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Abstract: The adequate modeling and estimation of solar radiation plays a vital role in designing
solar energy applications. In fact, unnecessary environmental changes result in several problems
with the components of solar photovoltaic and affects the energy generation network. Various
computational algorithms have been developed over the past decades to improve the efficiency of
predicting solar radiation with various input characteristics. This research provides five approaches
for forecasting daily global solar radiation (GSR) in two Moroccan cities, Tetouan and Tangier. In
this regard, autoregressive integrated moving average (ARIMA), autoregressive moving average
(ARMA), feed forward back propagation neural networks (FFBP), hybrid ARIMA-FFBP, and hybrid
ARMA-FFBP were selected to compare and forecast the daily global solar radiation with different
combinations of meteorological parameters. In addition, the performance in three approaches has
been calculated in terms of the statistical metric correlation coefficient (R2), root means square error
(RMSE), stand deviation (σ), the slope of best fit (SBF), legate’s coefficient of efficiency (LCE), and
Wilmott’s index of agreement (WIA). The best model is selected by using the computed statistical
metric, which is present, and the optimal value. The R2 of the forecasted ARIMA, ARMA, FFBP,
hybrid ARIMA-FFBP, and ARMA-FFBP models is varying between 0.9472% and 0.9931%. The range
value of SPE is varying between 0.8435 and 0.9296. The range value of LCE is 0.8954 and 0.9696
and the range value of WIA is 0.9491 and 0.9945. The outcomes show that the hybrid ARIMA–FFBP
and hybrid ARMA–FFBP techniques are more effective than other approaches due to the improved
correlation coefficient (R2).

Keywords: time series analysis; solar radiation; meteorological parameters; ARIMA; FFBP; hybrid
ARIMA-FFBP; hybrid ARMA-FFBP; forecasting

1. Introduction

The global consideration of renewable energy sources such as solar energy, wind,
hydro, and biomass has remarkably increased in terms of sustainable energy due to the
reduction of fossil fuels. In this regard, the implementation of solar energy sources has
widely focused on the use of photovoltaic (PV) systems, thermal solar energy, and concen-
trated solar energy [1]. In particular, the emergence of renewable energy has enhanced
solar radiation forecasting in the activity and management of the modern smart grid, with
renewable energy generation [2,3].

Solar radiation forecasting has become crucial to accurately predict the efficiency
of solar energy conversion systems and ensure the electrical grid’s reliability and safety.
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Specifically, global solar radiation is the most critical aspect of solar energy, which is
essential for implementing renewable, solar energy systems, and PV system sizing [4,5].
Moreover, a precise understanding of solar radiation could optimize the accuracy of the
electricity network and increase the efficiency of the smart grid. Therefore, appropriate
solar radiation forecasting significantly improves solar energy usage, rises the economic
losses due to electrical constraints, and maximizes the return on investment in photovoltaic
grids [6]. However, solar radiation is considered one of the prime resources and it plays
a significant role in the foreseeable future, particularly in developing countries.

The forecasting of solar radiation was commonly discussed in the literature review.
Several researchers have categorized the forecasting solar radiation into four types such
as very-short-, short-, medium- and long-forecasting [7]. However, the appropriate ap-
proaches are required to improve solar radiation forecasting model accuracy and reduce
the negative effects of system fluctuations. These are structured in two main methods,
namely, the time series statistical method and the physical techniques, and the combination
of the above techniques called the hybrid techniques [8]. The selected techniques are
depending entirely on the forecasting horizon, available data information, and locations.
In addition, the physical techniques are based on various equations, which describe the
transmission phenomena and thermodynamic mechanisms, occurring in the atmosphere
and on the surface of the earth. However, the equations become more complex when
additional variables are added such as temperature, wind speed, dust, and humidity [9].
The forecast accuracy of the physical techniques mainly depends on the accuracy of the
collected data and various information about the location. Further, the time series statisti-
cal technique is purely based on the relationship between the past values of the weather
parameters and the solar radiation that are identified and used in the forecasting process.
This could include forecasting methods such as artificial neural networks, vector support
machines, Markov chains, auto-regressive models, or regression models. Additionally, the
time series could be described as a series of measurements collected over time at regular
intervals; it is flexible and requires fewer data inputs, resulting in simple implementation
and less cost. However, the main limitation of forecasting time series is the absence of
deterministic causes [10]. According to this background, numerous papers have developed
various models and techniques with the times series analysis, based on artificial neural
networks (ANNs) [11]. In [12], have presented a brief overview of the different techniques
to determine their source and forecast solar radiation using ANNs in Greece. Further, the
results elaborate that the geographical pattern and the different climatic conditions enhance
the cloud’s temporal and spatial variability. A new model has been developed based on
the ensemble of spatiotemporal deep learning models and variational Bayesian inference
which uses spatiotemporal information to forecast solar radiation in the literature [13].
In [14], the authors compared eleven statistical and machine learning models for hourly
solar radiation forecasting based on three meteorological locations with different collected
data, and they explain that the precision and performance of each model are related to the
variation of both the meteorological location and solar radiation information. In addition,
the efficiency of the models was compared in terms of the statistical metrics named normal-
ized root mean square error (RMSE), mean absolute error (MAE), and skill score. For weak
variability, the auto-regressive moving average and multi-layer perceptron are the best
predictors. The feedforward backpropagation algorithm was used by [15] to predict daily
global solar radiation in 25 cities around the kingdom of Morocco. Several meteorological
astronomical and geographical coordinates were employed as input data to predict the
outcoming output. Multiple combination parameters were adopted to select the most
suitable configuration with optimal input data for each study location. According to statis-
tical metrics, the obtained result is, respectively, twelve inputs for Er-Rachidia, Marrakech,
Medilt, Taza, Oujda, Nador, Tetouan, Tangier, Al-Auin, Dakhla, Settat, and Safi, seven
inputs for Fes, Ifrane, Beni-Mellal, and Meknes; six inputs for Agadirand Rabat; five inputs
for Sidi Ifni, Essaouira, Casablanca, and Kenitra; and four inputs for Ouarzazate, Larache,
and Al-Hoceima. In terms of accuracy, the R2 of the selected best inputs parameters varies
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between 0.9860% and 0.9920%, with the range value of MBE (%) being from −0.1076% to
−0.5931%, the RMSE between 0.1990 and 0.4580%, the range value of the NRMSE is be-
tween 0.0355 and 0.8938, and the lowest value of the MAPE is between 0.0019 and 0.0060%.
This technique could be used to predict other parameters for locations where measurement
instrumentation is unavailable or costly to obtain. In the meantime, the authors of [16] pre-
sented a comparative optimization of daily global solar radiation forecasting with different
machine learning and time series methods. The selected methods are compared with the
persistence technique and measured data. Several statistical metrics are assessed to obtain
the most appropriate method, which presents the lowest value accuracy. The select result is,
respectively, the RMSE (%) and MBE (%) values of several models employed in this study,
and were computed to be mostly positive. The range value of the selected model measured
by RMSE (%) and MBE (%) varied between 4.64% to 8.87% and 6% to 22.93%. Based on all
statistical metrics, the lower value of the selected model corresponds to the neural FFBP
(6 × 10 × 1) in comparison with the other models. The appropriate one performs well
and is close to the measured data. The authors of [17] presented a complete and detailed
synthesis of solar radiation modeling, forecasting, and solar radiation data using artificial
intelligence methods: ANN, fuzzy logic, genetic algorithm, expert system, and a hybrid
method. It is proven that solar radiation is a vital factor in PV system performance and
sizing. The same researchers have presented a combination of the above methods for
generating horizontal global solar radiation by combining ANN and library of Markov
transition metrics (MTM) approaches based on three-parameter coordinates (longitude,
altitude, and latitude) and the data were collected from a data basis of 60 stations in Algeria
over 9 years. This prediction is comparatively accurate related to the relative Root Mean
Square Error (RMSE), which is less than 8.2%. On other hand, López et al. [18] have chosen
the automatic relevance determination method (ARD) based on the ANN model to select
the relevant input parameters in direct normal solar irradiance forecasting. Clearness index
and relative air mass were considered the most important input parameters to the neural
network. According to J. Lampinen et al. [19], Penny et al. [20], and B. Belmahdi et al. [8],
the ARD and ANN are the priority distribution on the network weights and determine the
most relevant input parameters by introducing a hyperparameter for each input unit of the
ANN. In ANNs, the important prior distribution of the network weights is controlled by
the hyperparameters. Here, the ANN is presented with training data, and posterior weight
distribution and hyperparameters are calculated using the Bayes rules.

