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Abstract: Deep learning models have revolutionized research fields like computer vision and natural
language processing by outperforming traditional models in multiple tasks. However, the field of time
series analysis, especially time series forecasting, has not seen a similar revolution, despite forecasting
being one of the most prominent tasks of predictive data analytics. One crucial problem for time series
forecasting is the lack of large, domain-independent benchmark datasets and a competitive research
environment, e.g., annual large-scale challenges, that would spur the development of new models, as
was the case for CV and NLP. Furthermore, the focus of time series forecasting research is primarily
domain-driven, resulting in many highly individual and domain-specific datasets. Consequently,
the progress in the entire field is slowed down due to a lack of comparability across models trained
on a single benchmark dataset and on a variety of different forecasting challenges. In this paper,
we first explore this problem in more detail and derive the need for a comprehensive, domain-
unspecific overview of the state-of-the-art of commonly used datasets for prediction tasks. In doing
so, we provide an overview of these datasets and improve comparability in time series forecasting
by introducing a method to find similar datasets which can be utilized to test a newly developed
model. Ultimately, our survey paves the way towards developing a single widely used and accepted
benchmark dataset for time series data, built on the various frequently used datasets surveyed in
this paper.
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1. Introduction

Digital transformation and the internet of things (IoT) have led to an increase in inter-
connected devices used in a variety of different industrial fields. These devices, typically
individual sensors acquiring time-encoded data, provide vast potential for automated and
data-driven analysis methods from the field of machine learning and deep learning [1].
The temporal component of the data is essential to identify different patterns and to draw
conclusions from the data by finding anomalies, classifying different behavior, or predicting
the future temporal course of the time series, and, thus, categorizing the field of time series
analytics into three primary tasks: classification, anomaly detection, and forecasting.

In this paper, we exclusively focused on one of the three main tasks, the forecasting
task, which is an increasingly prominent task to be tackled with deep learning models,
as shown in Figure 1. Forecasting is an exciting and relevant problem that combines the
need to understand the information in a time series with predicting the most likely future
given that information. Moreover, forecasting plays an essential role in supporting the
process of decision-making or managing resources [2].

Despite the high relevance of research on deep learning applications for time series
data, the field has not seen a revolution similar to those of computer vision (CV) and natural
language processing (NLP). While deep learning has shown remarkable results in learning
complex tasks in CV and NLP, traditional machine learning and specialized stochastic
models are still perfectly viable and even outperform deep learning models in time series
tasks in some cases [3]. However, such models have disadvantages, including the fact that
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their creation requires in-depth domain knowledge and their usage often results in high
computational costs [3].
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Figure 1. Illustration of the number of publications per year in the context of time series forecasting and
deep learning, extracted on 22 June, 2022, on “Web of Science” [4] using the query described in Section 3.

Unlike in the field of time series analysis, the fields of CV and NLP have a number of
different benchmark datasets that are frequently used to develop new models and compare
cutting-edge developments with prior state-of-the-art models. Therefore, it is common
practice for these advancements to be evaluated against these benchmark datasets. Two of
the most prominent and widely-used datasets in CV are the MNIST [5] and ImageNet [6]
datasets for training small and large models, respectively. Specifically, the ImageNet dataset
has been frequently used to pre-train large state-of-the-art models that are used for transfer
learning, utilizing the pre-trained features for new tasks and individual datasets. Exploiting
the pre-trained features allows researchers to achieve state-of-the-art performances even
on small datasets after fine-tuning the pre-trained networks. Consequentially, benchmark
datasets played an essential role in the advancements of these fields.

Unfortunately, such commonly used benchmark datasets do not exist for all time
series tasks, while the frequently used ones are challenged with respect to their data quality.
For example, for the common task of time series classification, the UCR/UEA [7] archive
provides a number of datasets, but they contain anomalies and discrepancies that can bias
classification results [8]. Similarly, in the case of the common task of anomaly detection,
commonly used datasets exist [9,10]. However, Wu and Keogh [11] showed that these
datasets suffer from fundamental flaws. Finally, the task of time series forecasting does not
benefit whatsoever from frequently used datasets, let alone benchmark datasets.

The lack of such benchmark datasets for time series analysis is likely due to the
unbound character of this particular data type. Images, for example, are naturally bound
by the RGB space and the size of the image, i.e., a finite amount of pixels, whereby each
one is defined by three values in the closed interval of [0, 255]. Time series are not as well
characterized, and values can be, in principal, unbound in the range of [−∞, ∞]. However,
practical applications and the laws of physics somewhat limit the range in which time
series data is typically acquired. In turn, the vast variety of domains and sensor sources
for time series data makes the ranges highly variable. Additionally, the temporal character
of the data adds another layer of complexity as time series data are acquired across a
large range of temporal resolutions, ranging from nanoseconds to days, months, and years.
These circumstances make the development of a cross-domain and cross-task benchmark
dataset for time series data highly challenging and the development has yet to emerge until
this day.

As a consequence of this lack of a widely recognized benchmark dataset, existing work
mainly focuses on comparing different models or within a specific domain on individual
domain datasets, as we show in Section 2. Consequently, this paper aimed to provide a
comprehensive overview of the current state of the art regarding openly available datasets
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for time series forecasting tasks and to address their effect on the research field of deep
learning for time series forecasting. The contributions of this work are fourfold:

1. We provide a cross-domain overview of existing publicly available time series fore-
casting datasets that have been used in research.

2. Furthermore, we analyze these datasets regarding their domain and provide file
and data structure, as well as general statistical characteristics, and compare them
quantitatively with each other by computing their similarity.

3. We provide an overview of all public time series forecasting datasets identified in this
publication and facilitate easy access with a list of links to all these datasets.

4. Finally, we facilitate comparability in the time series forecasting research area by
calculating a grouping of datasets using the aforementioned similarity measures.

2. Related Survey Publications

Before we present the results of our own comprehensive survey, we briefly review
related work and surveys connected to the task of time series forecasting. For this purpose,
we selected publications that reviewed several papers and analyzed how these publications
describe and compare the used datasets.

In order to compare these surveys in more than just qualitative terms, we examined
each for the characteristics described below, which are summarized in Table 1. First, we
verified the accessibility by reviewing if a dataset was cited (Column 1, Table 1) and if
any effort had been made to allow easy access through a direct link to the data (Column
2, Table 1). Furthermore, we investigated if multiple datasets were utilized (Column 3,
Table 1), if these datasets were from different domains (Column 4, Table 1), and if they were
compared to each other in text form or in a table (Column 5, Table 1). Next, we checked if at
least two statistical values from each dataset were presented, including size, the number of
dimensions, forecasting window, or time interval, shown in the columns “dataset statistics”.
Finally, we checked if the datasets were further analyzed in the last column. This could
include a comparison by some distance metrics or identifying some characteristics.

