the
modelling of financial ratios and electricity and energy prices is the so-called NIG
distribution, coined by the author of [29]. The distribution parameters can be esti-
mated by the likelihood method or the method of moments, and possible approaches
have been described, e.g., [30–33]. Subsequently, for example, refs. [34–38] applied the
NIG distribution in option valuation and value at risk prediction. The authors of [39]
first proposed and verified the Levy-driven mean-reversion process, also known as
the Levy-driven Ornstein–Uhlenbeck or non-Gaussian Ornstein–Uhlenbeck random
processes. The first term is used in this paper exclusively because of the financial
modelling background. Other researchers further analysed and developed this prob-
lem, e.g., [28,40–46]. Several authors [1,47–52] dealt with probability distribution
forecasting for predicting uncertainty.

(d) The procedures and advantages of disaggregated (multifactor) forecasting are de-
scribed in [53–55]. A multifactor simulation needs to model dependencies, and copula
functions can usually be used. Furthermore, refs. [19,20] are authors who have dealt
with such a conception. The precision of the simulation and the number of replications
(interactions) are investigated in, e.g., [25,56–59].

(e) A particular problem in distribution forecasting is stating forecasting precision and
choosing the more suitable probability distribution. Two conceptions exist, absolute
and relative ones. The first one is based on the probability integral transform of the
distribution and a comparison with the uniform distribution. The closer the uniform
distribution, the better the forecasting distribution is (see [49,52,60,61]). The scoring
method investigates the relative evaluation of two distributions, and a higher score
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means a better forecast distribution [47,62–65]. The statistical difference significance
can be tested by a paired t-test.

This paper’s novelty lies in using the advanced prediction methods of the decomposed
relative EVA measure of the Czech automotive NACE sector 29. Whereas prediction is based
on the pyramid decomposition expressed by an exact mathematical function, the applied
advanced stochastic processes (mean-reversion, skew t-regression, NIG distribution, t-
copula) suitably reflect the behaviour and features of financial ratios. These characteristics
are significant not only because of these reflections but also due to fundamental features
such as economic and technical shocks (particularly COVID-19), shortages of spare parts
and commodities, product transportation disorders, and military operations in the sector.
With an above-standard share in the small open Czech economy, the automotive sector is
also crucial for national economic performance and public finance. Furthermore, empirical
verification and prediction are therefore desirable.

The paper is structured as follows: (i) a conceptual and methodological background
description, (ii) a proposal and description of the applied decomposed methodology, (iii)
a description of the compared direct (non-decomposed) methodology, (iv) input data,
solution procedures and interpretation of the results, (v) probability distributions precision
testing, and (vi) discussion and conclusion.

2. Methodology and Procedure Description

The relative EVA measure, EVAr, is decomposed on the pyramid decomposition
basis on two levels. Firstly, the EVA is divided into ROE and re; subsequently, ROE is
decomposed into EAT/EBT, EBT/EBIT, EBIT/S, S/A, A/E. Summarising EVAr is
expressed by the exact function of six basic influencing financial ratios:

EVAr = ROE− re =
EAT
EBT

· EBT
EBIT

·EBIT
S
· S
A
·A

E
− re, (1)

where ROE is a return on equity, EAT is earnings after tax, EAT is earnings before tax,
EBIT is earnings before interest and tax, S is sales, A is an asset value, E is the equity value,
and re is the cost of equity capital. Therefore, performance is given by tax reduction, debt
coverage, revenue profitability, asset turnover, financial leverage, and the equity cost of
capital. The proposed decomposition is used in the analysis and prediction part.

2.1. Prediction of Performance Measure by Simulation

The primary goal is to predict a relative EVA measure distribution based on decom-
position (1) using a simulation approach. Due to the Levy-driven mean-reversion process
with an NIG distribution, particular ratios are supposed to develop along the way. The
arithmetic Levy-driven mean-reversion (LDAMR) process is presented, e.g., in [42,46],
and expressed in (2). The Levy-driven, one-factor Schwartz mean-reversion (LDSMR)
process [44] is formulated in (3):

dx = a·(b− x)dt + dL, (2)

dx
x

= a·(b− ln x)·dt + dL, (3)

where dx represents the changes in ratios, a is the speed parameter, b is the long-term
equilibrium, dt is the time interval, and dL is the random NIG process.

The LDAMR process is suitable for ratios with positive or negative values. LDSMR is
applicable only for positive financial ratio values, e.g., prices and turnovers. The solution
to the equations are as follows:

xt = xt−dt·e−a·dt + b·
(

1− e−a·dt
)
+

t∫
s=t−dt

e−a·(t−s)·dLs, (4)
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xt = exp

[ln(xt−dt)·e−a·dt
]
+
[
b·
(

1− e−a·dt
)]

+

t∫
s=t−dt

e−a·(t−s)·dLs

. (5)

The advantages of these processes are in their generalisation because, for a = 0, the
process is reduced in a Levy process and the exponential Levy process, respectively; for
b = 0, the process reduces in an arithmetic and exponential (geometric) Levy process,
respectively.

Since the intention is to predict a relative EVA distribution, the stochastic integral with
respect to the Levy process is simulated by a sum method, such as the Riemann–Stieltjes
sum method (see, e.g., [34,66]):

t∫
s=t−dt

e−a·(t−s)·dLs ≈
N

∑
j=1

e−a·(t−sj−1)·∆Lsj , (6)

where sj = t− dt + ∆·(j− 1), ∆ = dt/N, and ∆Lsj ≈ NIG(α, β, ∆δ, ∆µ).
The approximate simulation formulas of processes (4) and (5) for M steps are as

follows:

xsM = xs0 ·e
−a·(sj) + b·

(
1− e−a·sj

)
+

M

∑
j=1

e−a·(t−sj−1)·∆Lsj , (7)

xsM = exp

{
ln(xs0)·e

−a·(sj) + b·
(
1− e−a·sj

)
+

M

∑
j=1

e−a·(t−sj−1)·∆Lsj

}
. (8)

The applied estimation and simulation procedure steps of a decomposed conception
The estimations of the processes of the indices were obtained using Stata software

(Version 15.1); for other operations, Matlab software (Version R2020b) was used.

