# Methodology for Optimizing Factors Affecting Road Accidents in Poland

^{*}

## Abstract

**:**

## 1. Characteristics of the Issue

- Good atmospheric conditions are as follows:
- ○
- air temperature > 3 deg;
- ○
- no precipitation;
- ○
- wind < 5.5 m/s;
- ○
- visibility > 10 km;
- ○
- daily differential pressure < 8 hPa.

- Bad weather conditions (if one of the following factors is met) are as follows:
- ○
- slippery pavement (temperature < 3 °C and occurrence of precipitation);
- ○
- driving rain (temperature >0 °C, precipitation > 3 mm);
- ○
- snowstorm (temperature <0 °C, precipitation > 3 mm);
- ○
- strong wind (wind > 10 ms/s);
- ○
- dense fog (visibility < 300 m).

## 2. Multi-Criteria Optimization Model

^{N}

_{1}(x),…, F

_{n}(x),…, F

_{N}(x)) ∈ R

^{N}

_{n}(x)—the value of the n-th quality indicator (n-th criterion function for the solution x ∈ X).

- A—the space of solutions;
- B—the space of solution evaluations;
- F: A ⇒B—a criterion function, assigning to each solution X⊂A its grade Z∈B and assuming that the set of possible solutions A is not empty, a certain subset X (the set of acceptable solutions) can be selected, whereby

_{1},…,x

_{n}}—a set of possible solutions;

^{N}

_{1}(X), f

_{2}(X),),…, f

_{n}(x),…, f

_{N}(x))

^{2},

_{1}(X), f

_{2}(X))

_{1}(X), f

_{2}(X) can have a dominance relation preference structure, i.e., Φ MAX or MIN, respectively, where the dominant relationship Φ has a preference MAX:

_{1}, c

_{2},…, c

_{n}, …, c

_{N}) ∈C × C}

_{1}(x), f

_{2}(x)) ∈ R

^{2}: x∈ X}

_{1}, c

_{2}—points of space C;

_{1}, d

_{2}, …, d

_{n}, …, d

_{N}) ∈D × D}

_{1}(x), f

_{2}(x)) ∈ R

^{2}: x∈ X}

_{1}, d

_{2}—points of space D.

_{1}, F

_{1}, Φ

_{1})

_{1}—the set of admissible solutions defined as

_{1}= {x

_{1,1}, x

_{1,2}, x

_{1,3}, x

_{1,4}}

_{1}—quality indicator defined as F

_{1}: X

_{1}⇒ R

^{2}

_{1}(X

_{1}) = (f

_{1,1}(x), f

_{1,2}(x))

_{1}—dominance relationship of preference, e.g., MAX, MAX.

_{D}

^{Φ1}of the optimization task, find the product of the following sets X

_{1}

^{1}and X

_{1}

^{2}:

_{1}

^{1}= {x

^{*}∈ X

_{1}: f

_{1,1}(x

^{*}) = max f

_{1,1}(x)}; x∈ X

_{1}

_{1}

^{2}= {x

^{*}∈ X

_{1}: f

_{1,2}(x

^{*}) = max f

_{1,2}(x)}; x ∈X

_{1}

_{1,1}(x), f

_{1,2}(x) are defined by appropriate relations, e.g.,

_{1},

_{1}(x) = ej (x) and f

_{1},

_{2}(x) = kj (x)

- maximize the function,

_{1,1}(x) = e

_{j}(x), x ∈X

_{1}; j = 1,…,n

- maximize the function,

_{1,2}(x) = k

_{j}(x), x∈X

_{1}; j = 1,…,n

_{1}

^{1}and X

_{1}

^{2},

_{1}

^{1}= {x∈

^{*}X

_{1}: e

_{j}(x

^{*}) = max e

_{j}(x)} for x ∈X

_{1}

_{1}

^{2}= {x

^{*}∈X

_{1}: k

_{j}(x

^{*}) = max k

_{j}(x)} for x ∈X

_{1}

_{1}

^{1}and X

_{1}

^{2},

_{D}

^{Φ1}= X

_{1}

^{1}∩ X

_{1}

^{2}

_{D}

^{Φ1}is empty, the set of non-dominated solutions X

_{N}

^{Φ1}and the set of compromise solutions X

_{K}

^{Φ1}are determined.

