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Abstract: The price of oil is nowadays a hot topic as it affects many areas of the world economy.
The price of oil also plays an essential role in how the economic situation is currently developing
(such as the COVID-19 pandemic, inflation and others) or the political situation in surrounding
countries. The paper aims to predict the oil price movement in stock markets and to what extent the
COVID-19 pandemic has affected stock markets. The experiment measures the price of oil from 2000
to 2022. Time-series-smoothing techniques for calculating the results involve multilayer perceptron
(MLP) networks and radial basis function (RBF) neural networks. Statistica 13 software, version 13.0
forecasts the oil price movement. MLP networks deliver better performance than RBF networks and
are applicable in practice. The results showed that the correlation coefficient values of all neural
structures and data sets were higher than 0.973 in all cases, indicating only minimal differences
between neural networks. Therefore, we must validate the prediction for the next 20 trading days.
After the validation, the first neural network (10 MLP 1-18-1) closest to zero came out as the best.
This network should be further trained on more data in the future, to refine the results.
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1. Introduction

Oil prices require accurate predictions, given their imperativeness for the global econ-
omy [1]. Apart from fluctuating supply and demand, oil price movement reflects economic
development, financial markets, conflicts, wars and political issues [2]. Vochozka et al. [3]
argue that world oil prices spread into global economies, violently shaking macroeconomic
dependent variables. Drebee and Razak [4] suggest that fluctuations in oil prices disrupt
economic growth. Khan et al. [5] pointed out the beneficial influence of global crises and
the COVID-19 pandemic when investors start to speculate about the possible commodity
price volatility, while Dai et al. [6] showed dramatic oil price changes during emergencies.

Resource prices seriously harm the exchange rate [7]. Vochozka, Suler and Marousek [8]
suggest that the EUR/USD rate strongly depends on oil values, reflecting shifts in supply
and demand and global macroeconomic and geopolitical issues [9]. Supply and demand
and the investors’ sentiment chiefly factor into oil price movement [10].

The mounting financial crisis has driven up oil and gas prices, indicating increases
by dozens of percentage points compared with previous years. Gas prices have recently
soared by dozens of crowns [11]. Many markets can readily adapt to rising costs but fail
to conform when costs decrease [12]. Chen and Sun [13] revealed an asymmetry between
gas prices in China and the global trend, indicating direct correspondence when the price
soars but maladaptation in the event of a slump. Lv, Dong and Dong [14] found that oil
prices more profoundly affect stock returns in the sector of new energy vehicles than in
other clean industries.

Xu et al. [15] suggest that the rise in gas prices should not shortly exceed 20%, to ensure
a stable consumer market. Valadkhani and Smyth [16] confirmed that while consumers feel
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a slow and steady drop in commodity prices, their perception of the opposite is delayed
but more intensive.

The Czech Association of Petroleum Industry and Trade [17] predicts the highest
demand for oil in the 2030s and 2040s.

Fahmy [18] points to the growing interest in clean energy, which has profoundly
impacted its price compared with oil prices and technological shares. Liden et al. [19] and
Wang et al. [20] revealed that excessive oil and gas extraction has seriously polluted the
environment. Mohamued et al. [21] proved an inverse relationship between oil prices and
gas emissions in oil-exporting and -importing countries. The oil and gas sector has seen
a tremendous improvement in oil and gas recycling. Although oil field development is
costly, well-planned and advanced low-cost strategies will go a long way [22].

The work aims to predict oil prices on stock markets, assessing the impact of the
COVID-19 pandemic. Toward this aim, we formulated the following research questions:

RQ1: What will be the oil and gas prices on the commodity market in November 2022?
The global economies are always subject to change, intermittently experiencing fi-

nancial crises (e.g., 1929, 2008) or worldwide epidemics such as the COVID-19 pandemic.
The second research question focuses on measuring the pandemic’s impact on the price
movements of the given resources.

RQ2: What was the impact of the COVID-19 pandemic on oil stock prices?
The article includes literary research with links to up-to-date scholarly literature, while

the methods involve a regression analysis using neural networks evaluated in the Statistica
program. The results contain our findings, a discussion of the research questions and a
comparison of our results with those of other authors. The conclusion reviews the findings,
giving practical recommendations.

