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Abstract: We present a technique to solve the linear integer model with variable bounding. By
using the continuous optimal solution of the linear integer model, the variable bounds for the basic
variables are approximated and then used to calculate the optimal integer solution. With the variable
bounds of the basic variables known, solving a linear integer model is easier by using either the
branch and bound, branch and cut, branch and price, branch cut and price, or branch cut and free
algorithms. Thus, the search for large numbers of subproblems, which are unnecessary and common
for NP Complete linear integer models, is avoided.
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1. Introduction

It is challenging to solve the NP Complete linear integer programming (LIP) model
using the available methods [1–3]. Linear integer models are used when the continuity
assumption in linear programming (LP) does not hold. For discrete quantities such as the
number of computer machines, aircraft, automobiles, personnel, warehouses, or stations,
continuity is not a strong assumption. Several approaches can be used to solve this model,
including branch and bound (BB) [4,5], branch and price (BP) [6], branch and cut (BC) [7],
branch cut and price (BCP) [8], and branch cut and free (BCF) [9] algorithms. In addition,
reformulation techniques that can help reduce the complexity of LIP models exist [10]. The
LIP models can also be solved by using a characteristic equation [1]. A hypermetaheuristic
approach to solving mixed integer optimization problems was proposed by [11]. Data
envelopment analysis (DEA)-related problems were solved to prove the efficiency and
validity of the method; however, proving the validity of DEA-related problems only limited
the study. A new strategy to solve linear integer programming problems with simplex
directions was presented by [12]. To prove the validity of the method, the results were
compared with CPLEX software results. With this method, the authors managed to compute
accurate solutions for 34 out of 100 problems. Mixed integer linear programming was
used by [13] to solve the station capacity allocation problem of a star-tree pipe network.
The results of the model proved the validity of the method. Integer linear programming
was applied in [14] to optimize energy-aware high-level synthesis and reliability. The
results were compared with a genetic algorithm for several problems, and the integer linear
programming approach resulted in optimal solutions. Mixed integer models were applied
in [15] to optimize a vanadium redox flow battery with electrolyte maintenance, variable
efficiencies, and capacity fade. The results proved that the problem was solved in a more
accurate way when using this method as compared with other simpler methods. The
branch and bound approach was enhanced in [16] to solve the knapsack linear integer
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problem. The problems were solved as subproblems that were less complex and required
fewer iterations to obtain the optimal solution.

We present a way to find a bound such that a predetermined number of integers is
accommodated in a calculated variable range. Using the continuous optimal solution of the
linear integer model, the integer bounds for the basic variables are approximated and then
used to calculate the optimal integer solution. The search for large numbers of subproblems,
which are unnecessary and common for NP Complete linear integer models, is avoided.
Linear integer models are NP-hard problems; thus, computing the optimal solution in
a reasonable computational time is remarkably difficult. Combining metaheuristics and
exact solution approaches is an efficient and effective solution. The variable-bounding
method that we propose helps one to determine the variable bounds for linear integer
models and thus reduces the number of iterations when applying exact-solution approaches
such as branch and bound and branch and cut, among others, to solve the linear integer
models. The approximated integer bounds for the variables are utilized when calculating
the optimal integer solutions. The exact methods require fewer iterations when the integer
bounds for the variables are approximated first; thus, the search for a large number of
subproblems, which are unnecessary, is avoided. Essentially, the main contribution of
this research is the development of the variable-bounding method, which can be used
to approximate the variable integer bounds for the variables; the approximated bounds
will be utilized to reduce the complexity and the number of iterations when applying the
exact-solution approaches.

2. The Linear Integer Programming (LIP)

Maximize Yo = c1y1 + c2y2 + . . . + cnyn,
Such that :

a11y1 + a12y2 + . . . + a1nyn ≤ b1,
a21y1 + a22y2 + . . . + a2nyn ≤ b2,

. . .
am1y1 + am2y2 + . . . + amnyn ≤ bm,

(1)

where aij, bj and ci are integers, Yo is the objective value, yi ≥ 0 and an integer,
i = 1,2,. . . ,m and j = 1, 2, . . . , n.