Table 1. This table compares how the extracted surveys identified in this paper analyzed time series
datasets. The tick indicates if the corresponding publication met the condition of the column.
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Ahmed et al. [12]
Aslam et al. [13] 3 3 3 3
Chandra et al. [14] 3 3 3
Chen et al. [15]
Dikshit et al. [16]
Ghalehkhondabi et al. [17]
Lara-Benitez et al. [18] 3 3 3 3 3
Liu et al. [19]
Mosavi et al. [20] 3
Sengupta et al. [21] 3 3 3 3
Somu et al. [22]
Sun and Scanlon [23]
Wang et al. [24]
Wei et al. [25] 3
Weiss et al. [26] 3
Zambrano et al. [27] 3 3
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The existing work mainly focuses on deep learning architectures, which were com-
pared by all of the publications in Table 1. This table shows that only three out of 16
publications used datasets from multiple domains, which shows the highly domain-specific
view of these publications. Furthermore, no survey satisfied all points. Especially, the anal-
ysis of datasets was not conducted by any publication, and the point of providing easy
access to the cited datasets was only met by Mosavi et al. [20]. To conclude, the surveys
from Table 1 show a deficit of publications investigating and analyzing datasets. Especially,
a combination of a cross-domain overview, an analysis of the datasets, and easy accessibility
was missing. If some statistical values were presented, they were mostly restricted to the
length, a forecast horizon, or a time interval. Notwithstanding, more information is needed
to make profound decisions about what datasets to use.

Lara-Benitez et al. [18] stands out by comparing multiple datasets from different
domains. In addition, they list the used datasets, give a short description, and show
some sample plots. This is the only publication in Table 1 that met six out of eight points.
However, this publication primarily focused on comparing the model architectures. Their
research did not focus on the datasets used. In contrast, this work focuses on the datasets
used in time series forecasting research.

3. Methodology
3.1. Paper Screening

The primary objective was to identify all relevant datasets with their domains used in
papers published in the context of time series forecasting with deep learning. Focusing on
recent research in the field of deep learning ensured that the datasets used were still valid
and well-known in the community, as deep learning is relatively new to the field of time
series foresting.

This combination resulted in a large number of relevant papers. However, two do-
mains could be excluded because of their specific peculiarities meaning they could be
considered fields of their own. One of these domains is COVID-19, which has large
amounts of publicly available data. However, world data on COVID-19 is already collected
and merged by the COVID-19 Data Repository by the Center for Systems Science and
Engineering (CSSE) at Johns Hopkins University. The other domain is the field of finance
and stock market data which is widely recognized as a field of its own due to its global
economic meaning. We excluded this domain due to its extensive amount of publicly
available data given by the permanently active stock market and corresponding survey
literature [28].

The methodology used in this work consists of three steps and is depicted in Figure 2:

1. As a first step, we performed a screening of papers found in the “Web of Science” [4] to
identify publicly available time series forecasting datasets which are used in research.
To ensure the impact of the datasets in research, we limited our choice to papers that
had been cited at least ten times. This reduced the number of papers from over 1000
to 207 and ensured that relevant papers with common datasets were not excluded.
Another goal was to identify datasets already used for deep learning. We achieved
this by adding the constraint of “deep learning” to the search query. As a result,
the following Web of Science query was used:

“ALL = (Time Series) AND ALL = (Deep Learning) AND ALL = (Forecasting) NOT
ALL = (Finance) NOT ALL = (COVID)” (Date of query 19 October 2021)

We focused on examining publicly available datasets and identifying the domains of
the selected papers.

2. To address the fact that newly published papers had not had the chance yo acquire ten
citations to date, papers from the last year, 2021, had a restriction of having at least five
citations and a maximum of ten citations as other papers were already included by
step one. Therefore, we used the same Web of Science query as before and extracted
43 new publications on 17 December 2021.
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3. To widen the search for datasets used in academic publications, we further utilized
the website “papers with code” [29]. Then, “papers with code” was used to ensure the
inclusion of recent publications from conferences that were not listed on “Web of Sci-
ence”. The “papers with code” website has a collection of publicly available datasets
with the associated papers that have published their code and results on a dataset.
Furthermore, the website ranks publications per dataset by the number of stars of
their corresponding Github repositories. We filtered the datasets by the categories
of “time series” and “forecasting” to collect the datasets with their corresponding
publications. We selected the top 10 ranked publications if a dataset had more than
ten publications, resulting in 43 additional publications with eight datasets. Then, we
used these publications for additional screening of datasets to find public datasets not
identified by the website “papers with code”.
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Figure 2. Visualization of the public dataset search process with the number of publications used for
the review.

After combining the before-mentioned steps, we utilized 293 publications. Based on
these publications, we identified 53 different public datasets. Moreover, we identified
39 datasets while screening the papers from “Web of Science” and 22 datasets with the
website “papers with code”. Eight of the 22 datasets overlap with the datasets from the
website “papers with code”.

3.2. Fundamentals of Statistical Time Series Characteristics

In this section, we briefly introduce three statistical measurements that we utilized to
identify stationarity, seasonality, and whether a time series dataset consists of repeating values.

Identifying if a time series is stationary shows if the statistical properties change over
time and that there is no trend or shift in the time series. This impacts the methods used to
analyze the datasets or forecast values from the dataset. Moreover, it shows that the mean,
variance, and covariance are constant and independent of time. Consequently, we decided
to use the augmented Dickey–Filler (ADF) test [30].

The ADF test is a widely used unit–root test, which is an extended version of the
Dickey–Fuller test. It is derived from an autoregressive (AR(k)) model and shows if a time
series is stationary [31]. The ADF test removes the structural effects from the Dickey–Fuller
test and involves the following regression:

∆xi = µ + γt + α1xt−1 +
k

∑
j=2

αj∆xt−j+1 + ut (1)
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with t = 1, .., n, ∆ as the difference operator, ut being white noise, and α1 = 0 representing
the null hypothesis of the unit root test [32]. A p-value lower than 0.05 confirms the null
hypothesis and indicates that a time series is stationary [33].

Most tests for seasonality need domain knowledge, a graphical analysis, or certain
assumptions [34]. Therefore, we decided to use auto-correlation (AC) to identify to what
degree a time series correlated with itself or a lagged version of itself. The resulting value
indicated if a time series had many repeating patterns, which indicates seasonality. More-
over, the resulting value fagg = (R(1), .., R(m)) with m = max(n, lmax) is the aggregated
mean with a maximum lag lmax of 40 and the sequence length n [35].