The paper refers to a very current topic addressing companies, researchers and gov-
ernments. Nowadays, the price of oil, and subsequently the price of gasoline, is a highly
discussed topic, especially with regard to the ongoing energy crisis, the war in Ukraine and
instability in the world’s financial markets. This article uses the method of artificial neural
networks, which is becoming more and more important in all possible problem-solving
applications across all disciplines. The article is also unique in that it includes an authentic
validation of the predicted oil price results. After further training the most successful neural
networks for prediction, the selected networks can be applied to this issue in practice. An
extensive sample of historical data is also used, which should ensure the relevance of the
research. We are convinced that the results of this article will not only be beneficial to the
academic community but also serve as a basis for further follow-up research, whose aim is
to produce the most accurate prediction of oil prices in world markets.

2. Literature Research

Oil price movement calls for an accurate prediction, as it profoundly affects global
economies [23,24]. In the field of energetics, researches have long discussed unstable oil
prices in the stock market [25,26]. Qazi [27] found that oil price growth, triggered by global
economy reinvigoration, hugely impacts the sentiment in the stock market. Low stock
volatility and rising oil prices arouse rising expectations of money flows, whereas high
fluctuations make markets focus on the crippling effects of enormous input costs.

Singhal, Choudhary and Biswal [7] revealed that oil prices send unmistakable signals
to monetary and fiscal policies, profoundly affecting stock markets and rates of exchange.
We can predict the impacts of volatile oil prices on the EUR/USD exchange rate, improving
corporate competitiveness in international markets [28]. Vrbka, Horák and Krulicky [29]
explored the influence of oil price movement in the global market on Chinese currency by
using neural networks. Although their results showed that fluctuating oil prices in stock
markets somehow affect the CNY/USD exchange rate, they failed to gauge the extent.

Vochozka, Horák and Krulicky [28] used an innovative neural network, long short-
term memory (LSTM), for predicting oil prices, combining the created neural network
with the integrated LSTM to forecast Brent oil prices. Herrera et al. [30] applied the same
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technique to explain the prices of oil, coal and gas. The RMSE and MAPE approaches
measure the models’ accuracy, including an M-DM test for detecting statistically significant
differences. The results show that machine-learning methods hugely outplay traditional
econometric procedures, precisely identifying breakeven points.

Khan et al. [5] used a dynamic simulation model for their experiment. They revealed
that oil prices, the number of remittances and direct cross-border investments kickstart
the stock market, whereas exchange rates have rather damaging effects. Zhao, Zhang and
Wei [31] applied a recursive dynamic model of general equilibrium, exploring the impacts
of rising and falling oil prices on investments and sectors of renewable energy resources.
The authors found that rising oil prices may encourage investments in renewable energy,
reduce the factual GNP and improve the environment, while the declining trend has had
the opposite effect. Dabrowski et al. [32] used block-exogeneity panel vector autoregressive
models to prove that shocks in oil prices and unsteady market trends seriously harm the
respective economies of oil-exporting countries.

Denghani and Zangeneh [33] proposed an alternative method, including biogeo-
graphic optimization (BMMR-BBO), to estimate West Texas Intermediate’s oil prices, achiev-
ing better outcomes than those of other techniques. Kumeka, Uzoma-Nwosu and David
Wayas [34] used Granger causality, revealing that exchange rates may even stimulate the
market, unlike what happened before the COVID-19 pandemic. On the other hand, the
impulse response functions (IRFs) showed that oil price shocks provoked negative re-
sponses in exchange rates only after the pandemic. Zafeirou et al. [35] found that high oil
prices induced demand for agricultural products used for biodiesel and ethanol production,
where energy and agricultural commodity markets closely interact.

The presented studies suggest an avid global interest in the discussed topic, including
many articles and innovative methods. However, the best techniques have yet to come.
Scholars have also measured how oil prices shook stock markets or affected the environ-
ment. Artificial neural networks involve the most applicable methods. We, therefore, use
neural structures for predicting oil price movement in November 2022 (RQ1), while time
series will be better at assessing whether the COVID-19 pandemic harmed or left intact the
given commodity (RQ2).

3. Materials and Methods

We measure oil price movement from 2000 to 2022 and the associated emission limits
and costs that companies incurred. Detecting the fuel prices at gas stations allows us to
explore the driving forces behind the substantial fuel price rise, either out of necessity or
out of a distributor’s tactics to exploit the situation.

We collected the data from the macrotrends.net website access of 2 October 2022,
disclosing oil prices on every negotiated day. Our study involved Brent oil prices (WTI)
measured in barrel units, comprising daily data from the New York Stock Exchange (NYSE).
The stock market uses two indexes, namely the NYSE Composite, covering all negotiated
stock, and the Dow Jones Industrial Average (DJIA), adopted by 30 prominent companies
listed in stock markets in the US. The NYSE is open from 9:30 a.m. to 4.00 p.m. local
time, i.e., from 3:00 p.m. to 10:00 p.m. in the Czech Republic. NYSE markets observe US
holidays, during which the exchange is closed.