(i) Statistical estimation of Equations (2) and (3) using skew-t regression

An estimation of parameters a and b is carried out using the skew-t regression with
parameters using the Stata function skewtreg(α, ω, d f ), as in [67], where α is a shape param-
eter (α > 0 skewness to the right; α < 0 skewness to the left), ω > 0 is a scale parameter,
and d f > 0 is the degree of freedom (the tails parameter). The choice of a suitable process,
(2) or (3), is made based on the Akaike (AIC) and the Bayesian (BIC) information criterion
values.

(ii) Estimation of the chosen models regarding the NIG distribution parameters of the residuals

NIG distribution, including jumps and asymmetry, is parametrised as follows: NIG(α,
β, δ, µ), where α ≥ 0 is the tail heaviness, β is skewness, µ is a location, δ > 0 is a scale
parameter, and α2 > β2. The NIG distribution parameters are estimated using the method
of moments (see, e.g., [32]).

(iii) Estimation of the t-copula function

The t-copula function models the mutual interdependencies of the ratio residuals
for a t-distribution with parameters of the correlation matrix R and degree of freedom v
(see [18]).

(iv) Simulation of the one scenario with N steps of the development of financial ratios and the
following calculation of relative EVA

Financial ratios are simulated according to (7) or (8). Relative EVA is calculated
using (1). The Matlab functions copularnd and niginv are applied to generate the random
numbers of stochastic processes.

(v) Repeating step (iv) for M scenarios, the result is one replication of the EVA distribution
(vi) Replication (iteration) of step (v) r-times for a given precision
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According to [56], the precision criterion of the distribution parameters (expected
value, median, quantiles) is the relative confidence interval of a standard error, dr =(

2·sXr
·tr−1(α/2)/

√
r·k
)

/Xr ≤ 0.10, where Xr and sXr
are parameters (mean, quantiles)

of the expected value and expected value standard error of the r replications; tr−1(.) is
the Student-t distribution with the significance α; and r − 1 is the degree of freedom.
Furthermore, k is a coefficient, with a mean value k = 1 and for quantiles p k = p·(1−
p)/φ(z(p)) with φ(·) and z(p), respectively, equal to a density function. pth is the quantile
of the standard normal distribution.

(vii) Calculating the chosen parameters and graphical presentation of the results

Mean, medians, and quantile development values are tabulated, and the predicted
relative EVA distribution is graphically presented.

2.2. The Evaluation of Forecast Prediction Precision

The absolute precision evaluation is based on probability integral transform (PIT),

creating a random variable z. Following [60], zt = Ft−1(yt) =
yt∫
−∞

ft−1(u) du, where Ft is

the distribution, ft is the density function, and yt is the real relative EVA. The variable is
compared with uniform distribution zt ∼ U(0, 1). The closer the forecast distribution is to a
uniform distribution, including statistical significance, the more suitable the distribution is
for prediction. To verify its significance, the STATA Epps–Singleton Two-Sample Empirical
Characteristic Function test is applied as in [68]. Here, hypothesis H0 states the distributions
are identical, and HA states the distributions are not identical. The W2 statistics are
calculated.

The relative precision conception compares two distributions using to any score mea-
sure. A suitable score approach for distribution F is the logarithmic scoring rule, where, ac-
cording to [63], SL( ft−1, yt) = log( ft−1(yt)), and the whole score is SL

f = E
(
SL( ft−1, yt)

)
=

N−1
N
∑

t=1
log( ft−1(yt)). The bigger the whole score is, the better the distribution. To test the

significance of the difference (diff) of the two distributions F and G, the STATA paired t-stat
is calculated, di f f = E[log( ft−1(yt))− log(gt−1(yt))].

Hypothesis H0. di f f = 0 and HA: di f f 6= 0.

3. Results

The relative EVA measure decomposition is used to predict four quarters using a simula-
tion procedure, including precision testing. A particular decomposition equation is introduced
in (1). The applied methodology follows the procedures described in Sections 2.1 and 2.2.

Furthermore, a direct (non-decomposed) EVA measure to predict four quarters using
the simulation procedure is applied for comparison.

3.1. Input Data

The input data of the exact pyramid decomposition financial ratios are obtained
quarterly and are calculated from MPO ČR (see [69]). The data of MPO ČR are obtained on
a cumulative yearly basis every month. Therefore, the necessary transformation procedure
for quarterly data is as follows: for flow data, two subsequent quarters are subtracted; for
returns, the yearly returns are divided four times. Data are divided into two groups: in the
sample and out of the sample. The first one is the period from 2007 to 2019 (Table 1). The
period finishes in 2019 because it marks the end of the pre-COVID-19 period. The last row
of Table 1 contains the first real set of data used for prediction; in particular, the relative
EVA is 1.0605%. The second group includes the prediction period and is shown in Table 2.
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Table 1. Input quarter financial ratios data obtained quarterly, 1Q 2007–4Q 2019 (in the sample).