R(l) =
1

(n− l)σ2

n−l

∑
i=1

(Xt − µ)(Xt+l − µ) (2)

Furthermore, we computed the percentage of reoccurring values (PRV) to show to what
percentage a dataset consisted of repeating values. The PRV values show the percentage of
how many values are not unique in a time series. This metric has the disadvantage that it
depends on the dataset size because the probability of repeating values grows with the size.

PRV(X) =

m
∑

i=0
1[|ui| > 0]

m
u ∈ unique(X) = {u1, .., um} (3)

4. Time Series Domains

The high variability in research and application domains of time series analysis makes
analyzing domains challenging. For example, suppose two groups of authors of two
different papers came out related to a different field of research. In that case, two papers
might refer to the same domain but use different wording because of specializations and
domain expertise. For example, one can refer to the domain wind speed forecasting as
“power load forecasting for renewable energy sources”. In this case, the goal is to forecast
the energy output. First, however, the wind speed or other energy-generating factors are
forecast to achieve that goal.

To ensure a wide cross-domain overview, we used the publications identified in “Web
of Science”to analyze domains according to the following rules. If a paper referred to
multiple datasets, the domain of every dataset was counted. On the condition that a
domain occurred less than three times, we checked whether the domain could be subsumed
in a different domain. If not, the domain was not visualized in Figure 3 but listed in
Table 2. On the contrary, if one domain occurred more than 30 times and the domain could
clearly be separated into different sub-domains, they were divided into these sub-domains.
For example, the weather domain could have included the domain wind speed. However,
even without the publications of the wind speed domain, the weather domain had more
than 30 publications. As a result, the wind speed domain was excluded and treated as a
separate domain.

Figure 3 presents the different domains and their frequency in the reviewed literature.
The largest domain is the electricity domain. This domain includes publications that
forecast the energy output of renewable energy sources, other energy sources, and the
consumption of small groups or single households. The second-largest domain is the
weather domain. This domain includes multiple weather forecasting publications that
highly overlap with publications of the electricity domain’s renewable energy sources.
Furthermore, the wind domain could be seen as a sub-domain of the weather domain.
Nevertheless, many papers forecast wind speed without considering other weather-related
measurements. Correspondingly, we separated the wind speed domain, the third most
often screened domain. Next, the air quality domain includes publications that mostly
forecast the air quality of cities. Some work published in this context used weather-related
features to improve their forecasts. Therefore, the publications show a slight overlap with
the weather domain.
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Despite the proposed web of science query, which should have ignored the finance
domain, the domain was identified as the third most common domain. Nevertheless,
as previously set, we ignored publications within this domain entirely. The occurrence of
finance publications was caused by publications using more specific keywords than finance.
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Figure 3. Domain distribution of the datasets which were identified while screening the “Web of
Science” publication corpus.

The high variability in domains indicates that the time series field is mostly domain-
driven and time series occur in many different domains, which is shown in Table 2. Contrary
to expectations, some domains did not appear frequently. For example, we expected a
high relevance of the machine sensor domain driven through industry 4.0. Nevertheless,
machine sensor publications were only seen less than three times. Then again, this phe-
nomenon was likely due to the general aversion of companies to publish their proprietary
data in order to protect their intellectual property. Another reason could be that time-
encoded machine sensor data is mostly used to classify different states or errors and not
directly to forecast.

Table 2. A collection of domains that occurred less than three times in the paper screening.

Astro Machine Sensor Mortality rate Fertility rate
Physics Simulation Supply Chain Tourism NLP
Crime Garbage/Waste Prediction Gas Consumption Mobile Network
Network Security Trend Forecasting Yield Prediction Machine Sensor
Chemicals Cloud Load AD Exchange Bike-sharing
Non-linear Problems Web Traffic

Furthermore, environmentally-related domains, including weather, wind speed, air
quality, and geospatial data, accounted for 35% of all domains. Moreover, the top five
domains accounted for around two-thirds of all papers.

5. Screening of Public Datasets

Tables 3 and 4 shows a non-domain-specific overview of public time series forecasting
datasets collected by the before-described methods. Moreover, the datasets in the tables
were selected with the following conditions:

1. Our first condition was that the data must be publicly accessible and not hidden
behind a particular sign-in, or only available on request, to give an overview of
general publicly available datasets.

2. The dataset must be directly downloadable as files to ensure reproducibility. Datasets
that can only be accessed through a web view or dashboard, where multiple parame-
ters need to be selected, were not included.
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3. Datasets would not be considered if the data was only available in a specific country
or the website was not in English, to ensure consistent access to the datasets.

Datasets with IDs 0 to 38 were found during the paper screening of the 250 identified
papers, and all datasets with IDs higher than 38 were found using the website papers with
code. The datasets with the IDs 3, 6, 23, 24, 25, 26, 29, and 38 were identified through
the “Web of Science” and “papers with code” screening. These datasets are presented in
combination with their relevant information on domain, structure, and how the dataset is
provided. A direct link to each dataset can be found in Table 3 by using the ID of the dataset.
The missing values in Table 4 were caused by the different formats in which the datasets
were published. If a dataset had multiple files with different formats and dimensions, it
was impossible to obtain these values. Furthermore, if an equation or algorithm generated
the dataset synthetically, the attributes of the table depended on the generation and were,
therefore, not relevant in this context.

We analyzed the data extracted from Table 4 by investigating the number of citations
per dataset to determine if a commonly used benchmark dataset existed. A benchmark
dataset is one that should have been cited by a high percentage of the publications found
in Table 4, have a size that can be used for deep learning, and include multiple domains.
In addition, we looked for datasets already accepted by the research community.

However, only four datasets were cited multiple times if we only considered the
datasets and papers from the “Web of Science” paper screening. Moreover, the maximum
number of citations from the “Web of Science” paper screening held the dataset with ID 2
with four citations. In contrast, we observed that the “papers with code” screening resulted
in a maximum of 16 citations in one dataset. All datasets from Table 4 were cited on average
2.60 times.

Furthermore, the electricity dataset with ID 16 was the most cited dataset in Table 4
with 16 citations resulting from the “papers with code” screening, where one paper was
already identified through the ‘Web of Science” screening. The dataset is primarily used for
multivariate forecasting. This indicates that the dataset with ID 16 is a common dataset for
multivariate forecasting. However, the dataset only covers the electricity domain, and other
datasets in the same publications are not as frequently used and vary. Consequently, it was
not a benchmark dataset as defined in our work.

Table 3. This Table presents all links to the shown datasets from Table 4. The web links can be used
to retrieve the before-shown datasets.