Figure 1 presents the data distribution in three diverse histograms covering the period
from 1 August 2020 to 29 December 2022. The histogram in gray represents the distribution
based on level data; the blue is based on the logarithmic series; and the logarithmic return
series is in red. The predictions are based on three types (level, log, and log return), while
only level 1 is presented in the results section. However, estimated predictions with log
and log return series are available on request. As can be seen from Figure 1, the distribution
of data improves by moving from level to log and from log to log return. The series has
the same number of observations, 5706, but differs in outliers. Over 58 data points were
missing, but this problem has been solved through data interpolation.
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Figure 1. Histogram distribution with level, log, and log return series. Source: authors’ elaboration,
based on R studio.

The descriptive statistics Table 1 in the Appendix shows the skewness, kurtosis, the
Jarque–Bera test, the minimum, the maximum and the number of observations. As can be
seen from the skewness, kurtosis and the Jarque–Bera test, our data do not hold a normal
distribution. However, this is quite natural for a time series with a daily frequency.

Table 1. Descriptive statistics, based on level, log and log return series.

Type n Mean Median Std Skew Kurtosis Min Max JB

BCO (Level) 5607 1070.8 1204.3 511.37 −0.15 −1.21 255.1 2051 0.000

BCO (Log) 5607 6.82 7.09 0.61 −0.74 −0.84 5.54 7.63 0.000

BCO (Log Return) 5607 0.00 0.00 0.01 0.29 5.42 −0.1 0.09 0.000

Source: authors.

We use Statistica 13 software from TIBECO for data handling, applying linear regres-
sion and neural networks. The linear analysis involves a sample including the following
functions: linear, polynomial, logarithmic, exponential, weighted polynomial and poly-
nomial negative exponential smoothing. First, we calculate the correlation coefficient, i.e.,
the dependence of oil and gas prices on time. Regression neural structures will allow
for a 0.95% confidence interval, generating the multilayer perceptron (MLP) and radial
basis function (RBF) networks. The calculations comprise 5805 data, where time is an
independent variable and the commodity price a dependent variable. Figures 2 and 3
illustrate the MLP and RBF neural networks.
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The equation for an MPL neural structure is as follows [38]:

y(
→
x ) = σ(

n

∑
i=0

wixi)

The equation for an RBF neural structure is as follows [38]:

y(
→
x ) = e− (

‖→x −→c ‖
b

)

2

where
→
x represents the input values, y is the output,

→
c is the center, b is the width, ‖→x −→c ‖

is the distance calculated according to the Euclidean metric, ‖
→
x−→c ‖

b is the internal potential
of the RBF unit, and w is the weight value.
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The time series comprises three categories: testing, training and validation. The train-
ing class involves 70% of the data and generates neural structures, while the rest contain
15% in each. Both groups measure the reliability of the detected neural model. The calcula-
tion covers 1000 neural networks, preserving the top 10. The hidden layer of multilayer
perceptron networks contains 2 to 20 neurons, whereas the hidden layer of the RFB includes
10 to 30 neurons, which is the outer limit. The hidden and output MLP layers combine
linear, logistic, hyperbolic tangent, exponential and sinus functions, leaving other settings
at their defaults (within automatic network creation tools). The method of least squares will
be used to calculate the neural networks. The mesh generation will be terminated if there is
no improvement, i.e., a decrease in the value of the square aggregate. Only those neuron
structures whose respective squared aggregates of residuals are the lowest possible relative
to the actual gold development will be preserved. The Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm is also used. It is a local optimization algorithm that adapts machine-
learning algorithms, such as the logistic regression algorithm. Delays in the time series will
not be considered, because of the need for extensive calculations and the need to perform
an additional experiment afterward. Table 2 presents relevant formulae.

Table 2. Activation function of hidden and output layers of MLP and RBF.

Function Definition Range

Identity a (−∞,+∞)

Logistic sigmoid 1
1+e−a (0, 1)

Hyperbolic tangent ea−e−a

ea+e−a (−1, +1)

Exponential e−a (0,+∞)

Sine sin (a) [0, 1]
Source: [39].

The error function comprises the least squares, as follows:

ESOS =
1

2N

N

∑
i=1

(yi − ti)
2

where N represents the number of trained cases, yi predicts the target variable, and ti is the
target variable of the ith case.

We create a neural network to answer RQ1, predicting the price for the following
month. The validation covers 20 consecutive trading days, including time series for
exploring the existing and predicted values within the period. Answering RQ1 determines
whether the oil price movement depends on economic development. The validation reveals
the difference (residuals) between the evident price and the forecast price, indicating the
top network to implement in practice. The best structure is always the one with predicted
and existing values close to zero.