Recently, time series forecasting models have taken the attention of researchers in
different fields for their power and ability to forecast complex systems [11]. Especially,
the autoregressive integrated moving average (ARIMA) was utilized in the COVID-2019
pandemic [21], hydroelectricity [22], agriculture [23], and groundwater-based irrigation [24].
Generally, ARIMA models are an integration of autoregressive models (AR) and moving
average models (MA), which have proven reasonable precision in the forecasting of sta-
tionary time-series information. Further, it is strongly assumed that the prospective data
values are linearly dependent on present and past data values. However, several real-
world time series data result from dynamic non-linear structures that cannot be accurately
modeled by ARIMA. Consequently, artificial neural networks (ANNs) are considered the
most commonly implemented algorithms for nonlinear time series modeling. In another
word, the ANNs have a range of benefits with respect to ARIMA and other forecasting
frameworks, which are capable of executing a dynamic non-linear function. Hence, the
ANNs are capable of reconstructing every continuously measurable function with arbitrary
desired accuracy [11]. Moreover, ANNs are flexibly data-driven in design, which ensures
that ANN models could be modified with the characteristics of time series data information.
Several studies have been carried out to compare the performance of machine learning
(ML) and deep learning (DL) algorithms in forecasting solar radiation [25]. In some cases,
ML algorithms have been found to be more accurate than DL algorithms [26], while DL
methods have been found to be more accurate than ML algorithms in others [27]. In this
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context, Table 1 summarizes the difference between ARIMA and FFBP in solar radiation
forecasting in various locations.

Table 1. Selected studies on ARIMA and ANN modeling of solar radiation.

References Simple and Combined Modeling for Short-Term and Long-Term Prediction of Solar Radiation

[28] Seasonal ARIMA (0, 1, 2) (1, 0, 1) 30 was found to be a suitable model for predicting daily solar radiation at
Reese Research Centre of Lubbock, Texas

[29] ARIMA (1, 0, 0) was found reasonable in capturing the autocorrelative structures of the daily average of
solar irradiance in Awali, Kingdom of Bahrain.

[30] Non-seasonal ARIMA (2, 1, 3) was trained to predict day-ahead hourly global horizontal irradiance (GHI) in
Abu Dhabi.

[8] Hybrid ARIMA-backed propagation does not outperform ARIMA for hourly solar irradiance from National
Solar Radiation Database (NRSDB) site from 2008 to 2009.

[31] ARMA (2, 0) and ARMA (4, 0) were identified as appropriate models combined with ANN for the prediction
of daily global solar radiation.

[32] ARIMA (2, 1, 1) was developed for the prediction of the daily clearness index In Abu Dhabi.

[33] Employed ARMA, which revealed that the residuals were best estimated by non-seasonal ARMA (2, 0) for
daily solar radiation data over four locations in Malaysia.

[34] Employed ANN-BP neural network and multilayered feed-forward neural network

As a novel method for time series forecasting, hybrid ARIMA-FFBP and ARMA-FFBP
models have been developed. FFBP is a sort of feed-forward neural network that employs
log sigmoidal functions. In comparison to single models and other hybrid models like
SARIMA-MLP, it has been observed that this hybrid technique increases accuracy and
minimizes errors. These hybrid ARIMA-FFBP, and ARMA-FFBP models could be further
deployed to forecast the future performance and energy capacity of solar energy systems.
Here, both have accompanied a different combination of parameters for inputs to select
the adequate model. In addition, the daily solar radiation data is collected from two cities
called Tetouan and Tangier in northern Morocco. These locations are essential, as the solar
energy intensities are utilized in the photovoltaic and thermal system and the region has
the largest port in the Mediterranean area. Several statistical metrics are evaluated and
calculated to validate the performance of the forecast values.

The rest of the paper is organized as follows. Section 2 contains collected data and the
proposed methodology (forecasting method). Section 3 contains summarizes the statistical
metric employed in this work. Section 4 contains the main finding and simulation results
of the short-term forecasted daily global solar radiation. Lastly, the conclusion has been
presented in Section 4.

2. Materials and Methods
2.1. Data Collection and Study Sites

The data was analyzed from the 1 January 2015 to the 31 December 2015, and con-
ducted in a meteorological station installed on the rooftop of the Faculty of Science, Ab-
delmalek Essaadi Tetouan University (Figure 1). This station consists of pyranometers
in Kipp & Zonen brands, model CM-11, for the measurement of global solar radiation.
Another identical pyranometer and the shadow ring is operated to measure the diffuse
solar radiation. The shadow ring has a width of 7.6 cm, a radius of 31 cm, an anemometer
equipped with a wind vane with a horizontal axis turbine for the measurement of the wind
speed, and direction—along with a Campbell scientific thermo-hygrometer containing
two probes—to measure the temperature and the relative humidity. In addition, the local
station uses a rain gauge to measure precipitation.
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Figure 1. Weather station of Abdelmalek Essaadi University, Faculty of Sciences, Morocco. 

In Figure 2, we plot the daily range of the mean (Tmean), maximum (Tmax), and mini-
mum (Tmin), temperature. The three-temperature dataset describes the timescale distribu-
tion of day-to-day temperature variations in the Tetouan and Tangier sites. The annual 
temperature variation reveals the succession of warm and cold periods over the year. The 
analysis is conducted for each day. The recorded Tmax was observed in the July period (38 
°C for Tetouan and 36.6 °C for Tangier), while the Tmin was observed in the January period 
(6 °C for Tetouan and 2 °C for Tangier). The distribution of the Tmin is close to normal 
condition. 

 
Figure 2. Mean, maximum, and minimum daily temperature of Tetouan and Tangier sites. 

Figure 3A,B show a representative behavior of the daily global solar radiation from 
January to December 2015 of the Tetouan and Tangier sites. The total solar radiation over 
the year was 18.63 MJ/m² and 19.99 MJ/m² with a standard deviation of 1.98 kW.h/m² and 
1.76 kW.h/m² for the Tetouan and Tangier sites, respectively. In the warm period, the low-
est solar radiation deviation was 1.106 kWh/m² for the Tetouan site and 0.7375 kW.h/m² 
for the Tangier site. The highest solar radiation deviation in the cold period was 7.48 
kW.h/m² and 7.413 kW.h/m for Tetouan and Tangier sites, respectively. As for month av-
erages, the highest solar radiation months over the year were from May to July, while the 
lowest values were from December to January. 
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Figure 1. Weather station of Abdelmalek Essaadi University, Faculty of Sciences, Morocco.

