
Citation: Sedai, A.; Dhakal, R.;

Gautam, S.; Dhamala, A.; Bilbao, A.;

Wang, Q.; Wigington, A.; Pol, S.

Performance Analysis of Statistical,

Machine Learning and Deep

Learning Models in Long-Term

Forecasting of Solar Power

Production. Forecasting 2023, 5,

256–284. https://doi.org/10.3390/

forecast5010014

Academic Editors: Paras Mandal

and Xiaojun Luo

Received: 31 December 2022

Revised: 12 February 2023

Accepted: 15 February 2023

Published: 22 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

forecasting

Article

Performance Analysis of Statistical, Machine Learning and
Deep Learning Models in Long-Term Forecasting of Solar
Power Production
Ashish Sedai 1,* , Rabin Dhakal 2, Shishir Gautam 3, Anibesh Dhamala 4, Argenis Bilbao 1, Qin Wang 2,
Adam Wigington 2 and Suhas Pol 1,5

1 National Wind Institute, Texas Tech University, Lubbock, TX 79415, USA
2 Electric Power Research Institute, Palo Alto, CA 94304, USA
3 Department of Mechanical Engineering, Tribhuvan University, Dharan 56700, Nepal
4 Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79401, USA
5 Renewable Energy Program, Texas Tech University, Lubbock, TX 79401, USA
* Correspondence: ashish.sedai@ttu.edu; Tel.: +1-8067306170

Abstract: The Machine Learning/Deep Learning (ML/DL) forecasting model has helped stakeholders
overcome uncertainties associated with renewable energy resources and time planning for probable
near-term power fluctuations. Nevertheless, the effectiveness of long-term forecasting of renewable
energy resources using an existing ML/DL model is still debatable and needs additional research.
Considering the constraints inherent in current empirical or physical-based forecasting models,
the study utilizes ML/DL models to provide long-term predictions for solar power production.
This study aims to examine the efficacy of several existing forecasting models. The study suggests
approaches to enhance the accuracy of long-term forecasting of solar power generation for a case
study power plant. It summarizes and compares the statistical model (ARIMA), ML model (SVR), DL
models (LSTM, GRU, etc.), and ensemble models (RF, hybrid) with respect to long-term prediction.
The performances of the univariate and multivariate models are summarized and compared based
on their ability to accurately predict solar power generation for the next 1, 3, 5, and 15 days for a
100-kW solar power plant in Lubbock, TX, USA. Conclusions are drawn predicting the accuracy of
various model changes with variation in the prediction time frame and input variables. In summary,
the Random Forest model predicted long-term solar power generation with 50% better accuracy over
the univariate statistical model and 10% better accuracy over multivariate ML/DL models.

Keywords: long-term forecasting; statistical; machine learning; neural network; prediction horizon

1. Introduction

Overcoming concerns about the unpredictability and reliability of energy supplies
such as solar and wind energy is one of the most challenging issues in transitioning the
world into a renewable-energy economy [1]. The erratic and usually intermittent character
of these resources presents a significant hurdle in the establishment of renewable energy as
a mainstream energy source [2]. The unpredictable nature of energy sources causes power
fluctuations in the power plant, which require the grid operator to modify its day-ahead,
hour-ahead, and real-time operating procedures for the efficient functioning of the plant [3].
The study begins by highlighting the shortcomings of the existing empirical/physical-based
models and preparing a background behind the motivation for using ML/DL models for
solar power forecasting. It then summarizes and contrasts the statistical model (ARIMA),
ML models (SVR, DT, etc.), DL models (LSTM, GRU, CNN, etc.), and ensemble models
(Random Forrest, Hybrid models) based on the ability to accurately predict long-term
solar power production. A comparison of univariate (one independent variable) and
multivariate (more than one independent variable) models is conducted to predict solar
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power generation for the next 1, 3, 5, and 15 days at a 100-kW solar power plant in Lubbock,
Texas, USA. A conclusion is then drawn regarding how the prediction accuracy of the
various models changes as the prediction time frame and input variable or variables change.
Additionally, in this study, the importance of data processing techniques, best fit models,
and feature engineering that enhance forecasting performance are highlighted.

In addition to the time series forecasting using the statistical, ML, DL, ensemble, and
hybrid models, like the one in this study, there are several other models like Functional
modeling, Bayesian learning modeling, non-linear regression modeling, etc. that are used
in predicting renewable energy generation. The method utilized in this study is different
from the above-mentioned modeling approaches in a few key ways.