Quarter Eat/EBT EBT/EBIT EBIT/S S/A A/E re EVAr

1 0.75014 0.95004 0.07881 0.47491 1.98257 0.02658 0.02630
2 0.75086 0.94867 0.07807 0.90783 2.02903 0.02538 0.07706
3 0.74061 0.94354 0.07396 1.30160 1.94837 0.02660 0.10446
4 0.74366 0.94023 0.07327 1.78199 1.92289 0.02566 0.14988
5 0.77734 0.94413 0.07794 0.44540 1.98827 0.02369 0.02697
6 0.77577 0.94586 0.08551 0.86450 2.00749 0.02551 0.08337
7 0.76879 0.93705 0.07759 1.27875 1.97374 0.02629 0.11477
8 0.75428 0.91863 0.06732 1.60054 1.98394 0.02617 0.12195
9 3.18631 −0.16599 0.01625 0.32793 2.16358 0.03535 −0.04145
10 0.81536 1.36320 0.05431 0.38117 2.12725 0.03816 0.01078
11 0.78156 1.08712 0.02851 0.35716 2.07487 0.03816 −0.02021
12 0.51225 0.97850 0.01080 0.40405 2.14607 0.03894 −0.03425
13 0.78997 1.10192 0.06197 0.41753 2.17226 0.03747 0.01146
14 0.79720 0.90460 0.08597 0.43299 2.17778 0.03231 0.02615
15 0.78066 1.29319 0.03556 0.36251 2.14857 0.03062 −0.00266
16 0.77958 1.18283 0.01240 0.42034 2.24465 0.03080 −0.02002
17 0.79540 1.07171 0.05844 0.43528 2.38018 0.03197 0.01964
18 0.81016 1.00998 0.06542 0.44084 2.29702 0.03086 0.02334
19 0.80254 1.59366 0.04524 0.38416 2.26978 0.03127 0.01918
20 0.78895 0.51720 0.03792 0.42881 2.41741 0.03023 −0.01419
21 0.79985 1.04540 0.06700 0.44184 2.45263 0.03389 0.02682
22 0.79481 0.82626 0.05999 0.42084 2.40768 0.02918 0.01074
23 0.79339 1.03788 0.04133 0.36101 2.25590 0.02895 −0.00123
24 0.79175 0.98847 0.02653 0.40537 2.26410 0.02850 −0.00944
25 0.78358 0.90614 0.05187 0.41812 2.18459 0.02436 0.00928
26 0.78903 0.83680 0.05464 0.43442 2.12970 0.02763 0.00574
27 0.80333 1.00609 0.05703 0.40554 2.09579 0.02303 0.01615
28 0.78411 0.97700 0.03392 0.44027 2.13028 0.02721 −0.00284
29 0.79993 0.87324 0.06610 0.46646 2.22686 0.02340 0.02456
30 0.80483 0.92038 0.06917 0.47099 2.14962 0.02395 0.02793
31 0.79859 0.83385 0.06575 0.43322 2.18257 0.02229 0.01911
32 0.80797 0.84079 0.05176 0.44778 2.23624 0.02045 0.01476
33 0.80349 0.97089 0.11268 0.46954 2.38048 0.01947 0.07878
34 0.80661 0.97800 0.07062 0.46676 2.28247 0.01993 0.03942
35 0.80506 0.95861 0.06289 0.42888 2.16827 0.01970 0.02543
36 0.80378 0.98388 0.04972 0.47314 2.09924 0.01962 0.01943
37 0.80539 0.86607 0.07405 0.47049 2.23160 0.01966 0.03457
38 0.81084 0.92645 0.08247 0.51032 2.17226 0.01846 0.05022
39 0.80621 1.02778 0.07186 0.41665 2.13081 0.01801 0.03485
40 0.81898 0.88190 0.06425 0.55275 2.06532 0.01735 0.03562
41 0.80230 0.96162 0.07472 0.52125 2.22759 0.01789 0.04905
42 0.80273 0.92573 0.07995 0.41421 2.08879 0.01757 0.03383
43 0.79929 0.92112 0.04366 0.48833 2.07591 0.01760 0.01499
44 0.80408 0.99536 0.05780 0.46164 2.23160 0.01940 0.02826
45 0.79745 0.97059 0.06132 0.48362 2.37538 0.02329 0.03123
46 0.80391 0.95780 0.06989 0.50216 2.33403 0.02379 0.03928
47 0.76634 0.90302 0.03822 0.41458 2.31449 0.02379 0.00158
48 0.79852 0.92980 0.03040 0.51344 2.24047 0.02353 0.00243
49 0.79214 0.97320 0.06131 0.47749 2.55076 0.02343 0.03414
50 0.80321 0.97833 0.05211 0.51524 2.45404 0.02394 0.02785
51 0.79190 0.95308 0.04275 0.45720 2.41447 0.02394 0.01168
52 0.79548 0.98283 0.03868 0.47719 2.35871 0.02343 0.01061



Forecasting 2023, 5 459

Table 2. Input quarter financial ratios data obtained monthly (out of sample).