RQ2 covers the time series from 2000 to 2022, assessing whether the COVID-19 pan-
demic harmed commodity price movement. We include 5805 values, calculating the
arithmetic mean for creating the time series by using a mean function in Excel. The mode
and median function in Excel provide median and mean values. The minimum and maxi-
mum oil prices and dispersion measure the distance between the points. We use milestones
during the COVID-19 pandemic, including the onset, growth and repercussions such as
lockdowns. A graph illustrates the detected correlations between these events and oil price
movement, providing calculations and visualizations of the findings.
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4. Results

Table 3 presents the top 10 neural networks from 1000 generated structures.

Table 3. Summary of active networks (oil—daily data from 2000 to 2022).

Index Net. Name Training
Error Test Error Validation

Error
Training

Algorithm
Error

Function
Hidden

Activation
Output

Activation

1 MLP 1-13-1 20.03877 18.92097 21.70152 BFGS 735 SOS Tanh Sine

2 MLP 1-14-1 18.08013 18.38972 20.96396 BFGS 596 SOS Logistic Identity

3 MLP 1-18-1 19.48483 19.02263 21.81718 BFGS 918 SOS Logistic Sine

4 MLP 1-17-1 19.51369 19.09565 22.28044 BFGS 1312 SOS Logistic Sine

5 MLP 1-18-1 19.07577 17.72344 20.75263 BFGS 8505 SOS Logistic Exponential

6 MLP 1-14-1 18.86865 18.02551 20.75844 BFGS 5198 SOS Logistic Tanh

7 MLP 1-17-1 19.27102 18.25229 20.93904 BFGS 9999 SOS Logistic Exponential

8 MLP 1-14-1 20.25959 18.84478 21.82503 BFGS 9999 SOS Tanh Logistic

9 MLP 1-13-1 19.40942 21.08859 23.08233 BFGS 283 SOS Tanh Exponential

10 MLP 1-18-1 16.82161 16.05422 19.36678 BFGS 904 SOS Logistic Logistic

Source: authors.

All preserved networks are MLPs, largely outplaying the underperforming and biased
RBFs. The top 10 structures contained 13 to 20 neurons in the hidden layer and were
generated by the variant BFGS (Broyden–Fletcher–Goldfarb–Shanno) training algorithm.
A hyperbolic tangent and logistic sigmoid activated hidden neural layers, whereas five
functions initiated the output, including sine, identity, exponential, hyperbolic tangent and
logistic. Table 4 illustrates the correlation coefficient determining the performance of the
preserved structures in all the data sets.

Table 4. Correlation coefficients (oil—daily data from 2000 to 2022).

Network Train Test Validation

1 MLP 1-13-1 0.977013 0.978338 0.974803

2 MLP 1-14-1 0.979275 0.978936 0.975573

3 MLP 1-18-1 0.977647 0.978204 0.974569

4 MLP 1-17-1 0.977613 0.978108 0.974041

5 MLP 1-18-1 0.978121 0.979737 0.975867

6 MLP 1-14-1 0.978361 0.979375 0.975863

7 MLP 1-17-1 0.977895 0.979126 0.975575

8 MLP 1-14-1 0.976747 0.978452 0.974627

9 MLP 1-13-1 0.977746 0.975819 0.973097

10 MLP 1-18-1 0.980733 0.981667 0.977439
Source: authors.
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The correlation coefficient should equal 1 when looking for the corresponding network.
All three data sets performed the same, indicating valid structures in the training group,
validated by the other two sets. Neural networks must show a minimum error rate in all
three groups. According to Table 4,the correlation coefficients of all the neural structures
and data sets exceed 0.973, suggesting minimal differences between the networks. Table 5
then presents the statistical analysis for predictions.

Table 5. Predictions statistics (oil—daily data from 2000–2022).

Statistics 1 MLP
1-13-1

2 MLP
1-14-1

3 MLP
1-18-1

4 MLP
1-17-1

5 MLP
1-18-1

6 MLP
1-14-1

7 MLP
1-17-1

8 MLP
1-14-1

9 MLP
1-13-1

10 MLP
1-18-1

Minimum prediction
(Train) 26.3905 26.1152 25.5647 20.2299 24.4610 27.0507 26.5083 25.9120 24.8399 25.8734

Maximum prediction
(Train) 130.0736 133.2628 129.0131 127.8012 137.3579 124.6570 132.8783 127.9347 134.1820 131.0164

Minimum prediction
(Test) 26.3905 26.1234 25.5649 22.3235 24.4615 27.0507 26.5083 25.9160 24.8402 25.8734

Maximum prediction
(Test) 129.9874 133.0829 128.9972 127.7984 135.9908 124.6420 132.7024 127.8371 134.0083 130.9436

Minimum prediction
(Validation) 26.3905 26.1193 25.5647 21.5489 24.4613 27.0507 26.5084 25.9140 24.8400 25.8745

Maximum prediction
(Validation) 130.0663 133.2565 128.3634 126.9342 137.1561 123.8298 132.8783 127.9357 134.1763 131.0035

Source: authors.