For instance, the time series ML/DL forecasting model is different from Functional
modeling in the following aspects,

• Temporal aspect: A time series model considers the temporal aspect of the data,
specifically the order in which the data points occur, while functional forecasting
modeling is more suited to modeling physical systems, which do not have a specific
temporal aspect.

• Complexity: Time series models can be more complex than functional models because
they need to consider patterns and trends in the data, which may not be captured by a
simpler functional model.

• Feature Engineering: Time series ML models often rely on feature engineering, which
is the process of creating new features from the raw data, to improve the prediction
performance. Functional forecasting modeling does not require feature engineering.

Likewise, time series ML/DL forecasting modeling is different from the Bayesian
learning model in the following aspects.

• Data Assumptions: Time series models assume that the data are generated by a
stationary process and make assumptions about the underlying distribution of the
data, while Bayesian learning models use Bayes’ theorem to update the probability of
a hypothesis as more evidence becomes available.

• Predictive model: Time series models are specifically designed to predict future values
of a time series based on historical data, whereas Bayesian learning models can be
used for a wide range of applications, including time series forecasting, but they may
not be as well-suited to the task as a dedicated time series forecasting model.

• Modeling techniques: Time series machine learning models use techniques such as
ARIMA, LSTM, and Prophet to improve the prediction performance, whereas Bayesian
learning models use techniques such as Markov Chain Monte Carlo (MCMC) and
variational inference to estimate the parameters of the model.

Despite ML/DL models in renewable energy forecasting not being prevalent, there
have been numerous studies on different forecasting models, especially for short-term
solar power generation forecasting in the last 10 years [4,5]. Samanta et al. have studied a
variety of models incorporating solar irradiance data on ML and statistical models such
as linear Regression (LR), locally weighted Regression (LWR), Support Vector Regression
(SVR), ARIMA, and Least Square Support Vector Regression (LS-SVR) and concluded that
the LS-SVR is the most accurate among all the tested models [6]. Similarly, Ahn et al.
have proposed the deep Recurrent Neural Networks (RNN) based short-term forecasting
algorithm to predict solar power generation for the next 5 and 15 min using 12 time-step
3 RNN layers model. For short-term forecasting, Ahn et al. have achieved accuracy as
high as 99% in their study [7]. Similarly, Harrou et al. have proposed a multivariate
LSTM model for their study of solar power forecasting for different weather conditions
and concluded that for better accuracy of the model, several variables should be added
such as ambient temperature, cell temperature, wind speed, albedo, etc. in addition to the
solar irradiation data [8]. Similarly, Gao et al. have performed an investigation for three
forecasting cases (rainy, cloudy, and overcast) and concluded that for all three cases, LSTM
model is most suitable and effective in incorporating the dynamic nature of solar power
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generation [9]. Similarly, Sharma et al. have made a comparison between two time-series
models and eight neural network models. Sharma et al. have achieved an improvement
in accuracy of 31% and 47% with the LSTM model consisting of Nadam optimizer over
ARIMA and Seasonal-ARIMA (SARIMA) model respectively [10]. Contrary to the above
study, Fara et al. have performed an investigation for short-term solar power forecasting
using Artificial Neural Network(ANN) and ARIMA and concluded that ARIMA is more
accurate than the DL(ANN) model [11].

The literature review discussed above highlights the effectiveness of various forecast-
ing models for short-term solar power generation forecasting (intra-day head prediction).
However, the authors identify that the research related to long-term solar power gener-
ation forecasting is limited, due to factors such as limited input datasets, computational
constraints, and a lack of consideration for long-term forecasting among stakeholders. As
the penetration of renewable energy in the electrical grid increases, accurate long-term
forecasting becomes increasingly important for improving economic efficiency in unit
commitment and dispatch processes.

Significance of the Study:

• This study aims to provide a comprehensive comparison of popular forecasting models
for long-term solar power generation forecasting, an area where there has been limited
research.

• The study seeks to understand the relationship between the forecasting model’s input
variables and forecasting accuracy.

• The study investigates how the performance of different models changes as the pre-
diction horizon changes.

• The study compares the performance of hybrid and ensemble models to that of single
models.

• The study assesses the performance of statistical, ML, DL, and ensemble forecasting
models when limited input variables and datasets are available.

As the limitations of empirical-based forecasting models are discussed in Section 2, this
study is significant in its examination of the limitations of models that have been in practice
for decades, before comparing the performance of more recently developed forecasting
models. The study, based on a case study conducted on a 100-kW solar power plant, aims
to evaluate the performance of 11 different forecasting models and provide insights on how
to improve their accuracy for long-term forecasting of solar power generation.