In Figure 2, we plot the daily range of the mean (Tmean), maximum (Tmax), and
minimum (Tmin), temperature. The three-temperature dataset describes the timescale
distribution of day-to-day temperature variations in the Tetouan and Tangier sites. The
annual temperature variation reveals the succession of warm and cold periods over the
year. The analysis is conducted for each day. The recorded Tmax was observed in the July
period (38 ◦C for Tetouan and 36.6 ◦C for Tangier), while the Tmin was observed in the
January period (6 ◦C for Tetouan and 2 ◦C for Tangier). The distribution of the Tmin is close
to normal condition.
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Figure 2. Mean, maximum, and minimum daily temperature of Tetouan and Tangier sites.

Figure 3A,B show a representative behavior of the daily global solar radiation from
January to December 2015 of the Tetouan and Tangier sites. The total solar radiation over
the year was 18.63 MJ/m2 and 19.99 MJ/m2 with a standard deviation of 1.98 kW·h/m2 and
1.76 kW·h/m2 for the Tetouan and Tangier sites, respectively. In the warm period, the lowest
solar radiation deviation was 1.106 kWh/m2 for the Tetouan site and 0.7375 kW·h/m2 for
the Tangier site. The highest solar radiation deviation in the cold period was 7.48 kW·h/m2

and 7.413 kW·h/m for Tetouan and Tangier sites, respectively. As for month averages,
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the highest solar radiation months over the year were from May to July, while the lowest
values were from December to January.
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Figure 3. (A,B) Daily global solar radiation distribution through a year of two sites.

In Figure 4A,B shows the daily wind speed (Ws) and relative humidity (Rh) over the
year for the Tetouan and Tangier sites. The range value of wind speed varies by about
13.02 m/s and 13.3 m/s, respectively, for the Tetouan and Tangier sites. In the cold period,
the highest relative humidity for the Tetouan and Tangier sites was 94.5% and 92.58%.
In a warm period, the lowest relative humidity was 49.75% and 55.54%, respectively, for
Tetouan and Tangier sites.
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Figure 4. (A) Distribution of daily wind speed (m/s) and (B) relative humidity (%).

The manipulations may require other types of meteorological parameters such as
ambient temperature (T, ◦C; maximum, minimum, average, difference, and ratio), day
number, day length, wind speed (Ws, m/s; average), relative humidity (RH,%), top of
atmosphere radiation (TOA radiation), and geographic coordinates (Latitude, Altitude, and
Longitude). These are exogenous data, whose periods and characteristics of measurements
are summarized in Table 2.
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Table 2. Daily average inputs parameters data of Tetouan and Tanger sites.

Cities TAO
(KWh/m2/Day) Kt Tmean

(◦C)
Tmax
(◦C)

Tmin
(◦C) ∆T (◦C) Tratio

(◦C) Rh (%) Ws (m/s) Dlength
Longitude
(Degree)

Latitude
(Degree)

Altitude
(Degree)

Tangier 5.92 0.681 17.429 21.8 13.3 8.6 1.5878 73.542 4.708 12.338 −5.9 35.733 21
Tetouan 4.909 0.653 18.671 22.4 15.5 7.1 1.423 70.08 4.263 12.306 −5.33 35.58 10

2.2. ARIMA and ARMA Model

Generally, the ARIMA model could be recognized as the combination of several
models named p, d, q, and AR (p) refers to the order of the autoregressive component.
In fact, the I(d) integrated refers to the degree of differentiation involved, and MA(q)
represents the order of the average movement of the components [35]. Moreover, the
AR assumes that each value of the time series depends on the weighted production sum
in the previous values and the most residual regression coefficient. An autoregressive
model could be considered an autoregressive model of order (p) [36], which represents
the previous (lagged) values of the dependent variable. MA is utilized to calculate the
mean for a specified set of values and predict the following periods; MA (moving average)
refers to the lagged error terms (i.e., residues) created by the model, which is represented
by (q) [37]. The elements of the series could be affected by past errors (or a random shock),
which are impossible to compute by the autoregressive component. The coupled AR(p)
and MA (q) built an ARMA model which is commonly used in forecasting tacks [38]. The
general ARIMA model p, d, q can be expressed as Equation (1):[

1 − ϕ1(B)− ϕ2(B)− · · · · · · − ϕp(B)p

]
. ∗ X(t) = c +

[
1 − θ1(B)− θ2(B)− · · · · · · − θp(B)p

]
. ∗ et (1)

Or in a general form as Equation (2):[
1 − ϕ1(B)− ϕ2(B)− · · · · · · − ϕp(B)p

]
. ∗ X(t) = c +

[
1 − θ1(B)− θ2(B)− · · · · · · − θp(B)p

]
. ∗ et (2)

where ϕi refers to the i-th term autoregressive parameter, θi refers to the ith term moving
average parameter, c is the constant, et is defined as an error at time t, Bp refers to the p-th
order backward shift operator, and X(t) is defined as a time series value at time t.

The first step in ARIMA and ARMA construction is to identify the time series stationary
data as presented in Figure 5, and then significant seasonality in the time series. The
assumptions which were accounted for in the ARIMA model are that the time series should
be stationary, the flow data must be separated to secure the sequence stationary, the data
should vary continuously, and the data has consisted of a logarithmic transition to rendering
the variance stable to accommodate the stationary variability. In addition, the two methods
which were deployed in the pattern recognition process are the sequence of correlograms
called the autocorrelation (ACF) function and the partial autocorrelation function [39–41].
The ACF and PACF are considered the most important elements of time series analysis and
forecasting. In particular, the ACF determines the amount of the linear dependency around
measurements in the time series, while the PACF enables the calculation of the number of
autoregressive terms necessary to demonstrate the time lag characteristics. Moreover, the
Akaike Information Criterion was used as a provided tool to select the optimal AIC, where
the lowest AIC was identified as a parsimonious model [39,40,42].

2.3. Artificial Neural Network Model (FFBP)

Neural networks are approximately similar to the human brain’s computing and
create awareness of basic processing units called neurons. Neurons are divided into layers,
and synaptic connections (weight) interconnect the neighboring layers. In particular, it
is possible to distinguish three separate types of layers: the input layer, which connects
the input information; the output layer, which generates the final output; and one or
more hidden layers, which serve as intermediate computational layers between input
and output [43]. In addition, the input values are measured by the first weights of the
information exchange. Hence, the products are applied to the neuron with a particular
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parameter designated bias. This is utilized to extend the total number of the products
over a reasonable range by becoming inputs for hidden layer nodes, which attach a non-
linear activation structure (a sigmoid unit) to the total above-generated hidden node. These
signals are interpreted in the same manner through the corresponding hidden layers (if any)
or the output layer, producing the output of the network, which is illustrated in Figure 6.
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The connection between the output Y(t) and the input xt−1 . . . . xt−4 could be defined
in Equation (3):

Y(t) = s1

[
q

∑
j=1

wj ∗ s2

(
p

∑
i=1

wi∗xt−i

)]
(3)

where the wj and wi represent the connection weights, and S1 and S2 are the activation
function.