ID Direct Link

0, 1 https://github.com/chennnnnyize/Renewables_Scenario_Gen_GAN/ (accessed on 1 February 2023)
2 https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data (accessed on 1 February 2023)

3 https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption (accessed on
1 February 2023)

4 https://archive.ics.uci.edu/ml/datasets/Air+quality (accessed on 1 February 2023)

5
https://www.microsoft.com/en-us/research/publication/forecasting-fine-grained-air-quality-based-on-
big-data/?from=http%3A%2F%2Fresearch.microsoft.com%2Fapps%2Fpubs%2F%3Fid%3D246398 (accessed
on 1 February 2023)

6 https://archive.ics.uci.edu/ml/datasets/PEMS-SF (accessed on 1 February 2023)
7 https://www.opendataphilly.org/dataset/crime-incidents (accessed on 1 February 2023)
8 https://archive.ics.uci.edu/ml/datasets/sml2010 (accessed on 1 February 2023)
9 http://archive.ics.uci.edu/ml/datasets/Ozone+Level+Detection (accessed on 1 February 2023)
10, 11 https://github.com/robjhyndman/demography (accessed on 1 February 2023)
12, 13 https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset (accessed on 1 February 2023)

14, 15 https://www.emc.ncep.noaa.gov/mmb/nldas/LDAS8th/forcing/forcing.shtml (accessed on
1 February 2023)

16 http://www.cs.fit.edu/~pkc/nasa/data/ (accessed on 1 February 2023)
17, 18, 19, 20, 21 https://github.com/numenta/NAB (accessed on 1 February 2023)
22 https://github.com/maziarraissi/DeepHPMs (accessed on 1 February 2023)

https://github.com/chennnnnyize/Renewables_Scenario_Gen_GAN/
https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/Air+quality
https://www.microsoft.com/en-us/research/publication/forecasting-fine-grained-air-quality-based-on-big-data/?from=http%3A%2F%2Fresearch.microsoft.com%2Fapps%2Fpubs%2F%3Fid%3D246398
https://www.microsoft.com/en-us/research/publication/forecasting-fine-grained-air-quality-based-on-big-data/?from=http%3A%2F%2Fresearch.microsoft.com%2Fapps%2Fpubs%2F%3Fid%3D246398
https://archive.ics.uci.edu/ml/datasets/PEMS-SF
https://www.opendataphilly.org/dataset/crime-incidents
https://archive.ics.uci.edu/ml/datasets/sml2010
http://archive.ics.uci.edu/ml/datasets/Ozone+Level+Detection
https://github.com/robjhyndman/demography
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://www.emc.ncep.noaa.gov/mmb/nldas/LDAS8th/forcing/forcing.shtml
http://www.cs.fit.edu/~pkc/nasa/data/
https://github.com/numenta/NAB
https://github.com/maziarraissi/DeepHPMs
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Table 3. Cont.

ID Direct Link

23 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
24, 25, 26 https://github.com/laiguokun/multivariate-time-series-data (accessed on 1 February 2023)
27 https://zenodo.org/record/2826939#.Ya9-JdDMI60 (accessed on 1 February 2023)
28 https://data.mendeley.com/datasets/bhjgdhgzjr/1 (accessed on 1 February 2023)

29, 30 https://www.emc.ncep.noaa.gov/mmb/nldas/LDAS8th/forcing/forcing.shtml (accessed on
1 February 2023)

31 https://data.sfgov.org/Public-Safety/Police-Department-Incident-Reports--Historical-2003/tmnf-yvry
(accessed on 1 February 2023)

32 https://zenodo.org/record/1306527#.YXKIxxpBw60 (accessed on 1 February 2023)
33 https://irafm.osu.cz/cif/main.php?c=Static&page=download (accessed on 1 February 2023)
34 https://forvis.github.io/datasets/m3-data/ (accessed on 1 February 2023)

35 http://www.neural-forecasting-competition.com/downloads/NNGC1/datasets/download.htm (accessed
on 1 February 2023)

36 https://www.kaggle.com/competitions/tourism2/data?select=tourism2_revision2.csv (accessed on
1 February 2023)

37 https://www.kaggle.com/competitions/web-traffic-time-series-forecasting/data?select=train_1.csv.zip
(accessed on 1 February 2023)

38 https://github.com/Mcompetitions/M4-methods (accessed on 1 February 2023)
39 https://github.com/zhouhaoyi/ETDataset (accessed on 1 February 2023)
40 https://git.opendfki.de/koochali/forgan/-/tree/master/datasets/lorenz (accessed on 1 February 2023)
41 https://www.nrel.gov/grid/solar-power-data.html (accessed on 1 February 2023)
42 https://github.com/yandex-research/shifts (accessed on 1 February 2023)

43 https://kilthub.cmu.edu/articles/dataset/Data_Collected_with_Package_Delivery_Quadcopter_Drone/12
683453/1 (accessed on 1 February 2023)

44 https://theairlab.org/trajair/#download (accessed on 1 February 2023)
45 https://www.kaggle.com/sohier/30-years-of-european-wind-generation (accessed on 1 February 2023)
46 https://www.kaggle.com/datasets/city-of-seattle/seattle-burke-gilman-trail (accessed on 1 February 2023)
47 https://data.mendeley.com/datasets/byx7sztj59/1 (accessed on 1 February 2023)

48, 49, 50, 51 https://drive.google.com/drive/folders/1ZOYpTUa82_jCcxIdTmyr0LXQfvaM9vIy (accessed on
1 February 2023)

52 https://drive.google.com/drive/folders/1ohGYWWohJlOlb2gsGTeEq3Wii2egnEPR (accessed on
1 February 2023)

Table 4. A general overview of the public datasets found through the paper screening of
“Web of Science”and the “papers with code” as defined in Section 3.1. The coding of the col-
umn “Data Structure” column is defined in Table 5 with the underlying structure (FileDatastruc-
ture/DatasetDescription/Timestamp).