^{*}= (c

_{1}

^{*}, c

_{2}

^{*}):

_{1}

^{*}= max e

_{j}(x); c

_{2}

^{*}= max k

_{j}(x)

x ∈X

_{1;}x ∈X

_{1}

_{1}= {f

_{1,1}, f

_{1,2}}, it follows that for c* the maximum value of e

_{j}is demanded and the maximum value of k

_{j}is demanded.

_{1}

^{*}(x) = {f

_{1,1}

^{*}(x), f

_{1,2}

^{*}(x)}

_{1}

^{max}= max f

_{1,1}(x), c

_{2}

^{max}= max f

_{1,2}(x)

x ∈X

_{1}x∈X

_{1}

^{**}= (c

_{1}

^{**}, c

_{2}

^{**})

_{1}(discreteness) to determine the set of its non-dominated solutions X

_{N}

^{Φ1}and compromise solutions X

_{K}

^{Φ1}, a method is proposed to determine the approximate result (and therefore the solution) of the compromise for the norm |●|, which is a measure of the distance of the results c

^{*}∈C

^{*}from the ideal point c

^{**}[54,55].

^{**}denote the ideal point determined by relation (29) and C

^{*}the known set of normalized results:

^{*}= {c

^{*i}}, i = 1,…,n

^{*i}= (c

_{1}

^{*i}, c

_{2}

^{*i}), whereby

^{o}, which would minimize the calculated values of r

_{i}norms, e.g., x

_{1}

^{o}= x

_{1,3}

_{1}

^{o}= c

^{o}= min r

_{i}

## 3. Optimization of Factors Affecting the Number of Traffic Accidents

_{1}}

_{1}= {x

_{1,1},…,x

_{1,n}}—is a set of atmospheric factors affecting the number of traffic accidents,

_{1}= (x

_{1,1}, x

_{1,2},

_{…}, x

_{1,35})

- x
_{1,1}—good weather; - x
_{1,2}—fog, smoke; - x
_{1,3}—rainfall; - x
_{1,4}—snowfall, hail; - x
_{1,5}—blinding sun; - x
_{1,6}—cloudy; - x
_{1,7}—strong wind;

- x
_{1,8}—Monday; - x
_{1,9}—Tuesday; - x
_{1,10}—Wednesday; - x
_{1,11}—Thursday; - x
_{1,12}—Friday; - x
_{1,13}—Saturday; - x
_{1,14}—Sunday;

- x
_{1,15}—Lower Silesia; - x
_{1,16}—Kujawsko-pomorskie; - x
_{1,17}—Lubelskie; - x
_{1,18}—Lubuskie; - x
_{1,19}—Lodzkie; - x
_{1,20}—Lesser Poland; - x
_{1,21}—Mazovian; - x
_{1,22}—Opolskie; - x
_{1,23}—Subcarpathian; - x
_{1,24}—Podlaskie; - x
_{1,25}—Pomeranian; - x
_{1,26}—Silesian; - x
_{1,27}—Swietokrzyskie; - x
_{1,28}—Warmian-Masurian; - x
_{1,29}—Greater Poland; - x
_{1,30}—Zachodniopomorskie.

- x
_{1,31—}highway; - x
_{1,32}—expressway; - x
_{1,33}–with two one-way roadways; - x
_{1,34}—road—one-way; - x
_{1,35}—two-way, single carriageway.

_{1}, we can define the vector solution quality index F as

_{1}= F

_{1}(X

_{1}) = (f

_{1,1}(X

_{1}), f

_{1,2}(X

_{1}), f

_{1,3}(X

_{1}))

_{1}criterion functions, for optimizing weather conditions affecting the number of traffic accidents in Poland, for example, as [54,55]:

_{1}= (f

_{1,1}, f

_{1,2,}f

_{1,3})

_{1,1}—method of maximum relative change in factor affecting lwd;

_{1,2}—method of maximum change in gradient of factor affecting lwd;

_{1,3}—method of maximum change in factor affecting lwd;

_{max}—maximum lwd value of analyzed measurements;

_{i})—number of traffic accidents over time t

_{i};

_{i+1})—number of traffic accidents over time t

_{i}

_{+1}.

_{1}—criteria dominance relationship vector indicator of solution quality F ([51,57]:

_{1}= {Φ

_{1,1}, Φ

_{1,2}, Φ

_{1,3}}

_{1,1}—dominance relationship in terms of f

_{1,1}(MAX);

_{1,2}—dominance relationship in terms of f

_{1,2}(MAX);

_{1,3}—dominance relationship in terms of f

_{1,3}(MAX).