The most common activation function is the logistic sigmoid function, which is given
by the Equation (4):

s(y) =
1

1 + e−x (4)

The weights are the principal regulation parameters in every FFBP. The parameter
evaluation methods could be considered as training, where optimal relation weights are
calculated by minimizing the objective function.

In the following Equation (5), all input parameters are applied to train and validate
the FFNN model, and the binomial coefficient has applied for selecting the appropriate
input parameters:
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C = ∑m
p=1 Cp

m = ∑m
p=1

m!
(m − p)!p!

(5)

where C is the number of all combinations, and m is the total number of inputs.

2.4. Hybrid Model

As already discussed in previous sections, the classification, the prediction, and the
forecasting methodologies are the main aspect of the time series models analysis. Time
series analysis forecasting is generally achieved through statistical techniques, such as
linear and non-linear models. These models are commonly used since their flexibility and
their variety of fixed pre-processing datasets.

The main limitation of ARIMA and ARMA methods is estimating the linear relation-
ship through the pre-processing time series input data. The behavior of several input data
contains linear and nonlinear patterns. In this context, ARIMA and ARMA models were
fitted to simulate the linear pattern, and an artificial neural network with a backpropagation
algorithm was used to simulate the nonlinear component. By taking into account the main
advantages of the two previous techniques, a hybrid ARIMA-FFBP and ARMA-FFBP were
proposed by [8] to simulate both linear and nonlinear patterns. A general mathematical
expression of the combined model is as follows:

YT = Ψt + Φt (6)

where Ψt is the linear pattern obtained by ARMA and ARIMA models and Φt is the residual
that can be estimated from the feed-forward with the backpropagation algorithm.

The linear pattern is obtained by modeling the ARMA and ARIMA models. After that,
we subtract the residual series (Rt) from the forecasted models:

Rt = YT − Φ̂t (7)

We create the FFBP architecture model by using the subtracting residuals series:

N̂t = Rt = s0 + ∑q
j=1 wjs1

(
s0j + ∑p

i=1 wijRt−1

)
+ εt (8)

The forecasted series obtained from ARIMA, ARMA, and FFBP models are aggregated
to estimate the proposed time series:

ŶT = Ψ̂t + Φ̂t (9)

where ŶT = +i is the forecasted time series, and Ψt and Φt are the linear and nonlinear
forecasting of the original series.

The adopted methodology of this purpose study is divided into forth sections as
depicted in Figure 7:

- Data pre-processing in section one (grey color) involves the collection of meteorologi-
cal, computational, astronomical, and geographical data. These parameters require
many corrections of missing data and outlier removal.

- The application of multiple combinations of several input parameters in order to select
the appropriate architecture executed in section two (gold color) was accomplished by
splitting data into two steps, which are training data (80%), testing, and validation
(20%) data.

- The step of the training (green color) was operating the proposed methodologies. The
input parameters were tested by using time series model stationarity (Ljung–Box test).
After that, the data stationarity was implemented for ARIMA and ARMA models. In
the case of the ARIMA model, that involves the residual generated by the FFBP model,
which built the combined ARIMA and FFBP models.
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- The models were built and divided into simple (ARMA, ARIMA, and FFBP), and hy-
brid methods (hybrid ARMA-FFBP and hybrid ARIMA-FFBO models; orange color).

- The obtained result (grey color) was evaluated and interpreted by using various
statistical metrics in order to choose the best model, which presents the lowest value of
MBE (%), RMSE (% Sd (%), AIC, and BIC and the highest values of R2, SBF, LCE, WIA.
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2.5. Model Selection

According to the fundamental issues observed by modern data, the scientist has
introduced meaningful conclusions for a complicated system utilizing data from a single
determined parameter. Meanwhile, the most effective treatment of global solar radiation
data involves the deployment of neural networks, either with data from each measurement
or with data from several successive measurements. The management is describable
as Equation (10),
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xt+1 = y(xt, xt−1, . . . . . . . . . xt−i) + εt (10)

where γ represents the neural network forecaster and i is the number of successive observa-
tions. Figure 8A–C above show that ACF and PACF can have on the auto-correlogram of
the global solar radiation time series. Here the night hours have not considered during the
simulations [44], and several measurements taken daily have been made.
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Figure 8. (A,C) autocorrelation function (ACF) and (B,D) partial autocorrelation function (PACF) of
the daily GSR from two cities.

The parameters of the ARIMA (p, d, q) and ARMA (p, q) models were determined
by plotting The Autocorrelation Function (ACF) and the Partial Autocorrelation Function
(PACF) for different lags (Lag). Figure 8A–D illustrate the daily global solar radiation data
with a 95% confidence interval. According to the figure, the significant Lags in PACF are
shown at Lag 7 for Tetouan city, and Lag 16 for Tangier city. Further in ACF, the Lag shows
a geometric decrease at each Lag (i.e., 1, 2, 3, 4) and the order of the autoregressive term in
the ARMA model for Tetouan and Tangier city is 10 and 16. Concerning the ARIMA (p, d,
q) model, the order of the p and d terms is 2, 1 for Tetouan city, and 2, 2 for Tangier city. In
addition, the use of the stationarity method (first and second differentiation for the ARIMA
model) improves the prediction phenomenon, and the effectiveness of improvements in
stationarity with the quality of the prediction would be discussed later in this study.

Tables 3 and 4 compare the FFBP with the ARIMA and ARMA models, and deliver an
example for optimization of the ARIMA and ARMA models with the parameters estimated
from the two study sites. It is further considered that the prediction of the two techniques
is relatively simple and eliminated the moving average order q (q = 0).

In the models, the measurement data set has divided into three parts: a learning set
(80%), a validation set (10%), and a test set (10%).

The weight (wij) adjustment is performed by the training set, and the validation set
assures whether the error is within a certain range (this set is not adjusted weights directly,
instead giving the optimal number of hidden layers or determining a breakpoint for the
backscatter algorithm). Finally, the accuracy of the model on the test data facilitates the
prediction performance of the model.

The hidden layer could be suggested even for preliminary analysis or modeling.
Further, the application of more than one hidden layer has significantly increased the
number of measurable variables. However, the improvement in the number of variables
would reduce the training phase without increasing network performance. In this analysis,
one hidden layer has been implemented, and identifying the correct number of neurons in



Forecasting 2023, 5 183

the hidden layer is critical for effective implementation since it greatly improves neural
network efficiency. If the hidden layer has included insufficient neurons, the neural network
output could be degrading. On the other side, if the hidden layer has accompanied by
excess neurons, it would increase the parameter complexity and the training data set could
be over-adjusted. Therefore, the most appropriate approach to determining the correct
number of neurons in the hidden layer is through experiments, such as adopting a trial-
and-error procedure [45]. The analysis of the results below presents the daily global solar
radiation prediction set using the FFBP model. The application of multiple architectures has
been deployed to select the appropriate model with a low value of root mean square error
(RMSE in%). In addition, the selection of input variables is carried out by the combination
method. Table 5 shows the prediction result of different FFBP architectures with coefficients
of variation for the two cities.

Table 3. Estimation of ARMA model parameters for daily global solar radiation prediction for
both cities.