ID Domain Data Structure File
Format

# Data
Points

#
Dimensions Time Interval Paper

0 Windspeed (−/−/−) csv 105,119 51 5 min [36]
1 Electricity (−/−/−) csv 105,119 31 5 min [36]
2 Air Quality (+/+/+) csv 43,824 12 1 h [37–40]
3 Electricity (+/+/+) csv 2,075,259 8 1 min [37,41–43]
4 Air Quality (+/+/+) xlsx 9471 16 1 h [37,44]
5 Air Quality (+/+/+) csv 2,891,393 7 1 h [38]
6 Traffic (+/o/−) txt 3,997,413 11 1 h [2,37,45,46]
7 Crime (+/+/+) csv 2,678,959 15 irregular [47]
8 Weather (+/+/+) txt 2764 24 15 min [48]
9 Ozone Level (+/o/+) csv 2536 74 1 h [44]
10 Fertility (+/+/+) rda 574 4 1 yr [49]
11 Mortality (+/+/+) csv 21,201 8 1 yr [49]
12 Weather, Bike-Sharing (+/+/+) csv 731 15 1 d [50]
13 Weather, Bike-Sharing (+/+/+) csv 17,379 16 1 h [50]
14 Electricity, Weather (+/+/+) xlsx 713 3 1 d [48]
15 Weather (+/+/+) xlsx 15,072 12 1 h [48]
16 Machine Sensor (−/o/−) txt - - 100 ms [51]

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://github.com/laiguokun/multivariate-time-series-data
https://zenodo.org/record/2826939#.Ya9-JdDMI60
https://data.mendeley.com/datasets/bhjgdhgzjr/1
https://www.emc.ncep.noaa.gov/mmb/nldas/LDAS8th/forcing/forcing.shtml
https://data.sfgov.org/Public-Safety/Police-Department-Incident-Reports--Historical-2003/tmnf-yvry
https://zenodo.org/record/1306527#.YXKIxxpBw60
https://irafm.osu.cz/cif/main.php?c=Static&page=download
https://forvis.github.io/datasets/m3-data/
http://www.neural-forecasting-competition.com/downloads/NNGC1/datasets/download.htm
https://www.kaggle.com/competitions/tourism2/data?select=tourism2_revision2.csv
https://www.kaggle.com/competitions/web-traffic-time-series-forecasting/data?select=train_1.csv.zip
https://github.com/Mcompetitions/M4-methods
https://github.com/zhouhaoyi/ETDataset
https://git.opendfki.de/koochali/forgan/-/tree/master/datasets/lorenz
https://www.nrel.gov/grid/solar-power-data.html
https://github.com/yandex-research/shifts
https://kilthub.cmu.edu/articles/dataset/Data_Collected_with_Package_Delivery_Quadcopter_Drone/12683453/1
https://kilthub.cmu.edu/articles/dataset/Data_Collected_with_Package_Delivery_Quadcopter_Drone/12683453/1
https://theairlab.org/trajair/#download
https://www.kaggle.com/sohier/30-years-of-european-wind-generation
https://www.kaggle.com/datasets/city-of-seattle/seattle-burke-gilman-trail
https://data.mendeley.com/datasets/byx7sztj59/1
https://drive.google.com/drive/folders/1ZOYpTUa82_jCcxIdTmyr0LXQfvaM9vIy
https://drive.google.com/drive/folders/1ohGYWWohJlOlb2gsGTeEq3Wii2egnEPR
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Table 4. Cont.

ID Domain Data Structure File
Format

# Data
Points

#
Dimensions Time Interval Paper

17 AD Exchange Rate (+/o/+) csv 9610 3 1 h [51]
18 Multiple (+/o/+) csv 69,561 3 5 min [51]
19 Traffic (+/o/+) csv 15,664 3 5 min [51]
20 Cloud Load (+/o/+) csv 67,740 3 5 min [51]
21 Tweet Count (+/o/+) csv 158,631 3 5 min [51]
22 Synthetic (+/+/−) mat - - [52]
23 Electricity (+/−/−) txt 140,256 370 15 min [45,53,53–67]
24 Exchange Rate (+/−/−) txt 7587 7 1 d [53,54,57,58,64–67]
25 Traffic (+/−/−) txt 17,543 861 1 h [53,57,58,64–67]
26 Solar (+/−/−) txt 52,559 136 10 min [53,63–65]
27 Weather (+/+/+) csv - - 1 min [68]
28 Water Level (+/+/+) xlsx 36,160 4 1 d [69]
29 Air Quality (+/+/+) csv 420,768 19 15 min [62,70]
30 Air Quality (+/+/+) csv 79,559 11 15 min [50,71]
31 Crime (+/+/+) csv 2,129,525 34 1 min [47]
32 Chemicals (+/+/+) xlsx 120,630 7 1 min [72]
33 Multiple (+/−/−) txt 71 110 1 M. [18]
34 Multiple (+/+/+) txt 167,562 3 1 yr, 1 q, 1 m [18,73–76]
35 Traffic (+/+/−) xls - - 1 d [18,73]
36 Tourism (+/−/−) csv 309 794 1 m 1 q [18]
37 Web Traffic (+/+/+) csv 290,126 804 1 d [18,73]

38 Multiple (+/o/+) csv 414 960 1 yr, 1 q, 1 m,
1 w, 1 d, 1 h [2,18,45,46,73–78]

39 Machine Sensor (+/+/+) csv 34,840 9 1 h, 1 m [54–60,79–81]
40 Synthetic (−/−/−) pickle - - [82]
41 Electricity (+/+/+) csv 4,055,880 6 5 min, 1 h [2,45,53,54,54,63,77]
42 Weather (+/+/+) csv 633,494,597 125 1 yr [83,84]
43 Electricity (+/−/+) csv 257,896 27 1 h [85,86]
44 Trajectory (+/+/+) txt 8,241,680 14 1 s [87]
45 Wind (+/+/−) csv 262,968 254 hourly [2,45]
46 Bike-Usage (+/+/+) csv 52,584 5 hourly [77]
47 Electricity (+/+/+) csv 48,048 16 hourly [80]
48 Illness (+/+/+) csv 966 7 weekly [57,58,66,67]
49 Sales (+/+/+) csv 1,058,297 9 daily [43]
50 Weather (+/+/+) csv 52,696 21 10 min [57,58,66,67,81]
51 Traffic (+/−/−) mat 57,636 48 hourly [43]
52 Weather (+/+/+) csv 35,064 12 hourly [60,64]

Table 5. Description of the column “Data Structure” with (FileDatastructure/DatasetDescription/ Times-
tamp) from Table 4.

File Data Structure Dataset Description Timestamp

+
One file or multiple files with a
clear structure and documentation.

The dataset contains a description
of every field, which could lead to
an understanding of all fields.

It is a timestamp, date or any
date-related column defined.

o
The dataset contains different
placeholders in the data, which are
explained later in a description.

−
Multiple files in different directories
without any obvious order and
relation between each other.

There is no field description or an
incomplete one.

There is no timestamp, date or any
date-related column defined.