2. Limitation of the Existing Empirical-Based Forecasting Model

Prior to the introduction of the ML/DL model, the only way to efficiently determine the
amount of global solar irradiation at any site was by installing measuring instruments such
as a pyranometer and pyrheliometer at that place and monitoring day-to-day recording,
which is a costly exercise [12]. Many developing countries cannot afford such instruments
to accurately estimate solar irradiation at any location, which is why several correlations
and methods have been developed in the past to estimate daily or monthly global solar
irradiation [13,14]. Such correlations-based models and their application method is termed
as empirical based model. The correlation models are based on geographical factors
(latitude, longitude), astronomical factors (solar constant, solar declination hour angle etc.),
and meteorological factors (temperature, sunshine hours, relative humidity, etc.) [15]. The
most common empirical models are the sunshine- and cloud-based models.
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2.1. The Sunshine-Based Model

The sunshine duration and clear sky radiation data are utilized as a parameter to
predict the solar radiation at any time/day in the sunshine-based model. Angstrom–
Prescott model is such a widely used model for calculating the monthly average daily
radiation (H).

Were,
H
H0

= a + b
(

S
S0

)
(1)

The monthly average extraterrestrial radiation (Ho) can be calculated using
Equation (2):

Ho
(

Wh
m2day

)
= 24

π Isc
⌈
1 + 0.033 cos

( 360n
365
)⌉⌈

cos ∗ cos∂ ∗ sinωs +
π

180 ωs ∗ sinϕ ∗ sinδ
⌉ (2)

where parameters ∂, ωs, S, S0, , ϕ, a, b is solar declination, sunrise hour angle, monthly
average daily sunshine duration, the monthly average daily maximum possible sunshine
duration, solar zenith angle, the latitude of the location, and correlation coefficient respec-
tively [15]. Similarly, Isc and n are referred to as solar constant (1367 W/m2) and the number
of days starting from 1 January, respectively.

Despite the popularity of the Angstrom-Prescott model, the model fails to accurately
predict solar irradiation due to dependencies upon many meteorological factors and the in-
ability of the model to incorporate cloud covering [16,17]. Similarly, there are several other
sunshine-based regression models based on Angstrom–Prescott model where the only dif-
ference between these models is the value of coefficients which are location dependent [18].
Some of the models are:

Katiyar et al. [18] model for India

H
H0

= 0.2281 + 0.5093
(

S
S0

)
(3)

Jain model for Italy
H
H0

= 0.177 + 0.692
(

S
S0

)
(4)

Li et al. Model for Tibet, China

H
H0

= 0.2223 + 0.6529
(

S
S0

)
(5)

All these models are dependent on multiple variables and have been used to compute
the solar irradiance at different locations by modifying the coefficients of the Angstrom-
Prescott model. As the coefficients are dependent on place and time, it follows that the
sunshine-based model cannot be applied equally over the globe. The research conducted
by Junliang Fan et al. [19]. in various regions of China revealed that the machine-learning
model surpassed the empirical sunshine-based model, which serves as the foundation for
this investigation into determining the most effective ML/DL models for long-term solar
power forecasting.

2.2. The Cloud-Based Model

The most significant atmospheric phenomenon limiting the availability of solar energy
on the earth is cloud cover and weather patterns. So, by collecting various data using the
meteorological satellite and identifying the cloud patterns, the cloud-based forecasting
model was developed with the intention to overcome the limitation of the sunshine-based
model [20]. The cloud-based model certainly has the advantages over the sunshine-based
model, in that its application is not geographically constrained and no physical solar
radiation measuring instruments are required. Paltridge model developed by Paltridge
and Proctor [21] is the most popular cloud-based model where parameters like solar zenith
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angle (θ), and cloud factor (CF) are used to estimate the hourly diffused radiation (Id) and
hourly beam radiation (Ib),

Where,
Ib = 3.42286[1− exp (−0.075(90− θ))] (6)

Id = 0.00913 + 0.0125(90− θ) + 0.723CF (7)

And total radiation is calculated using Equation (8):

H = (1−CF)
∫ Sunset

Sunrise
Ib(θ)cos θdt +

∫ Sunset

Sunrise
Id(θ)dt (8)

Although the cloud-based model was frequently used for solar irradiance forecasting,
it is no longer the favored method owing to the expensive cost of getting the necessary
parameters and the model’s inability to predict the long-term forecast [22]. All empirically
based models, not just those based on sunlight and clouds, are incapable of accurately
predicting solar irradiance and solar energy output in noisy environments due to their
inability to account for complex and nonlinear correlations between independent variables
and dependent variables [23]. Several studies have shown that the ML/DL model is more
accurate and cost-efficient than the empirical/physical-based model [24–26]. The ML/DL
models’ ability to accurately estimate solar irradiance with just one input parameter makes
them a better choice for predicting solar irradiance/solar power production. Therefore,
this study investigates the usefulness of several statistical, ML, and DL models with the
aim of enhancing long-term forecasts of solar power output. The significance of data
processing approaches, the best fit model, and feature engineering that improve forecasting
performance are emphasized in this study.