Table 4 presents the prediction statistics with residuals. They should be close to zero,
indicating corresponding values of the input and predicted data. We can also see some
residuals in these networks, containing slight inaccuracies. Figure 4 depicts all the networks
and the actual price movement, including these values. We provide only a part of the table,
enclosing the rest in the attachments. Figure 4 demonstrates oil price movement.
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Figure 4. Oil price movement. Source: authors. 
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The figure proposes that all neural networks performed reasonably well in tracking
actual oil price movement. Colored curves represent 10 preserved structures, yet they
cannot indicate the local minimum and maximum variations. Even though the networks
have very high performance levels, according to the correlation coefficients, they encounter
a problem when predicting price fluctuations (lowest and highest points). For example, the
value of 2100 skyrocketed. This is because the global financial crisis started in 2008, and
the price of oil rapidly rose. The value in a horizontal axis (case number) is expressed by
the number of observations (detailed input data, in days). Within a few years, the price of
oil again sharply fell as the financial crisis was still lingering, and there was not as much
money to trade in oil. It can be seen that from the value of 2400, the price of oil rose to the
value of 2800, where it stagnated until it reached a value of 3700, where again the price
of oil rose to the value of 4100 and then rose again until it reached a value of 5200. At
this point, oil prices hit a trough without networks’ noticing the slump. This case marks
the onset of the COVID-19 pandemic, witnessing a global social and business lockdown.
However, why none of the networks could track the alarming situation remains a mystery.
Despite this inconvenience, all the networks are applicable in practice. In 2022, the price of
oil again sharply rose, because in February 2022, war broke out in Ukraine. Except for the
fluctuation at the value of 5200, when the neural networks could not record this extreme,
the neural network more successfully captured the last changes. After training the neural
structures, we predicted oil price movement for 20 consecutive days, depicted in Table 6.

Table 6. Oil price predictions for November 2022.