Month
Eat/EBT EBT/EBIT EBIT/S S/A A/E re EVArBeginning Ending

1/2020 2/2019 0.79548 0.98283 0.03868 0.47719 2.35871 0.02343 0.01061
2/2020 1/2020 0.70667 0.85787 0.03911 0.46644 2.42099 0.02463 0.00214
3/2020 2/2020 0.73808 0.94020 0.03568 0.59935 2.37640 0.03882 −0.00355
4/2020 3/2020 0.78519 0.80588 0.04163 0.47701 2.31912 0.02593 0.00321
5/2020 4/2020 0.61353 0.59215 0.02147 0.72470 2.38058 0.03733 −0.02387
6/2020 5/2020 0.58124 0.63163 0.02013 0.77064 2.36644 0.05973 −0.04625
7/2020 6/2020 0.64582 0.55732 0.02281 0.76829 2.33867 0.03394 −0.01918
8/2020 7/2020 0.69266 0.70302 0.02797 0.73958 2.42558 0.02986 −0.00543
9/2020 8/2020 0.68537 0.74358 0.02644 0.92002 2.38921 0.03898 −0.00936
10/2020 9/2020 0.72912 0.67598 0.02909 1.22080 2.30392 0.03144 0.00889
11/2020 10/2020 0.58227 0.78497 0.03377 1.20068 2.66936 0.03699 0.01248
12/2020 11/2020 0.71838 0.83068 0.03191 1.40694 2.57366 0.04867 0.02029
1/2021 12/2020 0.63274 0.92568 0.02909 0.84507 2.24924 0.02332 0.00907
2/2021 1/2021 0.71838 0.94209 0.03165 1.31222 2.45315 0.04227 0.02669
3/2021 2/2021 0.53447 0.90599 0.03954 0.64222 2.42609 0.02407 0.00576

3.2. The Prediction Results of Relative Decomposed EVA Performance Measure by Simulation

In step (i), the skew-t regression is realised for all ratios, as well as for LDAMR
and LDSMR models. The best models are chosen following the AIC and the BIC (see
Table 3). The estimated parameters are statistically significant. Furthermore, parameter
α shows the asymmetry of the distributions on the left or right side; nothing equals zero,
meaning symmetry is maintained. Four ratios are left-skewed, and two are right-skewed,
showing non-positive tendencies. The parameters ω illustrate a scale which is not high.
The parameters d f are small, confirming the fat tails of distributions. The empirical results
confirm a correct regression model choice and financial ratio features. The last two rows
present estimated parameters a and b, including the selected best models. The empirical
results show that all the best models are of the LDAMR (arithmetic) type, except for the
ratio A/E model, which is of the LDSMR (Schwartz) type.

Step (ii) consists of estimating the NIG distribution parameters of the residuals. Pa-
rameters are estimated using the method of moments (see, e.g., [32]), where the Matlab
nigpar function is used. The results are presented in Table 4. The estimated parameters
indicate heaviness α, high skewness β, a location close to zero µ, and a not large scale δ.
The NIG distributions adequately fit the data.

Table 3. Estimated parameters of LDAMR and LDSMR models.

Variable Eat/EBT EBT/EBIT EBIT/S
Model LDSMR LDAMR LDSMR LDAMR LDSMR LDAMR

Ln(x) −0.541 *** −0.581 *** −1.069 ***
x −0.995 *** −1.338 *** −0.728 ***
constant −0.114 *** 0.801 *** −0.029 *** 1.258 *** −2.803 *** 0.059 ***
alpha −1.050 −1.965 0.017 0.313 −0.607 −2.164
omega 0.00918 0.00815 0.02960 0.04846 0.27832 0.02047
df 0.89853 0.90846 0.84705 1.29175 1.59042 3.81904
LL 112.021 126.315 39.122 39.687 −38.228 130.651
chi2 18,000 250,000 84.363 257.752 40.380 66.421
p 0 0 0 0 0 0
BIC −204.38 −232.97 −58.68 −59.72 96.12 −241.64
AIC −214.04 −242.63 −68.24 −69.37 86.46 −251.30

a 0.9945541 1.3379895 0.7281569
b 0.8056467 0.9401605 0.0811942
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Table 3. Cont.

Variable Eat/EBT EBT/EBIT EBIT/S
Model LDSMR LDAMR LDSMR LDAMR LDSMR LDAMR

Variable S/A A/E re
Model LDSMR LDAMR LDSMR LDAMR LDSMR LDAMR

Ln(x) −0.567 *** −0.181 ** −0.028
x 0 −0.474 *** −0.209 ** −0.037
constant −0.436 *** 0.216 *** 0.099 0.364 ** −0.122 0.001
alpha −0.267 −0.017 4.826 4.621 0.321 0.204
omega 0.06734 0.03453 0.05878 0.12619 0.04628 0.00109
df 3.49384 6.92404 17.63702 14.06937 2.01174 1.71258
LL 42.827 77.310 97.033 57.209 58.271 243.776
chi2 23.471 13.011 7.874 10.515 0.551 0.894
p 0 0 0.005 0.001 0.458 0.345
BIC −66.85 −135.81 −174.41 −94.76 −96.88 −467.89
AIC −75.65 −144.62 −184.07 −104.42 −106.54 −477.55

a 0.4749463 0.1808063 0.0367403
b 0.4538435 0.5453796 0.0146380

Legend: ** and *** denote significance at 5% and 1%, respectively.

Table 4. NIG residuals distribution parameters of the chosen ratio models.

Model
Ratios α β µ δ

Eat/EBT LDAMR 11.1 −10.267 0.0084 0.001
EBT/EBIT LDAMR 202.3 201.861 −0.1447 0.0057
EBIT/S LDAMR 104.6 15.0765 −0.0147 0.0426
S/A LDAMR 64.5961 14.1858 −0.0229 0.1003
A/E LDSMR 105.2 104.37 −0.0694 0.0062
re LDAMR 12.9 12.3956 −0.0002 0.0087
EVA direct LDAMR 51.3976 14.7134 −0.0034 0.0518

In step (iii), the parameters of the t-copula function from residuals are estimated. The
Matlab function copula f it was used for parameter estimation as the average of the one
million simulations, particularly the degree of freedom v = 3.4583. Table 5 displays the
correlation matrix R.

Table 5. The correlation matrix of the residuals.