3. Materials and Methods

The first step in the methodology of this study is data collection, which is followed
by data preprocessing and Exploratory Data Analysis (EDA) to verify the accuracy of the
collected data. After the data preprocessing step, univariate and multivariate statistical, ML
and DL models are tested with a 100-kW solar power plant’s hourly power production data.
Firstly, the performance of three different univariate models is tested. The best-performing
univariate model is re-analyzed with additional input variables to understand how the
accuracy of the model changes with the change in the numbers of the input variables.
Further, ensemble models are tested with the same datasets to see if the amalgamation
of the models increases the prediction accuracy. Lastly, the optimal model is selected for
predicting long-term solar power forecasting for the case study plant. The flowchart of the
methodology of the study is presented in Figure 1.
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3.1. Data Collection

For this study, one-year hourly global irradiation data are imported from National
Solar Radiation Database (NSRDB) which is a NREL database (station 565910) [27]. Using
the imported data, a 100-kW solar power plant is designed for the Lubbock Texas region
using SAM [28] software (online opensource NREL’s software version 2022). An hourly
one-year solar power production data (kWh) from a modeled power plant is imported to
perform a statistical, ML and DL model to predict solar power production for the next
1 day, 3 days, 5 days, and 15 days. The solar power plant is designed for a location with an
altitude of 983 m, latitude 33.57◦ N, and longitude−101.86◦ E. The Figure 2 shows different
input variables and models that are utilized in the study.

Forecasting 2023, 5, FOR PEER REVIEW  6 
 

3.1. Data Collection 

For this study, one-year hourly global irradiation data are imported from National 

Solar Radiation Database(NSRDB) which is a NREL database(station 565910) [27]. Using 

the imported data, a 100-kW solar power plant is designed for the Lubbock Texas region 

using SAM [28] software (online opensource NREL’s software version 2022). An hourly 

one-year solar power production data (kWh) from a modeled power plant is imported to 

perform a statistical, ML and DL model to predict solar power production for the next 1 

day, 3 days, 5 days, and 15 days. The solar power plant is designed for a location with an 

altitude of 983 m, latitude 33.57° N, and longitude −101.86° E. The Figure 2 shows different 

input variables and models that are utilized in the study. 

 

Figure 2. Input variables and models used in the study. 

3.2. Data Pre-Processing 

The ability of the ML/DL model to learn is directly impacted by the quality of the 

data, hence it is critical that we preprocess the data before introducing it to the model. 

Data preparation is the process of getting the raw data ready (clean and organized) so that 

it can be used to create and train different ML/DL models. To put it simply, data prepro-

cessing is a data mining approach that converts unstructured data into a format that is 

legible and intelligible to the ML/DL models. In this study, we have used weather data 

(DNI, GHI, DHI, temperature, wind speed, and power output) at a frequency of 1/3600 

HZ. Here, DNI is Direct Normal Irradiance, GHI is Global Horizontal Irradiance, and DHI 

Figure 2. Input variables and models used in the study.

3.2. Data Pre-Processing

The ability of the ML/DL model to learn is directly impacted by the quality of the
data, hence it is critical that we preprocess the data before introducing it to the model. Data
preparation is the process of getting the raw data ready (clean and organized) so that it can
be used to create and train different ML/DL models. To put it simply, data preprocessing is
a data mining approach that converts unstructured data into a format that is legible and
intelligible to the ML/DL models. In this study, we have used weather data (DNI, GHI,
DHI, temperature, wind speed, and power output) at a frequency of 1/3600 HZ. Here, DNI
is Direct Normal Irradiance, GHI is Global Horizontal Irradiance, and DHI is Diffused
Horizontal irradiance. The data preprocessing for the study includes handling missing
data, outliers, and noise, data scaling, one hot encoding, etc. The stochastic regression
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imputation technique is implemented to impute the missing data and replace the outliers
and noise in the data.