_{1}, F

_{1}, Φ

_{1}>

- Normalization of criterion space—space D
^{*}

^{*}.

^{*}= {d

^{*i}}, i = 1,…,n; d

^{*i}= (d

_{1}

^{*i}, d

_{2}

^{*i}, d

_{3}

^{*i})

- 2.
- Determination of the coordinates of the ideal point—d
^{**}.

^{**}= (d

_{1}

^{**}, d

_{2}

^{**}, d

_{3}

^{**})

d

_{1}

^{**}= max f

^{*}

_{1,1}(x), d

_{2}

^{**}= max f

^{*}

_{1,2}(x)

d

_{3}

^{**}= max f

^{*}

_{1,3}(x), x ∈ X

_{1}

- 3.
- Calculation of the value of the standard with parameter p = 2—r
_{j}(D^{*}).

^{*}∈ D

^{*}results from the ideal point d

^{**}.

_{1}

^{o}in an optimization task—for example, if x

_{1}

^{o}= x

_{1,4},

_{1}

^{o}= d

^{o}= min r

_{i}; because d

^{o}= min r

_{3}

_{i}∈ X

_{1}, for example, is the factor x

_{1,4}(the optimal set of one-element solutions is obtained—one factor).

_{i}} [57] and, based on them, determine a multi-element set of solutions (the optimal set of factors significantly affecting the number of traffic accidents in Poland).

## 4. Example of Optimization of Factors Affecting the Number of Road Accidents in Poland

- the presentation of a set X
_{j}and selection of elements x_{i}X_{j}; - the presentation of the set F
_{j}and selection, by the computer program operator, of the elements f_{i}F_{j}and the dominance relation_{i j}; - data entry according to two options (option 1—manual data entry (f
_{i}F_{j}values), option 2—calculation of f_{i}F_{j}values) based on data obtained during experimental or simulation studies;

_{av}determined from the set of values {r

_{j}(x

_{i}), j = 1,…, 35} was determined, which is the criterion for classifying the admissible solutions x

_{i}∈X

_{j}into the set of optimal solutions x

_{i}

^{o}∈X

_{j}

^{o}according to the principle expressed by the relation

_{i}

^{o}∈X

_{j}

^{o}= r

_{j}<= r

_{av}

_{av}= 15.33, then the elements of the set of solutions of optimal factors significantly affecting the number of traffic accidents X

_{j}

^{o}, according to the above classification criterion, respectively, are as follows:

- fog, smoke;
- rainfall;
- snowfall or hail;
- cloud cover;

- Monday;
- Tuesday;
- Wednesday;
- Thursday;
- Friday;
- Saturday;
- Sunday;

- Lower Silesian;
- Lubelskie;
- Lodzkie;
- Małopolskie;
- Mazovian;
- Opolskie;
- Podkarpackie;
- Pomeranian;
- Silesian;
- Warmian-Masurian;
- Greater Poland;

- with two one-way carriageways;
- a two-way, single carriageway road.