Cities ARMA Models Parameters Estimation Standard Error TS Statistic p-Value

Tetouan ARMA (10 0 0)

AR{1} 0.39838 0.044196 9.0139 1.989410−19

AR{2} −0.14705 0.054537 −2.6963 0.0070107
AR{3} 0.10918 0.054265 2.012 0.044216
AR{4} 0.034376 0.059844 0.57443 0.56568
AR{5} 0.10994 0.059868 1.8364 0.066304
AR{6} 0.096692 0.056285 1.7179 0.085814
AR{7} 0.16186 0.055111 2.9371 0.0033132
AR{8} 0.053943 0.049207 1.0962 0.27298
AR{9} 0.098247 0.054629 1.7985 0.072105
AR{10} 0.050805 0.051959 0.97779 0.32818

Tangier ARMA (16 0 0) AR{1} 0.38961 0.043978 8.8593 8.053110−19

AR{2} 0.06638 0.057461 1.1552 0.248
AR{3} 0.23474 0.053071 4.4231 9.73110−6

AR{4} −0.0063764 0.062151 −0.1026 0.91828
AR{5} 0.061862 0.061564 1.0048 0.31498
AR{6} 0.083309 0.054007 1.5426 0.12293
AR{7} −0.00041644 0.06213 −0.006702 0.99465
AR{8} 0.034286 0.066352 0.51674 0.60534
AR{9} 0.0060834 0.055003 0.1106 0.91193
AR{10} −0.05637 0.054918 −1.0264 0.30469
AR{11} −0.046987 0.059012 −0.79623 0.4259
AR{12} 0.10782 0.047812 2.255 0.024135
AR{13} −0.04943 0.049427 −1.0001 0.31728
AR{14} 0.0078379 0.052373 0.14966 0.88104
AR{15} −0.0036433 0.054602 −0.066725 0.9468
AR{16} 0.16003 0.048865 3.2749 0.0010569

Table 4. Estimation of ARIMA model parameters for the prediction of daily global solar radiation of
the two cities (Tetouan and Tangier).

Cities ARMA Models Parameters Estimation Standard Error TS Statistic p-Value

Tetouan ARIMA (2.1.0) AR{1} −0.03912 0.009215 −4.2452 0.21838
AR{2} −0.15594 0.012313 −12.6654 0.92005

Tangier ARIMA (2.2.0) AR{1} −0.58945 0.009849 −59.8438 0.16258
AR{2} −0.33481 0.010903 −30.7077 0.44859

The training and validation set along with the change in the number of neurons in
the hidden layer are essential factors in selecting the appropriate architecture of the FFBP
model. Specifically, the root means square error (RMSE) has functioned as a comparison
tool to measure the accuracy of different selected models. Moreover, the low value of RMSE
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(%) and coefficient of variation indicate the efficiency of the FFBP model. According to the
results, the appropriate architecture for models was chosen as twelve input parameters,
two neurons in hidden layers, and one output (DGSR) for the two cities. The value of
RMSE (%) and the coefficient of variation in Tetouan city are 0.489% and 0.426%, and the
RMSE value (%) and the coefficient of variation for Tangier city are 0.406% and 0. 382%.

Table 5. Daily GSR forecasting models with multiple FFBP network architecture.

C
it

ie
s

Measured Data FFBP Architecture Coefficient of
Variation (CV)

RMSE
(%)

Te
to

ua
n

Kt FFBP (1 × 2 × 1) 0.575 0.5957

Kt, TOA FFBP (2 × 2 × 1) 0.571 0.5119

Kt, TOA, Tmax FFBP (3 × 2 × 1) 0.562 0.5045

Kt, TOA, Tmax, Tratio FFBP (4 × 2 × 1) 0.555 0.5002

Kt, TOA, Tmax, Tratio, ∆T FFBP (5 × 2 × 1) 0.526 0.5002

Kt, TOA, Tmax, Tratio, ∆T, TAverage FFBP (6 × 2 × 1) 0.519 0.4975

Kt, TOA, Tmax, Tratio, ∆T, TAverage, Tmin FFBP (7 × 2 × 1) 0.492 0.4966

Kt, TOA, Tmax, Tratio, ∆T, TAverage, Tmin, Long FFBP (8 × 2 × 1) 0.473 0.4935

Kt, TOA, Tmax, Tratio, ∆T, TAverage, Tmin, Long, Alt FFBP (9 × 2 × 1) 0.457 0.4928

Kt, TOA, Tmax, Tratio, ∆T, TAverage, Tmin, Long, Alt, Lat FFBP (10 × 2 × 1) 0.440 0.4915

Kt, TOA, Tmax, Tratio, ∆T, TAverage, Tmin, Long, Alt, Lat, δ FFBP (11 × 2 × 1) 0.435 0.4901

Kt, TOA, Tmax, Tratio, ∆T, TAverage, Tmin, Alt, Long, Lat, δ, Dlength FFBP (12 × 2 × 1) 0.426 0.489

Ta
ng

ie
r

Kt FFBP (1 × 2 × 1) 0.467 0.5119

Kt, TOA FFBP (2 × 2 × 1) 0.453 0.5045

Kt, TOA, Tmax FFBP (3 × 2 × 1) 0.448 0.5002

Kt, TOA, Tmax, Tratio FFBP (4 × 2 × 1) 0.442 0.5002

Kt, TOA, Tmax, Tratio, ∆T FFBP (5 × 2 × 1) 0.434 0.4975

Kt, TOA, Tmax, Tratio, ∆T, TAverage FFBP (6 × 2 × 1) 0.426 0.4966

Kt, TOA, Tmax, Tratio, ∆T, TAverage, Tmin FFBP (7 × 2 × 1) 0.426 0.4957

Kt, TOA, Tmax, Tratio, ∆T, TAverage, Tmin, Long FFBP (8 × 2 × 1) 0.419 0.4935

Kt, TOA, Tmax, Tratio, ∆T, TAverage, Tmin, Long, Alt FFBP (9 × 2 × 1) 0.410 0.4928

Kt, TOA, Tmax, Tratio, ∆T, TAverage, Tmin, Long, Alt, Lat FFBP (10 × 2 × 1) 0.409 0.4895

Kt, TOA, Tmax, Tratio, ∆T, TAverage, Tmin, Long, Alt, Lat, δ FFBP (11 × 2 × 1) 0.399 0.4395

Kt, TOA, Tmax, Tratio, ∆T, TAverage, Tmin, Alt, Long, Lat, δ, Dlength FFBP (12 × 2 × 1) 0.382 0.406

2.6. Performance Criterion

In this study, the important statistical error metric indexes mentioned in the literature
were considered to evaluate the precision of the forecasting methods [7,46,47]. The per-
formance of ARIMA and ANN models are validated in terms of root mean square error
(RMSE), mean bias error (MBE), standard deviation (σ), and correlation coefficient (R2).