3.3. Data Visualization

Data visualization tools offer a simple approach to spotting and comprehending
trends, data patterns, and outliers. Tools and methods for data visualization are crucial for
processing large amounts of information and making data-driven decisions. For this study,
the python package Matplotlib [29] is used to visualize the data. Figure 3 represents the
graphical representation of different data utilized in the study.
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3.4. Test-Train Split

The accuracy of every prediction model can be determined by the model’s performance
analysis, for which test data are required. The test dataset cannot be the same as that used
for training the model. Hence, the essential step in any ML/DL modeling is to split the
data into train and test sets. Sometimes some portion of the test set can be used to validate
the model as well and which is known as a validation set. In this study, about 70% of the
data are used for training, 20% for validation, and 10% for testing.

3.5. Building a Model

In this part, the literature and methodology of implementation of different (statistical,
ML, DL, and ensemble) models are analyzed and compared for both the univariate and
multivariate datasets. A detailed comparison is available in Section 4. However, in brief,
the following Section 4 first compares the univariate models, namely, ARIMA, SVR, and
univariate LSTM in Section 4.1, which are statistical, ML and DL models, respectively.
The best-performing model out of the above three models is re-analyzed in Section 4.2
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with addition of input variables. Later, in Section 4.3, the best-performing model and
worst-performing model from 4.1 and Section 4.2 are ensembled to see how the prediction
accuracy change with this combination. The results are summarized in Section 5. Lastly, a
discussion of the results obtained is presented in Section 6.

3.6. Model Evaluation

The accuracy of the models has been compared using the RMSE (Root Mean Square
Error) test. The RMSE test is used to identify the difference between an observed value and
the predicted value. The RMSE value ranges from 0 to infinity. The accuracy of the model
with an RMSE value near 0 is the highest [30].

RMSE = square root ∑n
i=1(Yi−Yj)(Yi−Yj)

n
(9)

where Yi corresponds to the actual value and Yj is the forecast value.
The impact of the prediction horizon, the number of input variables, feature engineer-

ing, data processing, and ensemble models are summarized in this part of the study.

4. Building a Model
4.1. Univariate Models

As mentioned in the methodology Section 3.5, a univariate model for each of the
three types of models—statistical, ML, and DL—is tested in this section. The univariate
dataset utilized in the analysis is hourly year-long solar power production data from a
100-kW solar power plant. Firstly, a statistical model (ARIMA) is implemented after data
are pre-processed by removing noise and outliers. Then, the stationary data are checked by
examining Auto-Correlation Function (ACF), and Partial Auto-Correlation Function (PACF)
test, and then seasonality/non-seasonality, trends, etc. in data are checked to choose the
correct ARIMA algorithm. ARIMA (p, d, q) model is built based on the lowest values of the
Akalike Information Criterion (AIC). The methodology of forecasting using the ARIMA
model is presented in Figure 4. Secondly, the univariate SVR algorithm is tested on the
same datasets by importing SVR libraries in the python keras package. Then, Radial Base
Function (RBF) is chosen as the kernel to standardize the data between the values 0 and
1. Then, SVR parameters are chosen based on the trial-and-error method. Finally, the
correlation matrix is determined to identify the relationship between the time stamp input
variable data and prediction is made thereafter. Lastly, the deep learning algorithm, LSTM
model, is run for the same datasets after scaling the datasets using activation functions
like a sigmoid (σ) and hyperbolic tangent function (tanh). The LSTM model is tuned by
changing various parameters such as changing the number of LSTM layers, adding dropout
value, increasing the number of epochs, changing optimizer type, varying batch size, etc.
to yield maximum accuracy. The results of the comparison of the above-mentioned models
are presented in Section 5.1.
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4.1.1. Statistical Model (ARIMA)

Autoregressive models are those that predict future features based on prior attributes.
The ARIMA model is a developed version of the basic Autoregressive Moving Average
(ARMA) model with the introduction of the Integration term(I) [31]. The ARIMA model is
a type of statistical model that merely requires historical data to understand the pattern and
make a prediction. This simple yet efficient method of forecasting is of regression analysis
type normally used for the data that demonstrate stationarity nature. In ARIMA, the term
AR, I, and MA represents the following responsibilities. AR (Auto-Regressive) model is
responsible for understanding the correlation between the observed value and its lagged
value. I (Integrated) model is responsible to make the best fit of data by substitution of data
with the differenced term (observed value-its lagged value) [32]. MA (Moving Average)
model is responsible for understanding the correlation between an observed value and a
residual error in the lagged data. Each of the above terms is associated with the parameters
represented as (p, d, q), in which:
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• p: corresponds to the quantity of lag observation in a model.
• d: corresponds to the number of times the observed value is different from its lagged

value.
• q: corresponds to the order of lagged prediction error.