## 5. Summary

_{1}) and elements of the dominance relation

_{1}) allows us to conclude that it can be used to optimize factors affecting the number of traffic accidents in Poland. The main advantage of the presented algorithm is its versatility; it follows that it will probably be possible to apply the procedures of the presented methodology in situations where the elements of the criterion function will be quantitative and qualitative, and when there is a need to obtain a multi-element or single-element optimal set of solutions.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- WHO. Global Status Report on Road Safety 2020; World Health Organization: Geneva, Switzerland, 2018; Available online: https://www.who.int/violence_injury_prevention/road_safety_status/report/en/ (accessed on 2 May 2022).
- Eurostat. 2022. Available online: https://ec.europa.eu/eurostat (accessed on 2 May 2022).
- Police Statistics. 2022. Available online: https://statystyka.policja.pl/ (accessed on 2 May 2022).
- Zhai, X.; Huang, H.; Sze, N.N.; Song, Z.; Hon, K.K. Diagnostic analysis of the effects of weather condition on pedestrian crash severity. Accid. Anal. Prev.
**2019**, 122, 318–324. [Google Scholar] [CrossRef] [PubMed] - Holland, C.; Hill, R. The effect of age, gender and driver status on pedestrians’ intentions to cross the road in risky situations. Accid. Anal. Prev.
**2007**, 39, 224–237. [Google Scholar] [CrossRef] [PubMed] - Favarò, F.M.; Nader, N.; Eurich, S.O.; Tripp, M.; Varadaraju, N. Examining accident reports involving autonomous vehicles in California. PLoS ONE
**2017**, 12, e0184952. [Google Scholar] [CrossRef] [PubMed] - Amini, R.E.; Katrakazas, C.; Antoniou, C. Negotiation and Decision-Making for a Pedestrian Roadway Crossing: A Literature Review. Sustainability
**2019**, 11, 6713. [Google Scholar] [CrossRef] [Green Version] - Hafeez, F.; Sheikh, U.U.; Al-Shammari, S.; Hamid, M.; Khakwani, A.B.K.; Arfeen, Z.A. Comparative analysis of influencing factors on pedestrian road accidents. Bull. Electr. Eng. Inform.
**2023**, 12, 257–267. [Google Scholar] [CrossRef] - Mesquitela, J.; Elvas, L.B.; Ferreira, J.C.; Nunes, L. Data Analytics Process over Road Accidents Data—A Case Study of Lisbon City. ISPRS Int. J. Geo-Inf.
**2022**, 11, 143. [Google Scholar] [CrossRef] - Becker, N.; Rust, H.W.; Ulbrich, U. Predictive modeling of hourly probabilities for weather-related road accidents. Nat. Hazards Earth Syst. Sci.
**2020**, 20, 2857–2871. [Google Scholar] [CrossRef] - Mills, B.; Andrey, J.; Doberstein, B.; Doherty, S.; Yessis, J. Changing patterns of motor vehicle collision risk during winter storms: A new look at a pervasive problem. Accid. Anal. Prev.
**2019**, 127, 186–197. [Google Scholar] [CrossRef] - Karlaftis, M.; Yannis, G. Weather effects on daily traffic accidents and fatalities: A time series count data approach. In Proceedings of the 89th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 10–14 January 2010. [Google Scholar]
- Scott, P. Modelling time-series of British road accident data. Accid. Anal. Prev.
**1986**, 18, 109–117. [Google Scholar] [CrossRef] - Fridstrøm, L.; Ifver, J.; Ingebrigtsen, S.; Kulmala, R.; Thomsen, L.K. Measuring the contribution of randomness, exposure, weather, and daylight to the variation in road accident counts. Accid. Anal. Prev.
**1995**, 27, 1–20. [Google Scholar] [CrossRef] - Shankar, V.; Mannering, F.; Barfield, W. Effect of roadway geometrics and environmental factors on rural freeway accident frequencies. Accid. Anal. Prev.
**1995**, 27, 371–389. [Google Scholar] [CrossRef] - Eisenberg, D. The mixed effects of precipitation on traffic accidents. Accid. Anal. Prev.
**2004**, 36, 637–647. [Google Scholar] [CrossRef] - Bergel-Hayat, R.; Depire, A. Climate, road traffic and road risk—An aggregate approach. In Proceedings of the 10th World Conference on Transport Research (CD-ROM), Istanbul, Turkey, 4–8 July 2004. [Google Scholar]
- Hermans, E.; Wets, G.; Van Den Bossche, F. Frequency and severity of belgian road traffic accidents studied by state-space methods. J. Transp. Stat.