Date 1 MLP
1-13-1

2 MLP
1-14-1

3 MLP
1-18-1

4 MLP
1-17-1

5 MLP
1-18-1

6 MLP
1-14-1

7 MLP
1-17-1

8 MLP
1-14-1

9 MLP
1-13-1

10 MLP
1-18-1

8 November 2022 91.81 95.15 109.08 100.23 94.81 101.25 72.60 96.94 87.82 90.65

9 November 2022 91.77 94.74 109.20 100.07 95.62 103.68 70.91 99.16 87.11 90.86

10 November 2022 91.76 94.60 109.24 100.02 95.92 104.52 70.34 99.97 86.87 90.95

11 November 2022 91.76 94.48 109.29 99.97 96.22 105.38 69.79 100.81 86.63 91.04

14 November 2022 91.75 94.32 109.32 99.92 96.53 106.25 69.21 101.69 86.38 91.14

15 November 2022 91.75 94.17 109.37 99.87 96.86 107.13 68.65 102.60 86.14 91.24

16 November 2022 91.77 93.74 109.49 99.71 97.90 109.82 66.95 105.53 85.41 91.60

17 November 2022 91.78 93.60 109.52 99.65 98.27 110.73 66.38 106.57 85.16 91.74

18 November 2022 91.76 93.44 109.57 99.60 98.65 111.65 65.81 107.64 84.92 91.89

21 November 2022 91.81 93.30 109.61 99.54 99.04 112.57 65.25 108.73 84.67 92.03

22 November 2022 91.83 93.15 109.65 99.49 99.44 113.49 64.68 109.85 84.43 92.19

23 November 2022 91.90 92.70 109.77 99.32 100.72 116.25 62.99 113.34 83.69 92.70

24 November 2022 91.93 92.54 109.81 99.26 101.17 117.16 62.42 114.54 83.43 92.89

25 November 2022 91.97 92.39 109.85 99.20 101.64 118.07 61.86 115.75 83.18 93.08

28 November 2022 92.00 92.23 109.89 99.14 102.11 118.98 61.30 116.98 82.93 93.28

29 November 2022 92.04 92.08 109.93 99.08 102.60 119.88 60.74 118.20 82.68 93.50

30 November 2022 92.17 91.60 110.05 98.90 104.14 122.50 59.06 121.88 81.93 94.16

1 December 2022 92.22 91.44 110.09 98.85 104.68 123.35 58.50 123.10 81.68 94.4

2 December 2022 92.28 9129 110.13 98.78 105.23 124.19 57.95 124.30 81.42 94.64

5 December 2022 92.33 91.12 110.17 98.72 105.79 125.01 57.39 125.48 81.17 94.89

Source: authors.
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Table 6 depicts oil price movement from 8 November 2022 to 5 December 2022. The
first two networks show a price range from 91.75 to 95.15. On the other hand, from the
third structure, we see an inconsistent rise and fall. Strangely enough, the sixth and eighth
networks mark price hikes in November, while the seventh model indicates a slump below
the level of other neural networks, which do not drop under 81.42. Table 7 illustrates actual
oil price movement for November 2022.

Table 7. Actual oil price movement.

Date Real Price of Oil

8 November 2022 96.85

9 November 2022 93.05

10 November 2022 94.25

11 November 2022 96.37

14 November 2022 93.59

15 November 2022 94.30

16 November 2022 92.61

17 November 2022 91.00

18 November 2022 88.93

21 November 2022 88.44

22 November 2022 88.65

23 November 2022 85.90

24 November 2022 85.59

25 November 2022 83.40

28 November 2022 83.50

29 November 2022 83.22

30 November 2022 85.61

1 December 2022 86.28

2 December 2022 86.54

5 December 2022 83.36
Source: authors.

We can see that the actual oil price was much lower than what some neural networks
predicted. At the beginning of November, the price topped USD 96.85 per barrel, witnessing
a steady decline until 30 November 2022. At that time, the values again increased until 5
December and then plummeted to the rates before 30 November.

Table 8 presents the differences between real oil prices and predictions of oil prices.
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Table 8. Differences between real oil prices and predictions.

Date
Residuals
1 MLP
1-13-1

Residuals
2 MLP
1-14-1

Residuals
3 MLP
1-18-1

Residuals
4 MLP
1-17-1

Residuals
5 MLP
1-18-1

Residuals
6 MLP
1-14-1

Residuals
7 MLP
1-17-1

Residuals
8 MLP
1-14-1

Residuals
9 MLP
1-13-1

Residuals
10 MLP
1-18-1

8 November 2022 5.04 1.70 −12.23 −3.38 2.04 −4.40 24.25 −0.09 9.03 6.20
9 November 2022 1.28 −1.69 −16.15 −7.02 −2.57 −10.63 22.14 −6.11 5.94 2.19