• Seasonality versus non-seasonality

ARIMA models for seasonal and non-seasonal data are different. Seasonality is the
existence of a consistent trend in the historical time series data.

The non-seasonal ARIMA [33] model evaluates time series data using Equation (10):

yt = µ+

AR terms︷ ︸︸ ︷
φ1yt−1 + . . . + φPyt−p − θ1et−1 − . . .− θqet−q︸ ︷︷ ︸

MA terms

(10)

where, µ is constant, θ and φ are model parameters of MA and AR terms respectively, yt is
time series, p, d, and q are non-seasonal ARIMA parameters, and et is the white noise.

The seasonal ARIMA model [33] is similar to the non-seasonal ARIMA model with an
addition of a backshift operator (B) term to achieve convenience in describing the process
of differencing in time series data. Where B is

B = yt−1 (11)

The seasonal ARIMA model evaluates time-series data by multiplying seasonal pa-
rameters with non-seasonal parameters as:

(p, d, q) ∗ (P, D, Q) ∗m (12)

where m is the number of observations and P, D, and Q are seasonal AR, MA, and I order
respectively. Seasonal ARIMA is chosen for this study due to the seasonality in the training
datasets.

• Stationarity of the data

Time series data are said to be stationary if the mean does not vary over time and
the variance is zero. Statistical modeling methods like ARIMA presumes or require the
time series data to be stationary to project an accurate prediction. Different ways to test the
stationarity of the time series data are to perform an Autocorrelation Function (ACF) test,
Partial Autocorrelation Function (PACF) test or Augmented Dickey-Fuller (ADF) test. For
this study, ACF and PACF test is performed to check the stationarity of the data. The data
for this study is found to be stationary.

• Determining p, d, and q parameters

Parameters are set by determining the values of the model coefficients that offer
the best representation of the data using maximum likelihood or minimal least square
approaches. Models with the lowest Akaike information criterion (AIC) or Bayesian
information criterion (BIC) are chosen. For this study, the least AIC value is evaluated to
identify the optimal model [34].

AIC = −2 log (maximum likelihood) + 2 k (13)

k is a number of independent parameters.
It is hard to quantify all three parameters (p, q, d) just by looking through ACF and

PACF plot, however, this graph (Figure 5) gives some preliminary ideas. The plots of the
ACF and PACF of the ARIMA model, which is used to identify the appropriate values for
the model’s parameters such as the number of Auto-Regressive (AR) and Moving Average
(MA) terms, are displayed in the top row of Figure 5. The plots for the residual ACF and
PACF are similarly displayed in the second row. The similarity in the residual ACF and
PACF plots suggests that the model may not be capturing all the patterns in the data. This
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highlights the need for either more data or a more accurate model to improve the model’s
performance and its ability to make long-term forecasts. In both the graphs in Figure 5
(top row), the first few spikes are the most distinct and significant. This gives us the idea
that p value is more than 1. Similarly, q can be estimated roughly from the ACF plot by
looking at the number of lags crossing the threshold zone. However, to precisely quantify
the parameters, the minimum AIC value is calculated by changing the (p, q, d) value. For
this study, optimal parameters are (p = 3, q = 0, d = 5) with a minimum AIC value of 64,544.
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4.1.2. The Machine Learning Model (SVR)

The Support Vector Regression (SVR) model demonstrates superior performance
prediction compared to other ML models such as Linear Regression, (K-Nearest Neighbors)
KNN, and Elastic Net [35]. This is because it has enhanced optimization techniques
for a wide range of variables. Additionally, it is adaptable in how it handles geometry,
transmission, data generalization, and kernel extensions [19]. By considering the quality of
characteristics, this added capability improves the model’s ability to make predictions. For
these reasons, SVR is the model of choice for this study. Drucker et al. first presented SVR,
which is a supervised learning approach based on the support vectors theory of Vapnik [36].
The objective of SVR is to reduce error by finding the hyperplane and decreasing the
difference between expected and observed values. The Support Vector Machine (SVM)
serves as the foundation for the SVR method. SVR is a regressor used to forecast continuous
ordered variables, in contrast to SVM, which is used to predict discrete categorical labels.
The objective of simple regression is to minimize error rates, but the objective of SVR is to fit
the error inside a preset threshold. This suggests that the objective of SVR is to approximate
the optimal value within a specified margin known as the epsilon tube, which ranges from
positive to negative epsilon as seen in Figure 6.



Forecasting 2023, 5 267
Forecasting 2023, 5, FOR PEER REVIEW  12 
 

 

Figure 6. Basic structure of SVR model. 