**2006**, 9, 63–76. [Google Scholar] - Bijleveld, F.; Churchill, T. The Influence of Weather Conditions on Road Safety: An Assessment of the Effect of Precipitation and Temperature. 2009. Available online: https://www.swov.nl/sites/default/files/publicaties/rapport/r2009-09.pdf (accessed on 2 May 2022).
- Bucsuházy, K.; Matuchová, E.; Zůvala, R.; Moravcová, P.; Kostíková, M.; Mikulec, R. Human factors contributing to the road traffic accident occurrence. Transp. Res. Procedia
**2020**, 45, 555–561. [Google Scholar] [CrossRef] - Schlögl, M. A multivariate analysis of environmental effects on road accident occurrence using a balanced bagging approach. Accid. Anal. Prev.
**2020**, 136, 105398. [Google Scholar] [CrossRef] - Kim, D.; Jung, S.; Yoon, S. 2021 Risk Prediction for Winter Road Accidents on Expressways. Appl. Sci.
**2021**, 11, 9534. [Google Scholar] [CrossRef] - Kim, D.; Yoon, S.; Kim, B. Comparison of spatial interpolation methods for producing road weather information in winter. J. Korean Data Inf. Sci. Soc.
**2020**, 23, 541–551. [Google Scholar] [CrossRef] - Onesimu, J.A.; Kadam, A.; Sagayam, K.M.; Elngar, A.A. Internet of things based intelligent accident avoidance system for adverse weather and road conditions. J. Reliab. Intell. Environ.
**2021**, 7, 299–313. [Google Scholar] [CrossRef] - Tubis, A. Risk Assessment in Road Transport—Strategic and Business Approach. J. KONBiN
**2018**, 45, 305–324. [Google Scholar] [CrossRef] [Green Version] - Safety Cube; Project Co-Funded by Horizon 2020 Framework Programmes; European Commission: Brussels, Belgium, 2016.
- Reurings, M.; Jannsen, T.; Eenink, R.; Elvik, R.; Cardoso, J.; Stefan, C. Accident Prediction Models and Road Safety Impact Assessment a state of the art; Ripcord–ISERET; Institute for Road Safety Research: Leidschendam, The Netherlands, 2005. [Google Scholar]
- SWOV. Road Infrastructure Safety Management Evaluation Tools (RISMET); Govert Schermers: Stockholm, Sweden, 2012. [Google Scholar]
- Bergel-Hayat, R.; Debbarh, M.; Antoniou, C.; Yannis, G. Explaining the road accident risk: Weather effects. Accid. Anal. Prev.
**2013**, 60, 456–465. [Google Scholar] [CrossRef] [Green Version] - Hermans, E.; Brijs, T.; Stiers, T.; Offermans, C. The impact of weather conditions on road safety investigated on an hourly basis. In Proceedings of the 85th Transportation Research Board (TRB) Annual Meeting, Washington, DC, USA, 22–26 January 2006. [Google Scholar]
- Brodsky, H.; Hakkert, A. Risk of a road accident in rainy weather. Accid. Anal. Prev.
**1988**, 20, 161–176. [Google Scholar] [CrossRef] [PubMed] - Sabir, M. Weather and Travel Behaviour. Ph.D. Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 2011. [Google Scholar]
- Masello, L.; Castignani, G.; Sheehan, B.; Murphy, F.; McDonnell, K. On the road safety benefits of advanced driver assistance systems in different driving contexts. Transp. Res. Interdiscip. Perspect.
**2022**, 15, 100670. [Google Scholar] [CrossRef] - Čubranić-Dobrodolac, M.; Švadlenka, L.; Čičević, S.; Dobrodolac, M. Modelling driver propensity for traffic accidents: A comparison of multiple regression analysis and fuzzy approach. Int. J. Inj. Control. Saf. Promot.
**2020**, 27, 156–167. [Google Scholar] [CrossRef] - Čubranić-Dobrodolac, M.; Švadlenka, L.; Čičević, S.; Trifunović, A.; Dobrodolac, M. Using the Interval Type-2 Fuzzy Inference Systems to Compare the Impact of Speed and Space Perception on the Occurrence of Road Traffic Accidents. Mathematics
**2020**, 8, 1548. [Google Scholar] [CrossRef] - Ismail, S.N.; Ramli, A.; Aziz, H.A. Research trends in mining accidents study: A systematic literature review. Saf. Sci.
**2021**, 143, 105438. [Google Scholar] [CrossRef] - Helgason, A. Fractional integration methods and short Time series: Evidence from asimulation study. Polit. Anal.
**2016**, 24, 59–68. Available online: https://www.jstor.org/stable/24573204 (accessed on 2 May 2022). [CrossRef] - Lavrenz, S.; Vlahogianni, E.; Gkritza, K.; Ke, Y. Time series modeling in traffic safetyresearch. Accid. Anal. Prev.
**2018**, 117, 368–380. [Google Scholar] [CrossRef] - Prognosis Based on Time Series. 2022. Available online: http://pis.rezolwenta.eu.org/Materialy/PiS-W-5.pdf (accessed on 2 May 2022).
- Procházka, J.; Flimmel, S.; Čamaj, M.; Bašta, M. Modelling the Number of Road Accidents; Publishing House of the University of Economics in Wrocław: Wrocław, Poland, 2017. [Google Scholar] [CrossRef] [Green Version]