On the other hand, the dataset with ID 38 (M4 dataset) was used in a competition and
was the second most cited dataset compared to other datasets in this work. Furthermore,
the dataset combined multiple domains and consisted of 100,000 randomly sampled time
series from the ForeDeCk database [88]. As a result, we found that the dataset with ID 38
was the closest dataset to a benchmark dataset. Moreover, there already exists a follow-
up competition with the M5 dataset [89], which included the forecasting of 42,840 unit
sales of the retail company Walmart. The M4 dataset is not a commonly used dataset,
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as we identified the M4 dataset only once during our “Web of Science” paper screening,
although there were more than ten citations on the “papers with code” website.

Next, we analyzed the number of public datasets in different domains to identify the
essential domains for time series forecasting with publicly available data. We found no
dominating domain, as no domain appeared more than eight times in the table. Moreover,
“weather” was the most common domain, occurring eight times, followed closely by the
electricity domain with seven occurrences and the air quality domain with five occurrences.
Additionally, Table 4 shows that domains with public datasets varied and were not re-
stricted to a few domains. Even domains identified less than three times, seen in Table 2,
have public datasets.

Furthermore, we investigated the number of dimensions d ∈ N, data points n with
xi ∈ X = {x1, .., xn} where xi ∈ Rd, and time intervals to investigate if a typical pattern
existed. Moreover, the number of dimensions shows that time series data is naturally
multivariate. All of the datasets had at least three dimensions, where at least one dimension
was temporal. Moreover, the other dimension could include locations, categorical variables,
a forecasted value, and variables that present additional information. The number of
data points from the datasets varied from 7 · 102 to 6 · 108, had an approximate average
of 1.4 · 107, and an approximate median of 65.3 · 104. Moreover, the size or number of
data points of the dataset depended on the time interval. If the time interval was daily
or yearly, the dataset was most likely smaller because the data had to be recorded over a
much larger time period. The two datasets with an annual time interval had an average
number of 10,886 data points, while the average number of data points from the datasets
with a one-minute time interval was 1,441,804.

Table 4 shows that the column “Data Structure” varies, as only 57% of the values
from the data structure column exclusively had “+” values. Furthermore, the timestamp
was missing in 28% of the datasets. This can be problematic if some time features, like
holidays or other seasonal effects, are relevant to a forecasting task. Finally, considering
the different file formats in which the datasets were published, the CSV format was the
most used format with 62%, and the second most used format was the text format, which
included data in a table structure similar to the CSV format. As a result, we could conclude
that there is currently no established standard way of publishing a time series dataset.

Furthermore, we identified multiple challenges while screening the selected papers
for datasets, like non-unique names of datasets from different domains, different parts of
a publication where the datasets were described and cited, a false web link, or no link to
the dataset. Consequently, it would be helpful for reproducibility to refer directly to the
dataset used. Furthermore, the data’s availability could increase the subject’s visibility
and the work done. The missing publicly available data could be caused by restrictions
made by the data owner if the data came from a company because the company may not
want to give their competitors insights. Another reason could be privacy concerns if user
data is involved. If an author only wanted to show that deep learning has the potential
to improve forecasting in his research field, it would not be his first concern to make the
data publicly available. On the other hand, authors who wanted to introduce a new deep
learning model should have comparability in mind and use a publicly available dataset or
make their datasets publicly available.

Nevertheless, sometimes, publications only describe what the data is and which
features are present in the data. Some other papers, for example [90,91], describe where
they extracted the data and which parameter they used to select their training and testing
data. These papers would be reproducible in principle if the data sources were still available.
However, in some cases, the linked data source can be unavailable in a particular country
or not available anymore in general. Hence, it is impossible to access the data with the
original URL. An example is a company or institute with a changed web domain or website
structure. Another option to cite a dataset is to cite a publication that introduced the dataset.
However, this could also be problematic if the cited paper does not have a direct link to the
referred to dataset.
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To summarize, Table 4 shows that there are some large datasets publicly available that
are already used in the context of deep learning. Nevertheless, these datasets are widely
spread between the different domains. Due to the high percentage of public datasets that
come out of domains with less than three publications and many publications only using
one dataset from one domain, we concluded that the time series forecasting research field
is primarily domain-driven. Additionally, we identified that publishing datasets are not
common in time series forecasting and that there are multiple reasons why authors are not
publishing their datasets. Finally, we determined that even though some datasets are more
frequently used, a commonly used benchmark dataset does not exist.

6. Comparison of Selected Datasets

In this section, we aimed to extract general patterns or statistics of the dataset to
identify commonalities and differences between the datasets. We chose to rely exclusively
on statistics and distances that could be computed automatically without any manual effort.
To give a better overview of the available datasets and the underlying structure of the data,
we analyzed datasets by multiple statistical methods. Only a subset from Table 4 was used
because the datasets and their description had to meet the following requirements:

1. The forecast value must be clearly defined in a paper or a dataset description.
2. The defined forecasting value should not be aggregated over a period of time or

locations.
3. For comparability, the target must be a univariate time series.

For all further analysis, the determined dimension of the forecasting value was used
for comparison with other datasets, which can be found in the “Forecasting Value” column
of Table 6. Even though one dimension does not represent the full datasets and their
characteristics, the target dimension is the most important dimension in a forecasting task,
and restriction is needed to ensure comparability.

6.1. Comparison of Selected Datasets with MPdist

We decided to use the MPdist measurement to compute the distance from all datasets
to each other. The MPdist measurement can be used for different time series lengths and is
robust against spikes, dropouts, and wandering baseline [92]. MPdist shows if two time
series share similar subsequences under the euclidean distance [92]. We utilized MPdist to
visualize the normalized distance between all datasets in Figure 4. The distances resulted
from first computing the maximum subsequent window using Matrix Profile [93] and
then using the window to compute the MPdist normalized by the window size. Figure 4
illustrates the sorted distances of the datasets. We sorted the heatmap in both dimensions
so that the datasets with the lowest distances were in the bottom left corner, and the highest
distances were on the top right side. MPdist is not a symmetrical distance measurement, so
it results in different distances depending on the direction of the distance computations.
Moreover, if we computed the distances between two datasets X0 and X1, we computed
dMPdist(X0, X1, windowX0) and dMPdist(X1, X0, windowX1).

Furthermore, the black colors of Figure 4 show that the datasets were similar under the
MPdist, and the light orange colors show that the datasets did not share many subsequences.

Figure 4 shows that datasets 17, 28, and 4 were the datasets with the lowest distance
to all other datasets, which is presumably correlated to common patterns in these datasets
that can be found in multiple of the other datasets with their corresponding window
size. Nevertheless, these datasets were not the ones to which most other datasets were
the closest, meaning that despite their common patterns, the other datasets did not have
patterns with their corresponding window size that could fit into these datasets. Figure 5
presents samples from all datasets. These samples show that datasets 4, 17, and 28 had
frequent short peaks, which could be fitted well into the other datasets.
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Figure 4. Heatmap of the sorted MP-distances of all datasets compared to each other.