R Eat/EBT EBT/EBIT EBIT/S S/A A/E re

Eat/EBT 1 −0.2435 0.6426 −0.0029 −0.8151 −0.4035
EBT/EBIT −0.2435 1 −0.1462 −0.1772 0.2115 0.3274
EBIT/S 0.6426 −0.1462 1 0.217 −0.6158 −0.3574
S/A −0.0029 −0.1772 0.217 1 −0.0078 0.1567
A/E −0.8151 0.2115 −0.6158 −0.0078 1 0.4517
re −0.4035 0.3274 −0.3574 0.1567 0.4517 1

Steps (iv) and (v) encompass the simulation of six particular ratios and the relative EVA
measure’s calculation—400 steps were used in one scenario for the year with 106 scenarios.
The special Matlab functions copularnd and niginv reflecting the t-copula function were
utilised to generate random numbers and simulations. A presentation of 20 scenarios
(colored), including their interdependencies, is shown in Figure 1, where asymmetry, fat
tails, and jumps are apparent and verified. Likewise, every ratio demonstrates a different
and unique distribution shape. Furthermore, the distribution of the relative EVA measure
for one replication is illustrated in Figure 2 with decreasing distribution quantiles and
negative asymmetry.
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Figure 2. Relative EVA quantiles predicted distribution with the t-copula (one replication).

Step (vi) consists of the replication of step (v) 110 times due to the relative confidence
interval of a standard error being less than 0.1. The results are shown in Table 6 for the
mean value and quantiles, including the standard error and the parameter of preciseness.
The predicted probability distribution development is presented in Figure 3.
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Table 6. Quarterly prediction results of relative EVA measure in %.

Quarter I. Q II. Q
Parameter Er SEr dr Er SEr dr

Mean −0.898 0.231 9.578 −2.787 0.178 2.376
Median(·) 0.468 0.056 0.897 −0.062 0.060 7.271

Q
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nt
ile

s
(%

)

95 4.402 0.028 0.005 4.833 0.036 0.006
90 3.300 0.030 0.018 3.508 0.036 0.020
80 2.208 0.035 0.067 2.173 0.041 0.078
70 1.527 0.041 0.158 1.313 0.045 0.205
60 0.970 0.048 0.347 0.606 0.051 0.597
50 0.468 0.056 0.897 −0.062 0.060 7.271
40 −0.053 0.069 9.066 −0.770 0.073 0.673
30 −0.643 0.088 0.813 −1.645 0.099 0.358
20 −1.485 0.128 0.358 −3.047 0.162 0.222
10 −3.570 0.284 0.156 −7.143 0.405 0.111
5 −8.293 0.740 0.075 −16.235 0.826 0.043

Quarter III. Q IV. Q
Parameter Er SEr dr Er SEr dr

Mean −5.803 0.174 1.119 −7.570 0.398 1.960
Median(·) −1.122 0.073 0.486 −1.875 0.172 0.681
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70 0.633 0.055 0.514 0.212 0.126 3.532
60 −0.247 0.062 1.779 −0.812 0.144 1.254
50 −1.122 0.073 0.486 −1.875 0.172 0.681
40 −2.125 0.093 0.307 −3.145 0.218 0.490
30 −3.522 0.129 0.217 −5.008 0.306 0.362
20 −6.137 0.213 0.145 −8.582 0.496 0.241
10 −14.425 0.443 0.060 −19.332 0.994 0.101
5 −30.395 0.757 0.021 −38.508 1.649 0.036
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Figure 3. The relative EVA quantiles predicted distribution with the t-copula (110 replications).

Apparently, the precision of distribution parameters is commonly less than 10% and
mostly less than 5%.

3.3. The Prediction Results of Relative Direct EVA Performance Measure by Simulation

The direct approach is simplified by comparing the decomposition approach (Section 3.1)
in forecasting using only one measure and not using interdependencies. In step (i), the skew-t
regression is realised for the direct relative EVA measure for the LDAMR and LDSMR models.
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The best model selected according to the AIC and the BIC is the LADMR model (see Table 7).
Moreover, parameter α shows the right skewness of the direct relative EVA distribution, and
parameter d f confirms the existence of fat tails. The value of parameter ω demonstrates a
smaller scale.

In step (ii), the parameters of the NIG distribution residuals of the direct relative EVA
are estimated by the method of moments, as in, e.g., [32], applying the Matlab nigpar
function (see Table 4). The estimated parameters indicate lower heaviness α, high skewness
β, a location close to zero µ, and a small scale δ.

The last step (iii) involves a simulation of the direct relative EVA measure using
400 steps in one scenario for a year with 105 scenarios. The Matlab function copularnd
is used to generate random numbers and simulations. In step (iv), step (iii) is replicated
ten times, and the distribution of the direct relative EVA is obtained due to the relative
confidence interval of a standard error being determined to be less than 0.1 (see the results
in Table 8 and Figure 4). The precision of the distribution in all parameters is less than 5%.

Table 7. The estimated parameters of LDAMR and LDSMR models for direct EVA.

Model LDSMR LDAMR

Variable EVA EVA

Ln(x) −0.195 0
x 0 −0.706 ***
constant −1.072 * 0.007
alpha 0.604 0.537
omega 0.62002 0.02032
df 1.54496 2.28416
LL −65.996 105.743
chi2 14.663 14.663
p 0 0
BIC 150.68 −191.83
AIC 141.99 −201.49

a 0.7060
b 0

Legend: * and *** denote significance at 10% and 1%, respectively.
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Figure 4. The direct relative EVA quantiles predicted distribution (10 replications).
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Table 8. Quarterly prediction results of direct relative EVA measure in %.