10 November 2022 2.49 −0.35 −14.99 −5.77 −1.67 −10.27 23.91 −5.72 7.38 3.30

11 November 2022 4.61 1.89 −12.92 −3.60 0.15 −9.01 26.58 −4.44 9.74 5.33

14 November 2022 1.84 −0.73 −15.73 −6.33 −2.94 −12.66 24.38 −8.10 7.21 2.45

15 November 2022 2.55 0.13 −15.07 −5.57 −2.56 −12.83 25.65 −8.30 8.16 3.06

16 November 2022 0.84 −1.13 −16.88 −7.10 −5.29 −17.21 25.66 −12.92 7.20 1.01

17 November 2022 −0.78 −2.60 −18.52 −8.65 −7.27 −19.73 24.62 −15.57 5.84 −0.74

18 November 2022 −2.83 −4.51 −20.64 −10.67 −9.72 −22.72 23.12 −18.71 4.01 −2.96

21 November 2022 −3.37 −4.86 −21.17 −11.10 −10.60 −24.13 23.19 −20.29 3.77 −3.59

22 November 2022 −3.18 −4.50 −21.00 −10.84 −10.79 −24.84 23.97 −21.20 4.22 −3.54

23 November 2022 −6.00 −6.80 −23.87 −13.42 −14.82 −30.35 22.91 −27.44 2.21 −6.80

24 November 2022 −6.34 −6.95 −24.22 −13.67 −15.58 −31.57 23.17 −28.95 2.16 −7.30

25 November 2022 −8.57 −8.99 −26.45 −15.80 −18.24 −34.67 21.54 −32.35 0.22 −9.68

28 November 2022 −8.50 −8.73 −26.39 −15.64 −18.61 −35.48 22.20 −33.48 0.57 −9.78

29 November 2022 −8.82 −8.86 −26.71 −15.86 −19.38 −36.66 22.48 −34.98 0.54 −10.28

30 November 2022 −6.56 −5.99 −24.44 −13.29 −18.53 −36.89 26.55 −36.27 3.68 −8.55

1 December 2022 −5.94 −5.16 −23.81 −12.57 −18.40 −37.07 27.78 −36.82 4.60 −8.12

2 December 2022 −5.74 −4.75 −23.59 −12.24 −18.69 −37.65 28.59 −37.76 5.12 −8.10

5 December 2022 −8.97 −7.76 −26.81 −15.36 −22.43 −41.65 25.97 −42.12 2.19 −11.53

Total −56.96 −80.64 −411.59 −207.88 −215.90 −490.42 488.66 −431.62 93.79 −67.43

Mean −2.85 −4.03 −20.58 −10.39 −10.8 −24.52 24.43 −21.58 4.69 −3.37

Median −3.28 −4.63 −21.09 −10.97 −10.7 −24.49 24.11 −20.75 4.41 −3.57

Source: authors.

We can see that the first neural network, whose total value, mean and median are the
closest to zero, closely mimicking reality, shows the best results. On the other hand, the
sixth neural network performed the worst, indicating the highest dispersion, forecasting
much higher oil prices. The seventh neural structure did not perform well, either, setting
the price too low compared to the actual situation. Table 8 also shows that the predicted
price was close to reality on the 8th, 11th and 15th of November. Most residuals are minus,
demonstrating huge differences between the predicted data and the actual data. This issue
can also be looked at in the form of trend monitoring. Although some prediction networks
showed very different values from the actual value, they successfully followed the trend
of natural development (more or less similar decline and growth). This can be seen, for
example, in the seventh MLP 1-17-1 network if we compare the predicted values, in Table 6,
and the actual values, in Table 7.

Figure 5 illustrates the price difference between gasoline and oil.
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The extreme variations indicate that oil prices wildly fluctuated during the monitored
period compared with gasoline prices. Figure 5 proposes that 2008 and 2009 saw a price
hike after the Great Recession, followed by a sharp drop in 2009. Despite the ongoing
financial crisis, global markets found a way to push oil prices up again, as shown in Figure 5.
The next economic upheaval came in 2020, when the COVID-19 pandemic inhibited the
global economy with massive lockdowns until 2021. It can be seen from Figure 5 that
there was a massive drop in the price of oil at this time: before the onset of the COVID-19
pandemic, the cost of oil hovered around USD 63 per barrel, and at the beginning of the
pandemic (i.e., sometime around 1 January 2020), the price of oil fell only slightly, to USD
59 per barrel. The big jump happened around 22 July 2020, when the price of oil had fallen
to USD 9 per barrel. As of August 2020, the cost of oil again started to rise. In 2022, the
war in Ukraine again dramatically drove oil prices up, yet leaving gasoline prices intact.
What causes the wild fluctuation of fuels? Gasoline reflects oil prices, including high taxes
(excise duty and GNP) and refinery margins that increase the limit 10 times during a crisis.
The Russia–Ukraine War also contributes to high fuel prices, because the US and the EU
banned oil imports from Russia, relying heavily on shippers from other countries.

5. Discussion

This work explored oil price movement in stock markets and the extent that they
suffered from the COVID-19 pandemic. The data analysis covered the years 2000 to 2022,
including 5805 items processed in Statistica 13 software. Recent years have seen much
research on commodity price movement, using artificial neural networks calculated in
Statistica and Matlab. Vochozka, Horák and Krulicky [28] listed the most common software
tools, including JavaScript, Python, Tensor Flow and Matlab.

Naderi, Khamehchi and Karimi [40] applied neural structures to predict monthly
oil prices, daily gas prices and annual interest rates. Their findings revealed that their
method reduces the mean squared error by at least 6.61% in the monthly oil price, 18.33%
in the daily gas price and 23.13% in the annual interest rate prognosis compared with other
forecasting techniques.

The research questions of this study were as follows:
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RQ1: What will be the oil and gas prices on the commodity market in November 2022?
Answering RQ1 involved a neural network predicting commodity prices for the

following month, revealing that November 2022 saw oil prices between USD 91.75 and
USD 125.48 per barrel. The first two neural structures showed price movement between
USD 91.75 and USD 95.15, while the values of the rest fluctuated. Strangely enough,
the sixth and eighth networks indicated a sharp price hike during November, while the
seventh network indicated much lower values than the other neural networks, which never
dropped below USD 81.42. The oil price will then be on the rise. We generated 1000 neural
models, preserving the top 10. All of them were MLP models, including 13–20 neurons in
the hidden layer and trained by variants of the BFGS (Broyden–Fletcher–Goldfarb–Shanno)
algorithm. The correlation coefficients of all the networks and data sets were higher than
0.973, showing only minimal differences.