- Sunny, C.M.; Nithya, S.; Sinshi, K.S.; Vinodini, V.M.D.; Lakshmi, A.K.G.; Anjana, S.; Manojkumar, T.K. Forecasting of Road Accident in Kerala: A Case Study. In Proceedings of the International Conference on Data Science and Engineering (ICDSE), Kochi, India, 7–9 August 2018. [Google Scholar] [CrossRef]
- Dudek, G. Forecasting Time Series with Multiple Seasonal Cycles Using Neural Networks with Local Learning. In ICAISC 2013: Artificial Intelligence and Soft Computing; Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7894. [Google Scholar] [CrossRef]
- Szmuksta-Zawadzka, M.; Zawadzki, J. Forecasting on the Basis of Holt-Winters Models for Complete and Incomplete Data; Research Papers of the Wrocław University of Economics: Wrocław, Poland, 2009; Volume 38. [Google Scholar]
- Wójcik, A. Autoregressive Vector Models as a Response to the Critique of Multi-Equation Structural Econometric Models; Publishing House of the University of Economics in Katowice: Katowice, Poland, 2014; Volume 193. [Google Scholar]
- Monedero, B.D.; Gil-Alana, L.A.; Martínez, M.C.V. Road accidents in Spain: Are they persistent? IATSS Res.
**2021**, 45, 317–325. [Google Scholar] [CrossRef] - Al-Madani, H. Global road fatality trends’estimations based on country-wise microlevel data. Accid. Anal. Prev.
**2018**, 111, 297–310. [Google Scholar] [CrossRef] - Mamczur, M. Machine Learning How Does Linear Regression Work? And Is It Worth Using? 2022. Available online: https://miroslawmamczur.pl/jak-dziala-regresja-liniowa-i-czy-warto-ja-stosowac/ (accessed on 2 May 2022).
- Piłatowska, M. The choice of the order of autoregression depending on the parameters of the generating model. Econometrics
**2012**, 4, 16–35. [Google Scholar] - In What Weather Are Accidents Most Common? 2022. Available online: https://moto.pl/MotoPL/7,88389,25510393,przy-jakiej-pogodzie-najczesciej-dochodzi-do-wypadkow-wcale.html (accessed on 2 May 2022).
- Ameljańczyk, A. Multi-Criteria Optimization; Military University of Technology Publishing: Warsaw, Poland, 1986. [Google Scholar]
- Tylicki, H. Optimization of the anthropotechnical system. In Proceedings of the Materials of the XXXVII Winter School of Reliability, Szczyrk, Poland, 22–23 March 2009; pp. 349–354. [Google Scholar]
- Tylicki, H.; Gorzelańczyk, P. The use of condition forecasting methods in the logistics of means of transport. Logistics
**2013**, 1, 2–6. [Google Scholar] - Tylicki, H.; Gorzelańczyk, P. Automation of the process of monitoring the condition of means of transport. Logistics
**2014**, 6, 10766–10775. [Google Scholar] - Bhandari, B.; Lee, K.; Lee, G.; Cho, Y.M.; Ahn, S. Optimization of hybrid renewable energy power systems: A review. Int. J. Precis. Eng. Manuf. Green Technol.
**2015**, 2, 99–112. [Google Scholar] [CrossRef] - Tylicki, H. A model of optimizing the energy management of a company. In Materials GWDA Piła; GWDA Piła: Piła, Poland, 2022. [Google Scholar]
- Tylicki, H.; Wojciechowski, T. Report on the implementation of topic 4, stage 1 Optimization of energy management in the conditions of a municipal wastewater treatment company. In Materials GWDA Piła; GWDA Piła: Piła, Poland, 2022. [Google Scholar]
- Gorzelanczyk, P.; Tylicki, H.; Kalina, T.; Jurkovič, M. Optimizing the Choice of Means of Transport using Operational Research. Commun. Sci. Lett. Univ. Zilina
**2021**, 23, A193–A207. [Google Scholar] [CrossRef]