Datasets 10, 20, and 19 were the datasets to which most other datasets were the closest.
This could be caused by patterns of these datasets that are common in other datasets
regardless of a certain window size. The dataset with ID 10 was an outlier due to its small
size. Moreover, combining the small dataset size with large window sizes of other datasets
could lead to some bias in the results and should be carefully considered.

Furthermore, datasets with IDs 18 and 29 had high distances to most other datasets.
The dataset with ID 18 contained data from multiple domains, and combined with the
one computed window size could lead to high distances. The dataset with the ID 29 had
longer irregular peaks, which might not be fitted into different datasets well. Moreover,
this dataset was the dataset to which the other datasets had the third highest distance. This
indicated that these irregular peaks did not match with the other datasets in both directions.

The MPdist measurement enabled us to compare datasets directly to one another.
Nevertheless, we needed more than the distances to draw general insights or to group the
datasets. Therefore, we utilized the MPdist distance matrix for clustering in Section 7 to
draw more general insights.
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Figure 5. Samples from all dataset from Table 6 with a maximum length of 100 k.

6.2. Comparison of Selected Datasets with Statistical Characteristics

The before-shown MPdist measurements only compare the datasets directly against
each other, and, when adding a new dataset, all distances to and from the new dataset
must be computed. This makes a fast comparison to new datasets impossible. Therefore,
we decided to use additional statistical values to enable other researchers to compare
their datasets and find similar datasets without having to rely on extensive computation.
Unfortunately, there are no commonly used advanced statistics that are applicable and
could describe a complete time series dataset. As a result, we focused on three different
statistics representing characteristics like trend, seasonality, and repeating values, which
are described in Section 3.2.

To compute the statistical values ADF, AC, and PRV, the dataset column with the
forecasting values was used to calculate the metrics with the ts-fresh library [94]. If a
dataset exceeded the number of 1M data points, a representative contiguous sample of the
size with 1M data points was used for the computation.

Table 6 shows that around 90% of the datasets were stationary. Only the datasets
with IDs 10, 12, and 18 were not stationary. Furthermore, the datasets with the IDs 10
and 12 were the smallest datasets with less than 1000 data points. Datasets with a low



Forecasting 2023, 5 329

number of data points could include more likely trends if the datasets were not recorded
for an extended period. Then again, the dataset with ID 18 was larger and had nearly
70k data points. Next, the auto-correlation values showed a high variance in the datasets.
The AC values started at 0.02 and went up to 0.86 with a mean of 0.41 and a standard
deviation of 0.29. The AC values were mostly equally distributed, except for a small focus
of values near zero. Finally, the PRV showed two distributions with one outlier. One
distribution included high PV values over 0.75, and the other included low values under
0.1. Furthermore, the outlier with ID 19 did not lie in these two distributions, with a PRV
value of 0.55. This indicated characteristic differences in the studied datasets, which could
be grouped or categorized.

Table 6. Overview of statistical features of public dataset time series forecasting datasets.

ID Time
Interval Domain # Data

Points
#
Dimensions Forecasting Value ADF AC PRV

2 1 h Air Quality 43,824 12 pm2.5 0.0000 0.4332 0.8795
3 1 min Electricity 2,075,259 8 global_active_power 0.0000 0.7028 0.9088
4 1 h Air Quality 9471 16 pt08.s1(co) 0.0000 0.4333 0.8714
5 1 h Air Quality 2,891,393 7 pm25_concentration 0.0000 0.3299 0.9154
10 1 yr Fertility 574 4 fert-female 0.2438 0.3113 0.2000
11 1 yr Mortality 21,201 8 mort-female 0.0179 0.0851 0.0896

12 1 d Weather,
Bike-Sharing 731 15 cnt 0.3427 0.6827 0.0503

13 1 h Weather,
Bike-Sharing 17,379 16 cnt 0.0000 0.0963 0.8872

17 1 h AD Exchange Rate 9610 3 value 0.0032 0.0085 0.0000
18 5 min Multiple 69,561 3 value 0.0000 0.9195 0.0000
19 5 min Traffic 15,664 3 value 0.0000 0.0852 0.5500
20 5 min Cloud Load 67,740 3 value 0.0000 0.0496 0.0584
21 5 min Tweet Count 158,631 3 value 0.0000 0.1992 0.7619
28 1 d Water Level 17,543 861 dailyrunoff 0.0000 0.1435 0.8597
29 15 min Air Quality 52,559 136 pm2.5 0.0000 0.8577 0.7647
30 15 min Air Quality 79,559 11 value 0.0000 0.5948 0.8852
39 1 h Machine Sensor 34,840 9 ot 0.0052 0.5594 0.8544
41 5 min, 1 h Electricity 4,634,040 6 power(mw) 0.0000 0.6134 0.9773
49 1 d Sales 1,058,297 9 sales 0.0000 0.2742 0.8488
52 1 h Weather 35,064 12 wetbulbcelsius 0.0000 0.7422 0.9557

7. Categorize the Datasets

As we have discussed, time series forecasting of datasets out of different domains
exists. However, there are multiple domains in which only one or no public time series
forecasting dataset exists. This makes it difficult to compare model performance as the
similarity of the used datasets to train and evaluate these models cannot be investigated.
Therefore, we introduced a method to find datasets with similar characteristics to enable
researchers to publish comparable results if a used dataset cannot be published due to,
for example, privacy concerns or company restrictions. Then, these found datasets can
be used in addition to the original dataset to publish results that are reproducible for
other researchers.

We identified clusters from the already computed ADF, AC, PRV, and MPdist values.
We utilized the density-based DB-scan [95] clustering algorithm with the hyperparameters
ε = 0.15 and minsamples = 3, determined by an initial visual-assisted hyperparameter
search. Moreover, we used AC, ADF, PRV, and MPdist, weighed equally, as input for the
DB-scan algorithm. Using MPdist as an additional distance for the clustering algorithm had
the advantage of enforcing similar patterns under the euclidian distance in the later-derived
categories. Table 7 presents an overview of the values from Table 6, which are divided into
four different clusters with corresponding outliers.



Forecasting 2023, 5 330

The clustering resulted in five outliers which can be seen in the first part of Table 7.
Furthermore, the first cluster was the largest cluster, including eight datasets. Moreover,
the second cluster included four datasets, and the third cluster had three datasets. Interest-
ingly, three out of four datasets from the air quality domain could be found in cluster one,
suggesting some degree of similarity between these datasets given their domain. However,
it was also the largest cluster, and only the combination of weather and bike-sharing and
electricity appeared in addition to the air quality domain more than once. Furthermore,
the second cluster included the electricity domain twice, and the third cluster consisted
only of different domains.