The root means square error (RMSE) is a commonly employed calculation of the
variations between the forecasted values by a model or an equation and the experimental
values. Further, the RMSE is widely used to compare the actual deviation between the
predicted and the measured value, modeling, and regression analysis (Equation (11)):
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RMSE =

√√√√√ N
∑

x=1
[t(x)− a(x)]2

N
(11)

The mean bias error measures the model’s average bias and determines further mea-
sures to fix the model. The average bias in forecasting is represented by Equation (12):

MBE =
1
N

N

∑
x=1

[t(x)− a(x)] (12)

Equation (13) expresses the standard deviation, which is a function of the amount of
attenuation in a set of values:

Sd =

√√√√N
(

RMSE2 − MBE2
)

N − 1
(13)

In Equation (14), the R2 defines the appropriate sequential match among measured
and forecasted values and the writing:

R2 = 1 −
N

∑
x=1

[t(x)− a(x)]2∗
N

∑
x=1

[
a(x)− a(x)

]−2
(14)

The slope of the best-fit line (SBF) defines the appropriate sequential match among
measured and forecasted values and can be expressed by Equation (15):

SBF =

N
∑

x=1

[
t(x)− a(x)

]
∗

N
∑

x=1

[
a(x)− a(x)

]
N
∑

x=1

[
a(x)− a(x)

] (15)

The Willmott’s index of agreement (WIA) defines the appropriate sequential match
among measured and forecasted values and can be expressed by Equation (16):

WIA = 1 −

N
∑

x=1
[t(x)− a(x)]

N
∑

x=1

[
a(x)− a(x)

]
+

N
∑

x=1

[
a(x)− a(x)

]2
(16)

The Legate’s coefficient of efficiency (LCE) defines the appropriate sequential match
among measured and forecasted values and can be expressed by Equation (17):

LCE = 1 −

N
∑

x=1
[t(x)− a(x)]

2

N
∑

x=1

[
a(x)− a(x)

]2
(17)

where t(x) and a(x) are the i-th forecasted and measured values of daily GSR, (a(x)) presents
the average of measured values of daily GSR, and N is a number of experimental data.

Another criterion named the X2 Information Criterion (AIC of order two) and the X2
information criteria (BIC) are explained in Equations (18) and (19), which are computed for
both ANN and ARIMA models:

AIC = m ln(RMSE) + 2npar +
(

2 ∗ npar(npar + 1)
m − npar − 1

)
(18)
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BIC = m ln(RMSE) + npar ∗ ln(m) (19)

where m is the number of input–output models and npar is the number of parameters
to identify. Moreover, if the RMSE statistics should gradually improve with the more
added parameters, the AIC and BIC statistics penalize the model with more parameters and
therefore tend to give rise to more parsimonious models. In this case, the ratio of (m/npar)
is less than 60, and the second-order AIC has been evaluated to measure the performance
of the model.

3. Results and Discussion

This section deals with forecast ability via five techniques of the daily GSR in two
different cities in Morocco. The first and second methods are purely autoregressive (ARMA
and ARIMA), and the third approach is called FFBP, which has utilized a backpropagation
algorithm and the combined methods. In order to assess the success of these techniques,
numerous statistical metrics which are commonly used in the literature are discussed. The
proposed methodologies are widely operated to forecast the daily global solar radiation
(GSR) using the MATLAB environment. In Tables 3–5, the selected models could be defined
as ARMA (10, 0, 0), ARMA (16, 0, 0), ARIMA (2, 1, 1), ARIMA (2, 2, 1), and FFBP (12, 2, 1),
respectively, for Tetouan and Tangier cities.

Figure 9A–D show the comparisons of the daily GSR forecasted by the proposed
ARIMA, ARMA, FFBP, hybrid ARMA-FFBP, hybrid ARIMA-FFBP, and measured data of
the Tetouan site. The Figures present the error forecasting (EF) of each model, which shows
the agreement relationship between the forecasted methodologies and measured data. Con-
sidering Figure 4A and Table 6 together, it appears clearly that the R2, WIA, SBF, and LCE
of the selected ARMA (10.0.0) present a significant accuracy and vary between 0.8074 and
0.9939. In terms of BIC and AIC, the selected model presents the worst values forecasting
after the ARIMA (2.1.0) model. The average value of the daily GSR forecasted by the
ARMA (10.0.0) model is lower than the average daily GSR measured. In terms of error fore-
casting, it is seen that the selected model presents various observations with multiple error
forecastings, like observation number 63 (EF = 1.878 kW·h/m2), 87 (EF = 2.378 kW·h/m2)
102 (EF = 2.818 kW·h/m2), and 263 (EF = 2.994 kW·h/m2), respectively.

Figure 9B shows the daily GSR forecasted by the ARIMA (2.1.0) model and error
forecasting. In addition, the forecasted ARIMA (2.1.0) is compared with the measured
daily GSR for the Tetouan site. Considering the performance accuracy result presented in
Table 6, it can be seen that the all-statistical metric indicates that the ARIMA (2.1.0) model
forecast well through the lowest value of the MBE (0.0839%), RMSE (16.6421%), and Sd
(12.6704%). In term of R2, the ARIMA (2.1.0) is 0.9628, which presents successful forecasting
accuracy compared with the ARMA (10.0.0) model. The considering error forecasting of
the ARIMA (2.1.0) model was seen in observation number 161 (3.542 kW·h/m2).

Figure 9C shows the daily GSR and EF of both forecasted FFBP (12.2.1) and measured
data. By comparing the two previous models and the FFBP (12.2.1) model in terms of R2,
the shown model gives the highest accuracy, which is estimated at 0.9890. The lowest
value of the FFBP (12.2.1) in terms of the MBE, RMSE, BIC, and AIC is 0.817 kW·h/m2,
0.5119 kW·h/m2, 991.3442, and 890.6528, respectively. Unlike the ARMA (10.0.0) and
ARIMA (2.1.0) models, the error forecasting of the significant FFBP (12.2.1) model is less in
observation number 161(3.542 kW·h/m2) compared with ARIMA (2.1.0) and ARMA (10.0.0).
It can be concluded that the FFBP (12.2.1) model performed better than the ARMA (10.0.0)
and ARIMA (2.1.0) models.

Figure 9D shows the forecasted hybrid ARMA-FFBP model for the daily GSR, mea-
sured data, and error forecasting of the Tetouan site. Taking into account the advantage of
a hybrid model, which can minimize the shortcomings of a single model, the shown hybrid
ARMA-FFNB model is close to the measured data. In terms of R2, SBF, LCE, and WIA, the
presented value of the hybrid model is 0.9890, 0.9148, 0.9580, and 0.9910, respectively. The
R2 value is close to one, which indicates the good agreement between forecasted hybrid
ARMA-FFBP and measured data. The other statistical metric of the hybrid ARMA-FFBP
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shows the lowest values compared with the three previous models. The error forecasting
of the proposed hybrid ARMA-FFBP model shows significant and lower values than other
models. Among the three previous models, it was seen that the hybrid ARMA-FFBP is
the most suitable model to forecast the daily GSR compared with ARMA (10.0.0), ARIMA
(2.1.0), and FFBP (12.2.1) models.

Figure 9E shows the forecasted daily GSR generated by the hybrid ARIMA-FFBP
model, the measured data, and the error forecasting of the Tetouan site. Among all models,
the hybrid ARIMA-FFBP is the most successful model, which is very close to the measured
daily GSR. In terms of R2, the shown hybrid ARIMA-FFBP is approximately higher by about
0.41% on the hybrid ARMA- FFBP model, 0. 53% on the FFBP (12.2.1) model, 4.59% on
the ARMA (10.0.0) model and around 3.03% on ARIMA (2.1.0) model. The computed
MBE (%), RMSE (%) Sd (%), SBF, LCE, WIA, BIC, and AIC showed a very close forecasting
success compared with FFBP (12.2.1) and hybrid ARMA-FFBP models. The Hybrid ARMA-
FFBP model is close to the hybrid ARIMA-FFBP model, particularly in R2 (%). In term
of error forecasting, the proposed hybrid ARIMA-FFBP can be recognized as “the very
most suitable model forecasting”, which present the lowest value of statistical performance
and the highest values of R2, SPE, LCE, and WIA. Likewise, particularly in the previous
observation number 161, the presented error forecasting of the hybrid ARIMA-FFBP was
seen to be very low.
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Figure 9. (A–E) Comparison between predicted and measured values of daily global solar radiation
from ARMA, FFBP, ARIMA, and hybrid models.
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Table 6. Statistical results of the FFBP, ARMA, ARIMA, and hybrid network models.