3. The Continuous Optimal Table

The integer restrictions on the LIP model, which restrict integers that are difficult to
use, can be relaxed. This is performed by changing the LIP model into an ordinary linear
program (LP), as the LP is easier to solve than the LIP version. The relaxed LP form is
solved to obtain a continuous optimal solution, which is provided in Table 1.

Table 1. LP continuous optimal table.

y1 y2 . . . ym s1 s2 . . . sm R.H.S

Yo 0 0 . . . 0 λ1 λ2 . . . λm R

y1 1 0 . . . 0 π11 π12 . . . π1m β1

y2 0 1 . . . 0 π21 π22 . . . π2m β2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ym 0 0 . . . 1 πm1 πm2 . . . πmm βm

where λ1, λ2, . . . , λm, β1, β2, . . . , βm are non-negative constants, whereas πij and R are constants. The variables
y1, y2, . . . , ym are made basic and s1, s2, . . . , sm are made nonbasic for convenience. Any other arrangement
is also possible.

4. Determining the Expressions for the Basic Variable Limits

Let λ1s1 + λ2s2 + . . . + λmsm ≥ ∆Y0 (2)
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where ∆Y0 is a reduction in the optimal objective value R. By introducing a slack variable
sm+1, the constraint becomes Equation (3)

−λ1s1 − λ2s2 − . . .− λmsm + sm+1 = −∆Y0 (3)

By adding this extra row to the current optimal solution, it becomes Table 2.

Table 2. Adding a new constraint.

y1 y2 . . . ym s1 s2 . . . sm sm+1 R.H.S

Z 0 0 . . . 0 λ1 λ2 . . . λm 0 R

y1 1 0 . . . 0 π11 π12 . . . π1m 0 β1

y2 0 1 . . . 0 π21 π22 . . . π2m 0 β2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ym 0 0 . . . 1 πm1 πm2 . . . πmm 0 βm

sm+1 0 0 . . . 0 −λ1 −λ2 . . . −λm 1 −∆Y0

We then applied the dual simplex procedure, and n possible solutions were found.
The first basic variable in the first solution is of the form provided in Equation (4):

y1 = β1 + h1
1∆Y0, ∀i. (4)

The second basic variable in the first solution is of the form provided in Equation (5):

y2 = β2 + h1
2∆Y0, ∀i. (5)

The mth basic variable in the mth solution is of the form provided in Equation (6):

ym = βm + h1
m∆Y0, ∀i. (6)

where h
−
i
i is a constant and

−
i = 1, 2, ..., m

Thus,
x1
x2
. . .
xm

 =


β1 + h1

1∆Z
β2 + h1

2∆Z
. . .

βm + h1
m∆Z

,


x1
x2
. . .
xm

 =


β1 + h2

1∆Z
β2 + h2

2∆Z
. . .

βm + h2
m∆Z

, . . . ,


x1
x2
. . .
xm

 =


β1 + hm

1 ∆Z
β2 + hm

2 ∆Z
. . .

βm + hm
m∆Z

 (7)

From these m possible solutions, the bounds for the variables that are nonbasic can be
determined using the formula provided in Equation (8):

βi + `L
i ∆Y0 ≤ yi ≤ βi + `U

i ∆Y0 (8)

where
`L

i = min
[
h1

i , h2
i , . . . , hm

i

]
(9)

and
`U

i = max
[
h1

i , h2
i , . . . , hm

i

]
(10)

5. Arranging Variables in the Order of Their Restrictions

Arranging the variables in an order that begins with the most restricted variables
will reduce the number of iterations during the searching process. The approaches
that are branch-and-bound-related converge fast if the first iteration begins with the
most-restricted variables.
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5.1. Ordering Branching Variables

Branching must always begin with the most-restricted variables. In this case, the
variable with the most restrictions is defined as the variable with the lowest number of
possible integral values.

Proof. Let the number of possible integer values for variable xi be provided by Ii.
Thus,

n(xi) = ωi (11)

Thus, the number of possible integers for the various variables are provided in
Equation (12):

n(x1) = ω1,
n(x2) = ω2,

. . .
n(xm) = ωm.