Table 7. Overview of the identified clusters and the corresponding statistical features of the dataset.

ID Domain Time
Interval

# Data
Points # Dimensions ADF AC PRV

Outliers

10 Fertility 1 yr 574 4 0.2438 0.3113 0.2000

12 Weather,
Bike-Sharing 1 d 731 15 0.3427 0.6827 0.0503

18 Multiple 5 min 69,561 3 0.0000 0.9195 0.0000
19 Traffic 5 min 15,664 3 0.0000 0.0852 0.5500
29 Air Quality 15 min 420,768 19 0.0000 0.8577 0.7647

Cluster 1

2 Air Quality 1 h 43,824 12 0.0000 0.4332 0.8795
4 Air Quality 1 h 9471 16 0.0000 0.4333 0.8714
5 Air Quality 1 h 2,891,393 7 0.0000 0.3299 0.9154

13 Weather,
Bike-Sharing 1 h 17,379 16 0.0000 0.0963 0.8872

21 Tweet Count 5 min 158,631 3 0.0000 0.1992 0.7619
28 Water Level 1 d 36,160 4 0.0000 0.1435 0.8597
39 Machine Sensor 1 h, 1 m 34,840 9 0.0052 0.5594 0.8544
49 Sales 1 d 1058297 9 0.0000 0.2742 0.8488

Cluster 2

3 Electricity 1 min 2,075,259 8 0.0000 0.7028 0.9088
30 Air Quality 15 min 79,559 11 0.0000 0.5948 0.8852
41 Electricity 5 min, 1 h 4,826,760 6 0.0000 0.6134 0.9773
52 Weather 1 h 35064 12 0.0000 0.7422 0.9557

Cluster 3

11 Mortality 1 yr 21,201 8 0.0179 0.0851 0.0896
17 AD Exchange Rate 1 h 9610 3 0.0032 0.0085 0.0000
20 Cloud Load 5 min 67,740 3 0.0000 0.0496 0.0584

Furthermore, the second cluster’s mean number of data points was the largest,
with 1,705,981, followed by the first cluster, with a mean of 528,922 data points. Clus-
ter three had the lowest average data points of 32,850. Both non-stationary datasets could
be found in the outliers.

The first cluster had AC values lower than 0.56 and PRV values higher than 0.76. Then,
the second cluster had AC values higher than 0.59 and PRV values higher than 0.88. Next,
the third cluster had PRV and AC values below 0.1. Based on these clustering results, we
defined the ranges of categories. First, we defined high PRV values as higher than 0.75, low
values as lower than 0.25, and medium values as within the range of low and high. AC
values were high if the value was higher than 0.59 and low to medium if the values were
lower than 0.59. We combined low and medium for AC because the clustering suggested
that a clear border between the groups did not exist.

Thus, we derived the following categories, which include a grouping of similar char-
acteristics.
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1. stationary/high PRV/low to medium AC: This category is a time series that is station-
ary and has many repeating values which are not distributed in regular patterns or
distributed in some regular patterns. Similar datasets could be found in cluster one.

2. stationary/high PRV/high AC: This category is a time series that is stationary and
has many repeating values which are distributed in regular patterns. Similar datasets
could be found in cluster two.

3. stationary/low PRV/low AC: This category is a time series that is stationary and has
many unique values which are distributed in irregular patterns. Similar datasets
could be found in cluster three.

4. stationary/low PRV/high AC: This category is a time series that is stationary and has
many unique values which are distributed in regular patterns. We only identified
the dataset with ID 18 in the outlier cluster. This indicates that this category does not
naturally appear in datasets used in research. This could be caused by the multiple
domains which are combined in that dataset.

5. non stationary: Due to the small number of datasets we identified which were not
stationary, this category could not be used for comparison. It is possible that there
were multiple additional clusters that we did not identify. Nevertheless, the work
done in this paper could be an indicator that there are not many stationary time series
datasets for forecasting used in publications.

These categories can be utilized to find a public dataset with similar characteristics
by computing the AC, ADF value, and PRV on the original dataset and categorizing
the resulting values. We provide the code to compute the AC, ADF, and PRV values on
GitHub (https://github.com/tmdt-buw/Time-Series-Dataset-Survey-4-Forecasting-with-
Deep-Learning) (accessed on 1 February 2023).

8. Conclusions

In this paper, we reviewed publicly available datasets used in publications in the field
of time series forecasting using deep learning. We provided a cross-domain overview of
the different time series forecasting datasets published in the context of deep learning.
Furthermore, we analyzed these datasets regarding their domain, file, and data structure,
as well as statistical characteristics and similarity measures, to enable other researchers to
choose a dataset on a profound base of knowledge. Additionally, we provided links to all
of these datasets to facilitate easy access. Finally, we categorized datasets and provided
a method to find similar datasets within a group of similar characteristics, which can be
utilized to publish comparable results if the researcher cannot publish their datasets.

The reviewed studies showed that many different time series domains have available
public datasets. We did not find a single domain from which most of the public datasets
originated. However, a big part of the research is still domain-driven. As a result, pub-
lications dealing with time series forecasting use different datasets, leading to a lack of
comparability. This may be part of the slowdown in deep learning progress in this area.
Even if publications used multiple datasets to test their models, they differed so that there
were no commonly used datasets.

To summarize, we identified the research gap of a strongly needed general time
series forecasting benchmark dataset, which would improve the progress made in the field
of time series forecasting. Furthermore, this analysis shows five categories of datasets.
Thus, to construct a representative benchmark dataset, one should consider covering a
combination of these categories in a conglomerate of datasets so that all possibilities are
included. Likewise, this work can be seen as a first step towards creating a representative
cross-domain benchmark dataset for forecasting, focusing on providing an overview of
the current state of research. This current state has shown a lack of non-stationary and
weakly patterned datasets, which should be included in a benchmark dataset. Therefore,
the next steps of creating a benchmark dataset include researching which datasets are used
outside scientific publishing and combining multiple datasets from different domains with
different characteristics to incorporate a representative cross-domain benchmark dataset.

https://github.com/tmdt-buw/Time-Series-Dataset-Survey-4-Forecasting-with-Deep-Learning
https://github.com/tmdt-buw/Time-Series-Dataset-Survey-4-Forecasting-with-Deep-Learning


Forecasting 2023, 5 332

More statistical measurements could extend the method of finding datasets with similar
characteristics to cover additional characteristics of time series in future work.
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