Cities Models MBE MBE (%) RMSE RMSE (%) Sd Sd (%) R2 SBF LCE WIA BIC AIC

Tetouan

ARIMA (2, 1, 0) 0.0817 0.0839 0.80540 16.6421 0.7554 12.6704 0.9628 0.8998 0.9253 0.9491 1038.213 991.7475

ARMA (10, 0, 0) 0.1665 0.1098 1.0671 20.1083 0.9642 15.6709 0.9472 0.8915 0.9169 0.9689 1298.657 1051.867

FFBP (12, 2, 1) 0.0529 0.0364 0.5119 10.0253 0.5098 9.98521 0.9878 0.9098 0.9498 0.9887 991.3442 890.6528

Hybrid ARMA–FFBP 0.0376 0.0301 0.4871 9.98512 0.5001 9.10862 0.9890 0.9148 0.9580 0.9910 862.0175 810.6171

Hybrid ARIMA–FFBP 0.0298 0.0297 0.4091 9.6917 0.4678 8.67911 0.9931 0.9163 0.9641 0.9945 792.8625 756.3418

Tangier

ARIMA (2, 2, 0) 0.0042 0.06301 0.606335 17.41963 0.90689 12.42982 0.9744 0.8435 0.8954 0.9686 857.8941 788.5028

ARMA (16, 0, 0) 0.0709 0.10072 0.89561 23.0964 0.99875 16.6418 0.9601 0.8074 0.8638 0.9487 1096.819 976.183

FFBP (12, 2, 1) 0.0517 0.03092 0.47834 10.3863 0.79265 7.40331 0.9834 0.8671 0.9145 0.9891 835.265 645.765

Hybrid ARMA–FFBP 0.0401 0.02564 0.39876 9.68745 0.71563 7.01577 0.9888 0.9188 0.9615 0.9981 803.465 598.615

Hybrid ARIMA–FFBP 0.0222 0.02101 0.30762 9.06742 0.69426 6.87613 0.9901 0.9296 0.9696 0.9939 765.091 504.816
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Figure 10A–D shows the comparisons of the daily GSR forecasted by the proposed
ARIMA, ARMA, FFBP, hybrid ARMA-FFBP, hybrid ARIMA-FFBP, and measured data
of the Tangier site. The Figures present the error forecasting (EF) of each model, which
shows the agreement relationship between the forecasted methodologies and measured
data. The study location presents satisfactory results in terms of statistical metrics in the
same way as the previous one. The Tangier site is among the Mediterranean regions with
good prediction results selected in this study. In this regard, it has been seen from the
forecasted results and error depicted in Figure 5. Various observation numbers seen from
the forecasted daily GSR have maximal and minimal error forecasting. The presented result
led to increasing and decreasing the total forecast error of the selected study location. The
reason why the Tangier site is less expected than the Tetouan site. The ARMA (16.0.0) has
been the worst forecasted model in terms of R2, SPE, LCE, and WIA for the Tangier site.
The range value of the selected model is between 0.8074 and 0.9601. Compared with the
Tetouan site, the ARMA (16.0.0) model performed better than the ARMA (10.0.0) model.
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Figure 10. (A–E) Comparison between predicted and measured values of daily global solar radiation
from ARMA, FFBP, ARIMA, and hybrid models.

Figure 10B shows the daily GSR forecasted by ARIMA (2.2.0) model compared with
the measured data. In terms of MBE (%), RMSE (%), Sd (%), AIC, and BIC, the proposed
model increases the forecast accuracy compared with ARMA (16.0.0) model. The error
forecasting in this model is less than ARMA (16.0.0) model. Particularly, in observation
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numbers 73 (1.98 kW·h/m2), 88 (3.638 kW·h/m2), 89 (2.95 kW·h/m2) 128 (5.368 kW·h/m2),
131 (3.882 kW·h/m2), and 360 (0.6491 kW·h/m2). In terms of MBE, the selected model is
the only one that has the lowest value (0.0042 kW·h/m2) compared to the other models. It
can be concluded that the ARIMA (2.2.0) exceeds the ARMA (16.0.0) model and present
a significant agreement between the forecasted daily GSR and measured data.

Figure 10C shows the comparisons of the forecasted daily GSR generated by the FFBP
(12.2.1) method and measured data for the Tangier site. The error forecast is depicted in the
same figure, which presents the forecast improvement FFBP (12.2.1), and the performance
accuracy between measured data. As seen from Table 6, in term of R2, the selected model
rank third after the combined models. The lowest value of the FFBP (12.2.1) is by about
0.03092 kW·h/m2 for MBE, 0.0517% for MBE (%), and 0.79265 (%) for Sd (%) respectively.
The highest value of WIA is about 0.9891 and is nearly close to 1. As a result, the se-
lected FFBP (12.2.1) exceeds the ARIMA (2.2.0) and ARMA (16.0.0) models and illustrates
a successful forecast of the daily GSR.

Figure 10D shows the daily GSR forecasted by the hybrid ARMA-FFBP model and er-
ror forecasting. In addition, the forecasted combined model is compared with the measured
daily GSR for the Tangier site. Considering the depicted Figure 5 and Table 6 together, it
appears clearly that the hybrid ARMA-FFBP presents the highest statistical metric indi-
cator compared with the previous model for the selected study location. In addition, the
combined ARMA-FFPB is close to FFBP (12.2.1) in terms of R2, Sd (%), and Sd. Unlike the
ARMA (16.0.0) and ARIMA (2.2.0) models, the error forecasting of the significant hybrid
ARMA-FFBP model is less in observation numbers 73 (1.98 kW·h/m2), 88 (3.638 kW·h/m2),
89 (2.95 kW·h/m2) 128 (5.368 kW·h/m2), 131 (3.882 kW·h/m2), and 360 (0.6491 kW·h/m2).

Figure 10E shows the forecasted daily GSR implemented by combined ARIMA-FFBP
and compared with those measured data for the Tangier site. Among the four previous
models, the hybrid ARIMA-FFBP is the most successful model, which presents the lowest
values of MBE (%), RMSE (%), Sd (%), AIC, and BIC, and the highest value of R2, SPE, LCE,
and WIA. In terms of R2, the shown hybrid ARIMA-FFBP is approximately higher by about
1.57% on the ARMA (16.0.0) model, 3% on the ARIMA (2.2.0) model, 0.67% on the FFBP
(12.2.1) model, and around 0.13% on the hybrid ARMA-FFBP (2.1.0) model. All computed
statistical performance metrics showed a very close forecasting success compared with the
FFBP (12.2.1) and hybrid ARMA-FFBP models. In terms of error forecasting, the proposed
hybrid ARIMA-FFBP can be recognized as “the very most suitable model forecasting”.
Likewise, in the previous observation number, the presented error forecasting of the hybrid
ARIMA-FFBP was seen to be very low.