Quarter I. Q II. Q
Parameter Er SEr dr Er SEr dr

Mean 1.727 0.003 0.253 2.057 0.003 0.187
Median(·) 1.495 0.002 0.041 1.837 0.005 0.084

Q
ua

nt
ile

s
(%

)

95 7.624 0.010 0.004 8.521 0.009 0.003
90 5.976 0.007 0.008 6.806 0.006 0.006
80 4.242 0.004 0.013 4.938 0.003 0.008
70 3.136 0.003 0.023 3.711 0.001 0.008
60 2.263 0.002 0.026 2.721 0.004 0.036
50 1.495 0.002 0.041 1.837 0.005 0.084
40 0.753 0.002 0.084 0.978 0.003 0.086
30 −0.023 0.004 3.936 0.082 0.001 0.352
20 −0.919 0.005 0.079 −0.967 0.004 0.059
10 −2.201 0.005 0.016 −2.422 0.004 0.012
5 −3.327 0.010 0.009 −3.659 0.005 0.004

Quarter III. Q IV. Q
Parameter Er SEr dr Er SEr dr

Mean 2.225 0.002 0.123 2.307 0.004 0.264
Median(·) 2.000 0.006 0.081 2.086 0.005 0.066

Q
ua

nt
ile

s
(%

)

95 8.826 0.008 0.003 8.912 0.009 0.003
90 7.078 0.007 0.007 7.183 0.005 0.005
80 5.173 0.002 0.005 5.276 0.004 0.012
70 3.924 0.002 0.011 4.026 0.006 0.035
60 2.912 0.004 0.036 3.008 0.007 0.059
50 2.000 0.006 0.081 2.086 0.005 0.066
40 1.119 0.006 0.135 1.192 0.005 0.109
30 0.191 0.006 0.747 0.258 0.005 0.456
20 −0.879 0.007 0.120 −0.816 0.003 0.060
10 −2.373 0.004 0.011 −2.323 0.006 0.020
5 −3.645 0.009 0.007 −3.599 0.007 0.006

3.4. The Evaluation of Predictive Precision of EVAr Distribution Forecasts

The precision evaluation is focused on a one-quarter prediction. Firstly, quarterly
predicted distributions for particular months are estimated using a simulation procedure
stemming from the estimated models’ parameters. The parameters of the decomposed EVA
are presented in Tables 3–5 and those for the direct EVA in Tables 4 and 7. One simula-
tion represents 106 scenarios, and 80 replications are applied. The resulting distribution
quantiles, including relative precision, are show in Tables 9 and 10.

The precision of the forecasted distribution was verified by the absolute and relative
tests comparing the decomposed and direct EVA predicted distribution. The STATA esftest
test, as in [68], was applied for the absolute test. For decomposed EVA, the W2 statistic
is 2.492, with a significance of 0.6461, and for direct EVA, the W2 statistic is 2.669, with
a significance of 0.61459. The H0 hypothesis was confirmed in both cases. Lower values
affirm that the decomposed EVA coincides more with a uniform distribution and is more
suitable. The relative test is evaluated using the logarithmic scoring rule, and STATA paired
t-test. The score of the decomposed EVA is −1.9788, and the score of the direct EVA is
−2.0718 (see Table 11). So, a bigger value means that the decomposed EVA forecasts the
probability distribution better. The value of the STATA paired t-statistic is 2.5099, with
a significance of 0.029. Therefore, hypothesis H0 is not confirmed, and the estimated
forecasting models of EVA differ. Consequently, the decomposed model, when compared,
is better as well.
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Table 9. Monthly quarter prediction results of decomposed relative EVA measure in %.

Month 3/2020 4/2020 5/2020 6/2020
Parameter Er dr Er dr Er dr Er dr

Er (Q) −0.898 9.578 −2.216 1.192 −2.799 1.665 −2.285 1.126
Medr (Q) 0.468 0.897 −0.084 7.266 −0.890 1.978 −0.151 3.743

Q
ua

nt
ile

s
(%

)

95 4.402 0.005 3.807 0.357 3.352 0.693 3.730 0.333
90 3.300 0.018 2.734 0.390 2.201 0.840 2.659 0.366
80 2.208 0.067 1.670 0.536 1.038 1.535 1.597 0.511
70 1.527 0.158 0.990 0.870 0.289 5.374 0.920 0.855
60 0.970 0.347 0.435 2.036 −0.322 5.020 0.366 2.219
50 0.468 0.897 −0.084 7.266 −0.890 1.978 −0.151 3.743
40 −0.053 9.066 −0.627 1.763 −1.479 1.373 −0.693 1.496
30 −0.643 0.813 −1.278 1.089 −2.168 1.173 −1.343 0.986
20 −1.485 0.358 −2.258 0.922 −3.165 1.184 −2.322 0.869
10 −3.570 0.156 −5.003 1.071 −5.716 1.610 −5.067 1.046
5 −8.293 0.075 −11.605 1.456 −11.779 2.459 −11.676 1.443

Month 7/2020 8/2020 9/2020 10/2020
Parameter Er dr Er dr Er dr Er dr

Er (Q) −3.301 1.533 −5.392 0.888 −2.836 1.795 −2.120 1.959
Medr (Q) −1.370 0.862 −3.467 0.329 −0.910 1.332 −0.129 8.026

Q
ua

nt
ile

s
(%

)