When using the SVR model, a nonlinear boundary must be built if the training data 

cannot be partitioned into independent subsets using linear means. By projecting the in-

put space onto a higher-dimensional space known as feature space, the nonlinear bound-

ary may be attained. The instances that share the same feature space are then searched for 

a hyperplane that can divide them. A kernel function defines the mapping between the 

input space and the feature space. The following sections explain the basic terminology 

involved in the SVR model. 

• Terminologies 

1. Hyperplane 

The continuous output may be reliably predicted with the use of hyperplanes, which 

are decision boundaries. The data points that are located on each side of the hyperplane 

and are in the closest proximity to the hyperplane are referred to as Support Vectors. These 

are what is needed to draw the necessary line that demonstrates the expected result of the 

algorithm. 

2. Kernel 

Kernels are mathematical functions that transform data into the desired form (like, 0 

to 1, −1 to 1, etc.) and are used to discover a hyperplane in higher-dimensional space. 

3. Support Vectors 

Support vectors are data points that are nearer the hyperplane and have an impact on 

the hyperplane’s position and orientation. 

4. Boundary lines 

The boundary line is the point where two parallel lines drawn to the two sides of the 

Support Vector meet and the error threshold value, epsilon, is exceeded. These lines de-

marcate a space around each data point. 

• Importing libraries and training dataset 

The SVR analysis prepackaged library in Python is utilized in this investigation. To 

assess the model’s performance, 8760 data points representing hourly solar power output 

data are used. The split of the dataset between training, validation, and test set is 70%, 

20%, and 10% of the total datasets respectively. 

• Selection of Kernel 

The Sigmoid Kernel, Polynomial Kernel, Gaussian Kernel, Radial Basis Functions 

(RBF), etc. are all examples of kernels often used in SVR analysis [37]. Since the RBF kernel 

is the most often used kernelization method due to its proximity to the Gaussian 

Figure 6. Basic structure of SVR model.

When using the SVR model, a nonlinear boundary must be built if the training data
cannot be partitioned into independent subsets using linear means. By projecting the input
space onto a higher-dimensional space known as feature space, the nonlinear boundary
may be attained. The instances that share the same feature space are then searched for a
hyperplane that can divide them. A kernel function defines the mapping between the input
space and the feature space. The following sections explain the basic terminology involved
in the SVR model.

• Terminologies

1. Hyperplane

The continuous output may be reliably predicted with the use of hyperplanes, which
are decision boundaries. The data points that are located on each side of the hyperplane
and are in the closest proximity to the hyperplane are referred to as Support Vectors. These
are what is needed to draw the necessary line that demonstrates the expected result of the
algorithm.

2. Kernel

Kernels are mathematical functions that transform data into the desired form (like, 0
to 1, −1 to 1, etc.) and are used to discover a hyperplane in higher-dimensional space.

3. Support Vectors

Support vectors are data points that are nearer the hyperplane and have an impact on
the hyperplane’s position and orientation.

4. Boundary lines

The boundary line is the point where two parallel lines drawn to the two sides of
the Support Vector meet and the error threshold value, epsilon, is exceeded. These lines
demarcate a space around each data point.

• Importing libraries and training dataset

The SVR analysis prepackaged library in Python is utilized in this investigation. To
assess the model’s performance, 8760 data points representing hourly solar power output
data are used. The split of the dataset between training, validation, and test set is 70%, 20%,
and 10% of the total datasets respectively.
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• Selection of Kernel

The Sigmoid Kernel, Polynomial Kernel, Gaussian Kernel, Radial Basis Functions
(RBF), etc. are all examples of kernels often used in SVR analysis [37]. Since the RBF
kernel is the most often used kernelization method due to its proximity to the Gaussian
distribution, it is used in this study [38]. The RBF kernel is flexible enough to handle both
linear and non-linear input-output mapping, and it has fewer hyper-parameters to tune
than kernels like the polynomial kernel, reducing the computational cost of finding the
optimal hyper-parameters. Additionally, the RBF kernel’s values are constrained to lie
between 0 and 1, resulting in fewer numerical difficulties than the polynomial kernel’s,
which can lie between 0 and infinity [39].

• Determining the SVR parameters

Three training parameters (kernel, C, and ε) for an ε-insensitive loss function affect
how well the SVR method performs. However, the complexity of the resulting model is
sensitive to the values of C and ε for any kernel. The prediction accuracy may be improved
by increasing or decreasing the number of Support Vectors (SV). The less complicated
the regression estimates are, the larger they should be set to. However, C’s value is the
compromise between the ease with which the model can be understood and the tolerance
for error in the optimization method [40]. For this study, C = 10, epsilon = 0.05 is chosen
based on the trial and error that results in minimum prediction error.