The Taylor diagram has been utilized as a comparison tool revealing the accuracies
of different selected models (forecasted and measured data). Moreover, this diagram
combines the correlation coefficient (R2), the root means square error (RMSE), and the
standard deviation (Sd) in a polar (two-dimensional) diagram. The main objective of this
illustration is to closely inspect the forecasted results and the measured data on a particular
day. Figures 11 and 12 compare the performance of the most appropriate inputs, and graphs
based on the statistical error metric. The figures illustrate the accuracies of the 16 relevant
models, which have relatively lower errors in terms of standard deviation (Sd) and RMSE
(value between 0.1 and 0.8 kWh/m2). In addition, the, highest value of R2 (99.31%) presents
the accuracy relationship between the measured and predicted values.

Figure 11 illustrates the Taylor diagram for the Tetouan site, in which statistics for the
forecasted ARMA (10.0.0), ARIMA (2.1.0), FFBP (12.2.1), hybrid ARMA-FFBP, and hybrid
ARIMA-FFBP models (each model contains 16 appropriate models to select the performed
one) were computed. Each appropriate model appearing in the diagram quantifies how the
forecasted models matched measured daily GSR. It is seen from the figure that the centered
RMSE is related to the distance from the reference point (the horizontal axis is considered
as observed data). As a result, the forecasted ARMA (10.0.0) and ARIMA (2.1.0) revealed
the highest RMSE and the lowest value of R2, which is varying between 16.6421~15.6709
and 0.9472~0.9628, respectively. This model is less than the forecasted FFBP (12.2.1) model
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and revealed the optimum RMSE (0.5119%) and Sd (9.9852%). The forecasted combined
hybrid ARMA-FFBP and hybrid-FFBP models resulted in the lowest value of RMSE than
the simple models.
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The Taylor diagram for the Tangier site shown in Figure 12 is generated by five models,
which contain 16 appropriate models. It appears from the figure that the forecasted FFBP
(12.2.1), hybrid ARMA-FFBP, and ARIMA-FFBP models proved the appropriate match
with the measured daily GSR. The hybrid ARIMA-FFBP model had the highest values in
terms of R2 and the lowest value in terms of RMSE compared with previous models. In
this case study, the Taylor correlation increased by about 10% to 15% compared with the
Tetouan site.

The regression plot of the forecasted daily GSR generated by the most five appropriate
models for the Tetouan and Tangier sites is given in Figure 13A,B. As seen from the figures,
the error estimated between the forecasted daily GSR and measured data have a wide
dispersion of the ARMA (10.0.0), ARIMA (2.1.0), ARMA (16.0.0), and ARIMA (2.2.0) models
for Tetouan and Tangier site, respectively. The dispersion of the FFBP (12.2.1) model is
smaller than the other two previous models. The dispersion of the combined models is
smaller and less than the FFBP (12.2.1) model. The accuracy between the forecasted and
measured data in the hybrid ARIMA-FFBP method is improved. It is observed that all data
sets are correctly fitted to the corresponding line, which verifies the hybrid ARIMA-FFBP
is more accurate compared to other methods. In addition, the correlation coefficient (R2)
values of the best model for the Tetouan and Tangier sites is close to 1, which explains the
good relationship between the forecasted and measured data.
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Table 6 gives the numerical values of the adopted methodologies by using the com-
puted statistical metric in order to select the best model, which is at present the optimal
value. The correlation coefficient (R2) of the forecasted ARIMA, ARMA, FFBP, and hybrid
models varies between 0.9472% and 0.9931% depending on the study location and the
trained methods. The range value of the slope of the best-fit line (SPE) varies between
0.8435 and 0.9296. The range value of the legate’s coefficient of efficiency (LCE) is 0.8954,
0.9696 and the range value of Willmott’s index of agreement (WIA) is 0.9491 and 0.9945.
These results show that the hybrid ARIMA-FFBP is more reliable in the forecasting of the
daily GSR for the Tetouan and Tangier sites. In this context, the obtained performance
will be compared and discussed by considering Table 6 as the reference. Further, the
results obtained from the hybrid ARIMA-FFBP model compared with single and combined
models have exposed the highest correlation coefficient of 0.9901% for Tetouan city and
0.9831% for Tangier city. In addition, the values of MBE (%), RMSE (%), Sd (%), Akaike
information criterion (AIC), and Bayesian information criterion (BIC) for both cities are
0.0297 (%), 0.02101 (%), 9.6917 (%), 9.06742 (%), 8.67911 (%), 6.87613 (%), 792.8625, 765.091
and 756.3418, 504.816, respectively. Eventually, the results have defined that the hybrid
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ARIMA-FFBP model is more accurate and suitable compared with the other methods to
predict the daily global solar radiation for any location with the same weather conditions.

In several investigations, the hybrid ARIMA-FFBP and hybrid ARMA-FFBP models
were compared to deep learning models for solar radiation. A study, for example, compared
artificial intelligence (AI) methods for solar radiation forecast or estimation, including
empirical, statistical, physical, and machine learning models [25]. Another study introduced
a new hybrid strategy based on deep learning approaches for Global Solar Radiation (GSR)
prediction problems [48]. In addition, one study constructed and analyzed two innovative
hybrid neural network models for solar irradiance forecasting [49], and another examined
the effects of various classic long short-term memory (LSTM) models on hour-ahead solar
irradiance forecasting [50]. Finally, a study demonstrated that using input parameters in
this hybrid model for daily GSR forecast proves the performance accuracy compared to the
previous models.

4. Conclusions

This paper has evaluated and compared the forecasting of the daily global solar
radiation in two cities by five approaches such as FFBP, ARIMA, ARMA, hybrid ARMA-
FFBP, and hybrid ARIMA-FFBP, which were modeled in the MATLAB simulation platform.
A different combination of input data was used to achieve our proposed methodologies in
terms of statistical metrics. Further, the forecasting accuracy of the FFBP model in various
applications and the analysis capability time series of the ARIMA and ARMA models were
considered. Moreover, the solar radiation intensity, according to the climatic conditions
and geographical coordinates in the two cities, was evaluated by their measured daily
GSR dataset.

The hybrid ARIMA-FFBP model obtained the highest correlation coefficient of 0.9901%
for Tetouan city and 0.9831% for Tangier city once compared to single and combined models.
MBE (%), RMSE (%), Sd (%), Akaike information criterion (AIC), and Bayesian information
criterion (BIC) values for both cities are 0.0297 (%), 0.02101 (%), 9.6917 (%), 9.06742 (%),
8.67911 (%), 6.87613 (%), 792.8625, 765.091, and 756.3418, 504.816, respectively. Furthermore,
the results reveal that the hybrid ARIMA-FFBP model has been considered an appropriate
forecasting tool to predict the daily global solar radiation, which exceeds the hybrid ARMA-
FFBP and the other models. This method could be deployed further for modeling different
areas in the country for long-term forecasting. Notably, the most appropriate model has
corresponded to the lowest value of statistical performance indicators. For instance, the
hybrid ARIMA-FFBP model reaches low values compared to the hybrid ARMA-FFBP and
simple models. Ultimately, the results verify that the hybrid ARIMA-FFBP model is highly
accurate in predicting the daily global solar radiation and could further be substituted for
other locations under similar weather conditions in the future.
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