95 2.731 0.867 0.712 3.311 3.254 0.768 4.242 0.527
90 1.612 1.174 −0.423 4.422 2.122 0.935 3.066 0.575
80 0.489 3.351 −1.567 1.030 0.982 1.743 1.871 0.804
70 −0.232 6.975 −2.304 0.686 0.249 6.737 1.097 1.324
60 −0.821 2.059 −2.906 0.565 −0.351 4.963 0.463 3.232
50 −1.370 0.862 −3.467 0.329 −0.910 1.332 −0.129 8.026
40 −1.941 1.111 −4.051 0.512 −1.491 1.478 −0.743 2.501
30 −2.613 1.042 −4.736 0.550 −2.174 1.273 −1.463 1.579
20 −3.594 1.126 −5.729 0.671 −3.165 1.291 −2.501 1.347
10 −6.159 1.641 −8.290 1.143 −5.726 1.761 −5.126 1.583
5 −12.263 2.600 −14.378 2.074 −11.817 2.687 −11.396 2.233

Month 11/2020 12/2020 1/2021 2/2021
Parameter Er dr Er dr Er dr Er dr

Er (Q) −2.477 1.479 −0.746 5.072 −0.575 7.322 −0.591 7.761
Medr (Q) −0.496 1.858 1.183 0.905 1.301 0.947 1.178 1.180

Q
ua

nt
ile

s
(%

)

95 4.300 0.448 6.579 0.372 6.986 0.418 7.638 0.415
90 3.033 0.504 5.177 0.373 5.515 0.416 5.985 0.419
80 1.722 0.765 3.702 0.439 3.961 0.482 4.218 0.501
70 0.866 1.482 2.731 0.568 2.935 0.616 3.045 0.663
60 0.161 8.249 1.930 0.816 2.088 0.874 2.077 0.987
50 −0.496 1.858 1.183 0.905 1.301 0.947 1.178 1.180
40 −1.175 1.418 0.415 4.565 0.493 4.393 0.261 9.384
30 −1.965 1.058 −0.470 4.900 −0.432 6.047 −0.779 3.798
20 −3.080 0.983 −1.687 1.915 −1.693 2.151 −2.164 1.891
10 −5.725 1.232 −4.371 1.610 −4.390 1.774 −4.939 1.710
5 −11.956 1.841 −10.425 2.033 −10.290 2.245 −10.505 2.281
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Table 10. Monthly quarter prediction results of direct relative EVA measure in %.

Month 3/2020 4/2020 5/2020 6/2020
Parameter Er dr Er dr Er dr Er dr

Er (Q) 1.727 0.253 1.301 0.171 1.018 0.219 1.358 0.176
Medr (Q) 1.495 0.041 1.061 0.157 0.778 0.214 1.117 0.160

Q
ua

nt
ile

s
(%

)

95 7.624 0.004 7.146 0.206 6.863 0.214 7.203 0.143
90 5.976 0.008 5.508 0.172 5.225 0.181 5.568 0.105
80 4.242 0.013 3.788 0.122 3.505 0.132 3.845 0.160
70 3.136 0.023 2.691 0.118 2.408 0.132 2.748 0.175
60 2.263 0.026 1.824 0.160 1.541 0.189 1.882 0.185
50 1.495 0.041 1.061 0.157 0.778 0.214 1.117 0.160
40 0.753 0.084 0.328 0.632 0.045 4.562 0.387 0.834
30 −0.023 3.936 −0.440 0.478 −0.723 0.291 −0.384 1.054
20 −0.919 0.079 −1.335 0.269 −1.618 0.222 −1.276 0.316
10 −2.201 0.016 −2.609 0.217 −2.892 0.196 −2.550 0.190
5 −3.327 0.009 −3.737 0.216 −4.020 0.201 −3.674 0.197

Month 7/2020 8/2020 9/2020 10/2020
Parameter Er dr Er dr Er dr Er dr

Er (Q) 0.012 9.801 −1.105 0.202 0.248 0.466 0.925 0.241
Medr (Q) −0.227 0.461 −1.344 0.124 0.009 9.976 0.688 0.238

Q
ua

nt
ile

s
(%

)

95 5.867 0.211 4.740 0.310 6.094 0.182 6.768 0.181
90 4.222 0.129 3.103 0.306 4.457 0.119 5.129 0.148
80 2.498 0.155 1.382 0.334 2.733 0.149 3.410 0.131
70 1.400 0.253 0.286 1.111 1.638 0.211 2.313 0.126
60 0.538 0.413 −0.582 0.501 0.774 0.235 1.450 0.204
50 −0.227 0.461 −1.344 0.124 0.009 9.976 0.688 0.238
40 −0.962 0.227 −2.077 0.100 −0.723 0.317 −0.047 5.154
30 −1.730 0.179 −2.846 0.074 −1.494 0.194 −0.815 0.388
20 −2.624 0.097 −3.741 0.096 −2.390 0.125 −1.707 0.256
10 −3.898 0.128 −5.015 0.113 −3.664 0.131 −2.986 0.222
5 −5.012 0.183 −6.142 0.131 −4.779 0.177 −4.103 0.247

Month 11/2020 12/2020 1/2021 2/2021
Parameter Er dr Er dr Er dr Er dr

Er (Q) 0.733 0.236 1.641 0.149 1.817 0.110 2.203 0.093
Medr (Q) 0.496 0.312 1.403 0.197 1.576 0.115 1.965 0.092

Q
ua

nt
ile

s
(%

)

95 6.573 0.195 7.480 0.184 7.672 0.177 8.043 0.202
90 4.943 0.142 5.845 0.099 6.023 0.146 6.408 0.130
80 3.223 0.167 4.125 0.109 4.302 0.105 4.697 0.089
70 2.125 0.161 3.028 0.117 3.203 0.099 3.594 0.119
60 1.258 0.234 2.165 0.185 2.340 0.103 2.730 0.119
50 0.496 0.312 1.403 0.197 1.576 0.115 1.965 0.092
40 −0.239 1.028 0.670 0.616 0.842 0.327 1.227 0.201
30 −1.008 0.289 −0.096 3.417 0.078 3.725 0.463 0.638
20 −1.905 0.159 −0.990 0.364 −0.816 0.383 −0.435 0.868
10 −3.181 0.197 −2.271 0.296 −2.090 0.248 −1.712 0.419
5 −4.301 0.176 −3.387 0.345 −3.209 0.362 −2.830 0.278
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Table 11. Monthly quarter prediction testing parameters of relative EVA measure in %.