(12)

Additionally, let the number of branches in ascending order be Equation (13):

ω1 ≤ ω2 ≤ . . . ≤ ωm (13)

Thus, variable y1 is the most restricted variable, followed by y2 and then variable y3 in
that order up to variable ym. The following number of nodes are visited when constructing
the search tree. In this type of search process, the worst-case scenario is assumed. �

5.2. Starting with the Most Restricted Variable

Step 1: Number of iterations taken = ω1
Step 2: Number of iterations taken = ω1ω2
Step m: Number of iterations taken = ω1ω2 . . .ωm
Let the total number of iterations (∑ iterations(A)) be provided by Equation (14) :

∑ iterations(A) =ω1 +ω1ω2 + . . . +ω1ω2 . . .ωm (14)

5.3. Starting with the Variable with the Least Restriction

Step 1: Number of iterations taken = ωm
Step 2: Number of iterations taken = ωmωm−1
Step m: Number of iterations taken = ωmωm−1 . . . ω1
Let the total number of iterations (∑ iterations(B)) be provided by Equation (15) :

∑ iterations(B) =ωm +ωmωm−1 + . . . +ωmωm−1 . . .ω1 (15)

Therefore,
∑ iterations(A) ≤∑ iterations(B) (16)

More information on the search process can be found in [17], and in this search process,
the worst-case scenario is assumed. Let the restriction index on variable yi be provided by
γi; then, we have Equations (17) and (18):

γi = `U
i ∆Z− `L

i ∆Z (17)

γi = ϕi∆Z (18)

where ϕi = `U
i − `L

i . Thus, the variables can be arranged in their restricted order by
arranging their indices in ascending order. The smaller the value of ϕi, the more restricted
the variable yi is. We present a way to find a bound such that a predetermined number of
integers is accommodated in a calculated variable range.
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6. Calculating the Basic Variable Integral Bounds

The decrease in the objective value (∆Y0) can be obtained by solving the following
single variable LP:

Minimize = ∆Y0,
Such that :
ϕ1∆Y0 ≥ ω,
ϕ2∆Y0 ≥ ω,

. . .
ϕm∆Y0 ≥ ω

(19)

where ω is a range that accommodates at least an integer. The optimal solution to
Equation (19) is readily available and is provided by Equation (20):

∆Y0 = Max
[
ω

ϕ1
,
ω

ϕ2
, . . . ,

ω

ϕm

]
(20)

6.1. Proof

The LP model in Equation (19) can be rewritten as Equation (21):

Minimize = ∆Y0,
such that

∆Y0 ≥ ω
ϕ1

,
Y0 ≥ ω

ϕ2
,

. . .
Y0 ≥ ω

ϕm

(21)

The dual variable of Equation (21) becomes that provided in Equation (22):

Maximize ω
ϕ1

x1 +
ω
ϕ1

x2 + . . . + ω
ϕ1

xm,
suchthat

x1 + x2 + . . . + xm ≤ 1
(22)

where xi is the dual variable.

6.2. Determining the Value of ω

The number ω can be determined in many ways. One of these ways is to use the
interval provided in Equation (23):

1 < ω (23)

This interval is valid because the shortest distance between any two integers is one. If
the distance is less than one, then we may not find an integer in the interval:

2 ≤ ω (24)

It may seem logical to start from two onwards:

ω = 2, 3, 4, . . . (25)

The range ω is not necessarily an integer; in this case, we are using integers for
convenience. Any value of ω greater than one may be used. Once the restriction expressions
for the basic variables are known, the variable bounds can be determined. From the most
restricted variable yi, the decrease in the objective value can be calculated given that at
least two integers are accommodated in the bounds as provided in Equation (26):

∆Y0 = Min

[
1 + f[βi]

`U
i

or
2− f[βi]

`U
i

,
1 + f[βi]

`L
i

or
2− f[βi]

`L
i

]
(26)
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where f[βi] is the fractional part of βi.
1+f[βi]

`U
i

and 1+f[βi]

`L
i

are used when `U
i < 0 and `L

i < 0,

respectively, and 2−f[βi]

`U
i

and 2−f[βi]

`L
i

are used when `U
i > 0 and `L

i > 0, respectively.

Proof. The expression βi + `L
i ∆Y0 ≤ yi ≤ βi + `U

i ∆Y0, provided in Equation (8), can be
written as Equation (27):

−
βi + f[β] + `L

i ∆Y0 ≤ yi ≤
−
βi + f[β] + `U

i ∆Y0 (27)

where
−
βi is the integer and f[βi] is the fractional part of βi.