**Figure 1.**Number of road accidents in Poland between 1990 and 2021 [3].

**Figure 3.**Graphical interpretation of the solution to the optimization task [56].

**Figure 4.**Multi-criteria optimization scheme for determining the optimal set of factors influencing road accidents in Poland.

x_{1,1} | x_{1,2} | x_{1,3} | x_{1,4} | x_{1,5} | x_{1,6} | x_{1,7} | x_{1,8} | x_{1,9} | x_{1,10} | x_{1,11} | x_{1,12} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|

f_{1,1} | 0.73 | 0.53 | 0.70 | 0.50 | 0.78 | 0.68 | 0.53 | 0.73 | 0.74 | 0.74 | 0.74 | 0.75 |

f_{1,2} | 1622.45 | 132.20 | 700.40 | 539.85 | 69.15 | 1541.80 | 62.50 | 305.60 | 297.50 | 323.70 | 261.55 | 338.45 |

f_{1,3} | 9721.62 | 0.53 | 2041.29 | 1188.33 | 178.81 | 3600.67 | 269.00 | 2162.38 | 1911.57 | 1993.81 | 1981.33 | 2168.48 |

x_{1,13} | x_{1,14} | x_{1,15} | x_{1,16} | x_{1,17} | x_{1,18} | x_{1,19} | x_{1,20} | x_{1,21} | x_{1,22} | x_{1,23} | x_{1,24} | |

f_{1,1} | 0.70 | 0.72 | 0.74 | 0.59 | 0.60 | 0.78 | 0.85 | 0.75 | 0.61 | 0.23 | 0.77 | 0.43 |

f_{1,2} | 397.00 | 277.75 | 229.80 | 96.50 | 146.25 | 40.65 | 224.60 | 406.60 | 431.40 | 247.20 | 148.80 | 96.75 |

f_{1,3} | 2492.81 | 1935.95 | 914.71 | 1100.14 | 1205.62 | 223.14 | 726.57 | 1267.81 | 3399.33 | 3942.71 | 543.86 | 1301.67 |

x_{1,25} | x_{1,26} | x_{1,27} | x_{1,28} | x_{1,29} | x_{1,30} | x_{1,31} | x_{1,32} | x_{1,33} | x_{1,34} | x_{1,35} | Φ_{1} | |

f_{1,1} | 0.76 | 0.69 | 0.71 | 0.73 | 0.68 | 0.73 | 0.64 | 0.49 | 0.76 | 0.83 | 0.73 | MAX |

f_{1,2} | 184.05 | 297.05 | 81.20 | 140.05 | 392.75 | 103.20 | 40.70 | 23.60 | 294.25 | 81.40 | 1732.15 | MAX |

f_{1,3} | 883.10 | 2189.29 | 631.62 | 599.95 | 1709.76 | 598.05 | 171.05 | 229.05 | 1620.90 | 253.00 | 12,116.14 | MAX |

F/X | f_{1,1} | MAX (f_{1,1}) | f_{1,1}* | f_{1,1}** | f_{1,2} | MAX (f_{1,2}) | f_{1,2}* | f_{1,2}** | f_{1,3} | MAX (f_{1,3}) | f_{1,3}* | f_{1,3}** |
---|---|---|---|---|---|---|---|---|---|---|---|---|

x_{1,1} | 0.73 | 0.85 | 1.17 | 3.66 | 1622.4 | 1732.15 | 1.07 | 73.4 | 9721.62 | 12,116.14 | 0.8 | 1 |