RQ2: What was the impact of the COVID-19 pandemic on oil stock prices?
RQ2 comprised a time series from 2000 to 2022, measuring the impact of the COVID-19

pandemic on oil price movement and a potential slump in commodity prices. We found
that the pandemic was the main driving force behind the oil rates. Although the onset
did not damage the market much, consequent lockdowns severely inhibited the economy,
driving oil prices down. The rates did not begin to rise until 2021.

We also explored fuel prices at petrol stations, assessing whether they were due to
inflation or to distributors’ seizing the opportunity to boost profits. Because oil prices have
incurred violent fluctuations over the past two decades while gasoline has commanded
the same market price, it is evident that distributors only seized an opportunity in the
calamity. The gas reflects oil rates, including high taxes (excise duty and GNP), and refinery
margins increased 10 times when expecting or experiencing a crisis. Another contributor
to exorbitant fuel prices is the ongoing war in Ukraine, as the US and the EU banned oil
imports from Russia, looking for supplies from elsewhere.

6. Conclusions

Predicting commodity prices is essential for developing effective strategies for effi-
ciently handling stock market transactions. All the people involved in the stock exchange
follow forecasts of price movements, including shareholders, traders and companies. Oil
prices also draw in the public, as this resource concerns our daily lives. Predicting com-
modity prices is essential for developing effective strategies for efficiently handling stock
market transactions. All the people involved in the stock exchange follow forecasts of price
movements, including shareholders, traders and companies.

The present study aimed to predict oil price movement in stock markets, assessing the
impact of the COVID-19 pandemic. We found that oil deeply upset gasoline prices, closely
reflecting the economic (the pandemic, inflation) or political situation in neighboring countries.

If Europe or the world faces a war or a pandemic, commodity prices (oil) soar, and they
are highly susceptible to supply and demand and deeply suffer from economic plights. The
correlation coefficients of all the neural networks and data sets exceeded 0.973, indicating
only minimal differences. Another partial goal was to find out the price at which fuel is
sold at gas stations and assess whether it is necessary to raise the price or whether it is a
classic move by distributors to use the situation to their advantage and increase profits. It
was found that this is a classic move by distributors, as the price of benzene has hardly
moved over the past 20 years, while the price of oil, on the other hand, has had a very
fluctuating tendency. However, we also have to consider that tax is included in the price of
gasoline, and the margin of refineries is also included here, which can increase this margin
even 10 times when a crisis period is expected or a crisis period is currently underway.
Another reason fuel prices are so high now is the ongoing war in Ukraine, as the US and
the EU have banned the oil supply from Russia, so there is pressure on the oil supply from
other countries.

We also revealed that all neural networks performed well in tracking actual oil price
movement, although some undetected fluctuations occurred over the monitored period.
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Despite these setbacks, all the models are applicable in practice. Once trained, the networks
predicted oil price movement for 20 trading days. The total correlation coefficients showed
that the 10th MLP 1-18-1 network was the best to apply in practice. The seventh neural
network was the best at predicting the trend following the development of the actual
value, but the residual was the worst. The residual at the seventh neural network came out
USD 20 lower, but it managed the trend the best despite that.

However, the coefficients are so close, almost identical, that we cannot satisfactorily
say which network is the best. All the networks need further training to yield results that
are more accurate. Validation showed that the first model was closest to zero and, thereby,
the most reliable to train on extensive data to achieve higher accuracy. Although all the
networks can somehow predict oil price movement, they are still too far from reality to be
suitable in practice.

Oil prices were calculated using the least squares method. Time series lags were
not considered, because of because of the need for extensive calculations and the need to
perform additional experiments afterward. This should be the subject of ongoing research.
According to the correlation coefficients, the networks are of high quality and perform well,
but when the residuals are added up, it is found that they are not so good, as the networks
can smooth the historical time series of oil prices very well but are less useful at providing
accurate predictions, especially for a more-extended period.

The study is limited by involving only a few neural networks. Our research also lacked
a comparison with other commodities, as we explored only oil prices. The survey will
continue by validating the oil price for December 2022. Furthermore, it would be helpful
to solve another analysis on the development of the trend in noniron networks because,
in most cases, they cannot have the same values as the residuals can. Neural networks
cannot capture local minima and maxima but can detect a trend. They also cannot capture
extremes, as they are preset, so it is necessary to take the structures of these preserved
networks, train them on new ones and improve their predictive abilities.
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