Month EVA Real EVA Decomposed EVA Direct

y Ft−1(yt) ft−1(yt) log(ft−1(yt)) Gt−1(yt) gt−1(yt) log(gt−1(yt))

3/2020 0.3210 47.1784 1.9194 −1.7168 34.4329 1.2887 −1.8899
4/2020 −2.3873 19.5304 0.4796 −2.3191 11.7439 0.4440 −2.3526
5/2020 −4.6252 14.2753 0.1059 −2.9752 4.6234 0.0751 −3.1241
6/2020 −1.9183 24.1251 0.4796 −2.3191 14.9605 0.7800 −2.1079
7/2020 −0.5430 64.7137 1.6949 −1.7709 45.7012 1.1161 −1.9523
8/2020 −0.9356 85.5211 1.1876 −1.9253 55.3575 0.7800 −2.1079
9/2020 0.8890 78.7295 1.9920 −1.7007 61.3347 1.3477 −1.8704
10/2020 1.2483 71.9514 1.7953 −1.7459 57.3554 1.3477 −1.8704
11/2020 2.0288 82.3402 1.4684 −1.8331 68.8856 1.3021 −1.8854
12/2020 0.9071 46.4045 1.9920 −1.7007 43.2295 1.3477 −1.8704
1/2021 2.6688 66.8581 0.9158 −2.0382 63.8094 1.1455 −1.9410
2/2021 0.5757 43.4305 1.9920 −1.7007 31.4751 1.2887 −1.8899

Average score −1.9788 −2.0718

4. Discussion and Conclusions

The relative EVA (Section 3.1) shows that the mean value decreases and so does
the median. The quarterly forecast decreased from a starting value of 1.0605% for the
mean value to −7.570%, and the median value decreased to −1.875%. The median looks
more stable compared to the expected value, even with the same negative trend. The
characteristics are huge and include negatively skewed quantile intervals. This is caused,
among other things, by considering the interdependencies of ratios under the asymmetry
of financial ratios and jumps. This phenomenon is hidden in relations among decomposed
financial ratios.

The results of direct relative EVA distribution prediction (Section 3.2) show and
confirm the historical behaviour of the measure. The median slightly increases to 2.086%,
and the mean value is 2.307%. Quantiles are almost symmetrically distributed, with positive
skewness. This approach does not include the possibility of using the hidden relations of
the system behaviour in the prediction.

A comparison of the predicted distributions is apparent in Tables 6 and 7, and a
graphical comparison for the fourth quarter is demonstrated in Figure 5.
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Figure 5. A comparison of decomposed and direct relative EVA predicted distribution for the 4th
quarter.

The comparison of the decomposed and direct relative EVA one-quarter prediction
(Section 3.3) was tested using absolute and relative tests. The absolute test showed that the
distribution prediction for the decomposed EVA is more accurate in comparison with the
direct EVA. Similarly, the relative scoring logarithm test and the paired t-statistic confirmed
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the better accuracy of the decomposed EVA. Both applied tests verified the superiority of
the decomposed EVA forecast model in the particular data case.

The proposed and applied probability distribution decomposition forecasting method
is a more adequate and precise approach allowing the prediction of complete uncertainty
compared to point prediction.

The proposed innovative advanced forecasting simulation method was verified as a
proper conception for the problem of modelling and reflecting empirical data. The LDAMR
and LDSMR processes sufficiently fit the chosen financial ratios, and the skew t-regression
estimation was valid. The Monte-Carlo simulation of the NIG distribution with a t-copula
adequately serves for a decomposed relative EVA distribution prediction, including its
precision. It was shown that the direct relative EVA distribution prediction captures the
historical behaviour of the complex measure only superficially and simplistically. Therefore,
the direct EVA approach is unsuitable for predicting complex, synthetic, and risk measures,
such as an EVA indicator. The EVA measure can be explained by reflecting the complexity
and comprehensiveness of particular indicators, including their relationship phenomena
hidden in financial performance.

The empirical results were verified, proving that the mean value and median of the
decomposed relative EVA of the Czech automotive production sector tends to decrease in
the future, with negative asymmetry and high volatility hidden in the decomposition of the
financial ratios. The median is more stable in comparison to the mean value, even with a
negative trend. The applied model led to huge volatility, with extreme values. This volatility
is caused, among other things, by considering the ratios’ interdependencies and jumps.
This phenomenon is hidden in the empirical historical data and in the relations among
exact pyramid-decomposed financial ratios, and it looks both realistic and interesting.

The prediction of the decomposed relative EVA confirms that the sector is exposed
to some fundamental structural changes. It is influenced by the limited qualified work-
ers’ capacity, the efficiency of production, and industry competition. The sector is also
affected by economic shocks caused by regulatory ecological measures, competitiveness,
and substantial technological changes. New phenomena not considered in the model are
pandemics, military attacks, and the shortage of spare parts and input material sources.

Further research can be devoted to developing other pyramid decomposition, Levy
model types, copula functions, parameter estimations, and simulation approaches. Time
series can be prolonged, and crisis periods can be included in them. For comparison, the
financial performance of other sectors can also be analysed and predicted.
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