For the bounds
−
βi + f[β] + `L

i ∆Y0 and
−
βi + f[β] + `U

i ∆Y0 to be integers, f[β] + `L
i ∆Y0

and f[β] + `U
i ∆Y0 must be integers. This is possible as per Equations (28) and (29).

f[β] + `L
i ∆Y0 = 1, 2, 3, . . . (28)

[β] + `U
i ∆Y0 = 1, 2, 3, . . . (29)

For `U
i > 0 and `L

i > 0, respectively, at least two integers are within the bounds of the
most restricted variable provided in Equation (30):

f[β] + `L
i ∆Y0 = 2 (30)

and
f[β] + `U

i ∆Y0 = 2 (31)

Thus, ∆Y0 = 2−f[βi]

`U
i

and ∆Y0 = 2−f[βi]

`L
i

.

Similarly,
f[β]− `L

i ∆Y0 = 0,−1,−2, . . . (32)

f[β]− `U
i ∆Y0 = 0,−1,−2, . . . (33)

because `U
i < 0 and `L

i < 0.
Additionally, at least two integers are present in between the bounds provided in

Equations (34) and (35):
f[β]− `L

i ∆Y0 = −1 (34)

f[β]− `U
i ∆Y0 = −1 (35)

Thus, ∆Y0 = 1+f[βi]

`U
i

and ∆Y0 = 1+f[βi]

`L
i

.

The value of ∆Y0 is substituted to obtain the bounds for all the basic variables, and
once these are available, they can easily be changed to integers, as shown in Equation (36):

IL
i ≤ yi ≤ IU

i (36)

where IL
i and IU

i are the lower and upper integer limits, respectively. �

7. Determining the Bound for the Liner Integer Model

A linear integer model can usually be solved with the approximated integer bounds
with fewer subproblems than in the case where no variable bounds are present. If no
feasible solution exists, thenω1s1 +ω2s2 + . . . +ωnsn ≥ ∆Y0 or Equation (37):

Y0 ≤ R− ∆Y0 (37)

Equation (37) depicts a strong bound for the linear integer model. This is then used
as an upper bound for the branch and bound, branch and cut, branch and price, branch
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cut and price, and branch cut and free algorithms, or any selected suitable procedure. If a
feasible solution exists, then the upper bound is optimal.

Justification
The whole area

R− ∆Y0 ≤ Y0 ≤ R (38)

is searched for integer points, and the feasible optimal integer solution for this small region
is the global optimal one.

7.1. Procedure for Finding a Strong Bound

Step 1: Relax and solve the model so that a continuous optimal solution can be obtained.
Step 2: Express the basic variables in terms of their approximated integer variable bounds.
Step 3: Solve the LIP model now with the approximated variable bounds. When

branching, start with the most restricted variables.
Step 4: If the solution is feasible, then it is optimal; otherwise, an upper bound is

obtained as Y0 ≤ R− ∆Y0 and is used in the selected approach for the LIP model.

7.2. Numerical Illustration

Consider the three-variable linear integer model provided in Equation (39) that is used
to prove the validity and applicability of the variable bounding approach. Without the
introduction of the variable bounds, the branch and bound method requires 9123 iterations
to solve the problem, and only 3 iterations are required when variable bounds are com-
puted first. This numerical illustration clearly shows the importance and advantages of
approximating the integer variable bounds.

MaximizeY0 = 17y1 + 19y2 + 22y3,
Such that

9y1 + 15y2 − 15y3 ≤ 87,
10y1 − 12y2 + 6y3 ≤ 45,

−7y1 + 13y2 + 15y3 ≤ 99, 008.

(39)

where y1, y2, y3 ≥ 0 and integer.
The continuous optimal table is provided in Table 3.