x_{1,2} | 0.53 | 1.61 | 132.2 | 13.1 | 0.53 | 0 | ||||||

x_{1,3} | 0.7 | 1.21 | 700.4 | 2.47 | 2041.29 | 0.17 | ||||||

x_{1,4} | 0.5 | 1.7 | 539.85 | 3.21 | 1188.33 | 0.1 | ||||||

x_{1,5} | 0.78 | 1.09 | 69.15 | 25.05 | 178.81 | 0.01 | ||||||

x_{1,6} | 0.68 | 1.25 | 1541.8 | 1.12 | 3600.67 | 0.3 | ||||||

x_{1,7} | 0.53 | 1.59 | 62.5 | 27.71 | 269 | 0.02 | ||||||

x_{1,8} | 0.73 | 1.16 | 305.6 | 5.67 | 2162.38 | 0.18 | ||||||

x_{1,9} | 0.74 | 1.14 | 297.5 | 5.82 | 1911.57 | 0.16 | ||||||

x_{1,10} | 0.74 | 1.15 | 323.7 | 5.35 | 1993.81 | 0.16 | ||||||

x_{1,11} | 0.74 | 1.15 | 261.55 | 6.62 | 1981.33 | 0.16 | ||||||

x_{1,12} | 0.75 | 1.13 | 338.45 | 5.12 | 2168.48 | 0.18 | ||||||

x_{1,13} | 0.7 | 1.22 | 397 | 4.36 | 2492.81 | 0.21 | ||||||

x_{1,14} | 0.72 | 1.19 | 277.75 | 6.24 | 1935.95 | 0.16 | ||||||

x_{1,15} | 0.74 | 1.14 | 229.8 | 7.54 | 914.71 | 0.08 | ||||||

x_{1,16} | 0.59 | 1.45 | 96.5 | 17.95 | 1100.14 | 0.09 | ||||||

x_{1,17} | 0.6 | 1.41 | 146.25 | 11.84 | 1205.62 | 0.1 | ||||||

x_{1,18} | 0.78 | 1.1 | 40.65 | 42.61 | 223.14 | 0.02 | ||||||

x_{1,19} | 0.85 | 1 | 224.6 | 7.71 | 726.57 | 0.06 | ||||||

x_{1,20} | 0.75 | 1.14 | 406.6 | 4.26 | 1267.81 | 0.1 | ||||||

x_{1,21} | 0.61 | 1.39 | 431.4 | 4.02 | 3399.33 | 0.28 | ||||||

x_{1,22} | 0.23 | 3.66 | 247.2 | 7.01 | 3942.71 | 0.33 | ||||||

x_{1,23} | 0.77 | 1.1 | 148.8 | 11.64 | 543.86 | 0.04 | ||||||

x_{1,24} | 0.43 | 1.97 | 96.75 | 17.9 | 1301.67 | 0.11 | ||||||

x_{1,25} | 0.76 | 1.12 | 184.05 | 9.41 | 883.1 | 0.07 | ||||||

x_{1,26} | 0.69 | 1.23 | 297.05 | 5.83 | 2189.29 | 0.18 | ||||||

x_{1,27} | 0.71 | 1.19 | 81.2 | 21.33 | 631.62 | 0.05 | ||||||

x_{1,28} | 0.73 | 1.16 | 140.05 | 12.37 | 599.95 | 0.05 | ||||||

x_{1,29} | 0.68 | 1.25 | 392.75 | 4.41 | 1709.76 | 0.14 | ||||||

x_{1,30} | 0.73 | 1.17 | 103.2 | 16.78 | 598.05 | 0.05 | ||||||

x_{1,31} | 0.64 | 1.32 | 40.7 | 42.56 | 171.05 | 0.01 | ||||||

x_{1,32} | 0.49 | 1.75 | 23.6 | 73.4 | 229.05 | 0.02 | ||||||

x_{1,33} | 0.76 | 1.11 | 294.25 | 5.89 | 1620.9 | 0.13 | ||||||

x_{1,34} | 0.83 | 1.03 | 81.4 | 21.28 | 253 | 0.02 | ||||||

x_{1,35} | 0.73 | 1.16 | 1732.15 | 1 | 12116,14 | 1 |

x_{1,1} | x_{1,2} | x_{1,3} | x_{1,4} | x_{1,5} | x_{1,6} | x_{1,7} | x_{1,8} | x_{1,9} | x_{1,10} | x_{1,11} | x_{1,12} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|

r_{j} | 72.37 | 13.20 | 2.76 | 3.63 | 25.07 | 1.70 | 27.76 | 5.79 | 5.94 | 5.48 | 6.72 | 5.24 |

x_{1,13} | x_{1,14} | x_{1,15} | x_{1,16} | x_{1,17} | x_{1,18} | x_{1,19} | x_{1,20} | x_{1,21} | x_{1,22} | x_{1,23} | x_{1,24} | |

r_{j} | 4.53 | 6.35 | 7.62 | 18.01 | 11.93 | 42.63 | 7.78 | 4.41 | 4.26 | 7.91 | 11.69 | 18.01 |

x_{1,25} | x_{1,26} | x_{1,27} | x_{1,28} | x_{1,29} | x_{1,30} | x_{1,31} | x_{1,32} | x_{1,33} | x_{1,34} | x_{1,35} | ||

r_{j} | 9.48 | 5.96 | 21.37 | 12.42 | 4.59 | 16.83 | 42.58 | 73.42 | 5.99 | 21.30 | 1.83 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gorzelanczyk, P.; Tylicki, H.
Methodology for Optimizing Factors Affecting Road Accidents in Poland. *Forecasting* **2023**, *5*, 336-350.
https://doi.org/10.3390/forecast5010018

**AMA Style**

Gorzelanczyk P, Tylicki H.
Methodology for Optimizing Factors Affecting Road Accidents in Poland. *Forecasting*. 2023; 5(1):336-350.
https://doi.org/10.3390/forecast5010018

**Chicago/Turabian Style**

Gorzelanczyk, Piotr, and Henryk Tylicki.
2023. "Methodology for Optimizing Factors Affecting Road Accidents in Poland" *Forecasting* 5, no. 1: 336-350.
https://doi.org/10.3390/forecast5010018