Table 3. Continuous optimal table.

y1 y2 y3 s1 s2 s3 R.H.S

Yo 0 0 0 1.1918 1.9440 1.8809 186,410.8961

y1 1 0 0 0.0438 0.0713 0.0153 1519.3595

y3 0 0 1 −0.0078 0.0377 0.0438 4336.3971

y2 0 1 0 0.0326 −0.0051 0.0346 3430.5815

Whereby the variables are expressed in terms of ∆Y0. From the continuous optimal
table provided in Table 3, we have Equation (40):

1.1918y1 + 1.944y2 + 1.8809y3 ≥ ∆Y0 (40)

Because n = 3, the possible solutions in terms of ∆Y0 are provided as follows:
When variable s1 enters the basis:

y1 = 1519.3595− 0.0368∆Y0,

y2 = 3430.5815− 0.0274∆Y0,

y3 = 4336.3971− 0.0065∆Y0.
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When variable s2 enters the basis:

y1 = 1519.3595− 0.0367∆Y0,

y2 = 3430.5815− 0.0026∆Y0,

y3 = 4336.3971− 0.0194∆Y0.

When variable s3 enters the basis:

y1 = 1519.3595− 0.0081∆Y0,

y2 = 3430.5815− 0.0184∆Y0,

y3 = 4336.3971− 0.0233∆Y0.

By arranging the variables in the order of their descending restriction, the variable
bounds become that provided in Equation (41):

1519.3595− 0.0368∆Y0 ≤ y1 ≤ 1519.3595− 0.0081∆Y0
3430.5815− 0.0274∆Y0 ≤ y2 ≤ 3430.5815− 0.0026∆Y0
4336.3971− 0.0233∆Y0 ≤ y3 ≤ 4336.3971− 0.0065∆Y0

(41)

The variable ranges can be calculated as provided in Equation (42):

Variable y1, τ1 = −0.0081∆Y0 + 0.0368∆Y0 = 0.0287∆Y0,
Variable y2, τ2 = 0.0026∆Y0 + 0.0274∆Y0 = 0.03∆Y0,

Variable y3, τ3 = 0.0065∆Y0 + 0.0233∆Y0 = 0.0298∆Y0.
(42)

By arranging the variables in their approximated descending order of restriction, we
have the following:

Descending order
y1y3y2−−−→

Calculating the basic variable limits
The most restricted basic variable is y1; thus,

1519.3595− 0.0368∆Y0 ≤ y1 ≤ 1519.3595− 0.0081∆Y0 (43)

Because ∆Y0 = Min
[

1+f[βi]

`U
i

or 2−f[βi]

`U
i

, 1+f[βi]

`L
i

or 2−f[βi]

`L
i

]
, the smallest ∆Y0 (i.e., ∆Y1)

is calculated by using the equation provided in Equation (44):

∆Y0 = Min
[

1.3595
0.0368

= 36.9428,
1.3595
0.0081

= 167.8395
]
= 36.9428 (44)

By replacing ∆Y0 with ∆Y1, we have Equation (45):

1518.00 ≤ y1 ≤ 1519.06
3429.57 ≤ y2 ≤ 3430.68
4335.53 ≤ y3 ≤ 4336.63

(45)

After adjusting to the integer bounds, we have Equation (46):

1518 ≤ y1 ≤ 1519
3430 ≤ y2 ≤ 3430
4336 ≤ y3 ≤ 4336

(46)
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The upper bound is provided by Y0 ≤ 186, 410.8961− 36.9428; thus,

Y0 ≤ 186, 373.9533 (47)

Solving the LIP model with the approximated integer bounds
By selecting an automated branch and bound algorithm and solving the LIP model

with the approximated integer bounds, a feasible solution is obtained and verified in only
three iterations. The optimal solution obtained is

Y0 = 186, 368,
y1 = 1518,
y2 = 3430,
y3 = 4336

(48)

Without the bounds, the branch and bound method (automated version) requires
9123 iterations to obtain the same optimal solution provided in Equation (48).

8. Conclusions

We solved linear integer models by using the variable bounding method. Finding a
bound is important and is supposed to be the first attack method that is required for any
linear integer programming problem. The computational complexity and many iterations
that are required to search the NP Complete LIP problems may be significantly reduced
by using bounds. One can independently generate n possible solutions, which are used to
calculate limits. These independent calculations allow one to use parallel processors [18].
Using parallel processing alongside the available approaches for linear integer program-
ming has been unsuccessful. A stronger bound can be found by increasing the number
of integers accommodated within the limits of the most restricted variable. However,
there should be a balance between the strength of the bound and the resulting number of
iterations required to generate it.
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