• Correlation matrix and predictions

Lastly, the correlation matrix is formed based on the parameters like Kernel, C, and ε,
which are responsible for making predictions of future values.

4.1.3. Deep Learning Model (LSTM)

To overcome the vanishing gradient problem in handling long-term sequences in Re-
current Neural Network (RNN), advance RNN models, i.e., the LSTM model is developed
which has a similar structure as RNN but has different inner cells [41]. The LSTM model is
equipped with the ability to utilize memory blocks to store and transfer information for
a long period and reduce the rate of data loss [42]. Each unit in a block consists of three
types of gates for controlling the memorizing process as represented in Figure 7.

• Gates

1. Forget gate
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Forget gate is the first gate in LSTM architecture where information is either forgotten
or stored based on the significance of information to the result. The forget gate is supposed
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to read and store information on current input (Xt) and previous layer output (yt−1), and
to apply the sigmoid activation function (σ) on the available information. The activation
function results in a value of forget gate (ft) into a binary value (either 0 or 1) [43]. The
value of ft being 1 means remember every piece of information, and the value of ft being 0
means forget every piece of information. Forget gate (ft) is calculated as

ft = σ
(
wf.
[
yt−1, xt

]
+ βf

)
(14)

In Equation (14), Wf is the weight matrix between forget gate and input gate where
information is either stored or forgotten, and βf is the gate layer’s bias term.

2. Input gate

The input gate is the second gate in LSTM architecture where the significance of the
new information carried by the input is evaluated. It is divided into two sections. First,
the previous hidden state (Ht−1) and current input (Xt) are sent to the sigmoid activation
function (σ) to determine which values will be updated. Then, to govern the network,
the same two inputs are fed into the tanh activation function. Finally, the tanh output
(Ct) is multiplied by the sigmoid output (It) to determine which information is critical for
updating the cell state [1]. Input gate (It) is evaluated as,

It = σ(Xt × Ui + Ht−1 ×Wi) (15)

Ht = It × tanh (Ct) (16)

In Equation (15), Wi is the weight matrix of the sigmoid operator between the input
and output gate and Ui is the weight matrix of the input.

3. Output gate

The output gate is the final gate in LSTM modeling where, previous input information
is reviewed, and forecasting is made based on that information. The prior hidden state
(Ht−1) and current input (xt) are both sent to the sigmoid activation function, much as
the input gate. After going through the sigmoid function, the output is multiplied by the
output of the hyperbolic function (tanh) to yield the current hidden state (Ht). The final
outputs are the current state (Ct) and the present hidden state (Ht). The following equation
governs the output gate [44].

Ot = σ(Xt × Uo + Ht−1 ×Wo) (17)

Ht = Ot × tanh (Ct) (18)

where Wo is the weight matrix of the output gate and Ui is the weight matrix of the input.
To summarize, the forget gate determines which preceding information is important.

The input gate determines what relevant information from the current phase may be added,
and the output gate finalizes the next hidden state and provides the desired output.

• Execution steps

The default univariate LSTM model available in the Keras package in Jupiter Note-
book [45] is utilized for this study. The same dataset as ARIMA is utilized in this model.
Hourly one-year PV output data are divided into training and testing datasets after remov-
ing noise and outliers in the data, where 90% of the data are utilized for training purposes
and 10% of the data are utilized for testing purposes. The normalization method is applied
to datasets, which standardized the data into binary values (0 and 1), making the model
easier to interpret. Similarly, four distinct hidden layers are investigated, and the best fit out
of the four different models is evaluated using different precision approaches. The number
of neurons in this study has been kept fixed for all the datasets. Similarly, optimizers are
used to increase the accuracy of the model.

• Network Architecture
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Several activation functions like Sigmoid, SoftMax, and Rectified Linear Unit (ReLU)
can be implemented in the LSTM model to standardize the dataset value between−1 to 1 to
better interpret the result [46]. For this study, the sigmoid and hyperbolic tangent activation
function is implemented. Similarly, optimizer algorithms are used for minimizing errors in
the forecasting model [10]. An Adam optimizer is used in the model to efficiently handle
sparse gradients in stochastic datasets [47]. To avoid the overfitting of the data in the model,
drop-out layers are used. Drop out layer randomly enable/disable neuron and update
memory cell in LSTM. To ensure accurate forecasting, large epochs (30) and a small batches
size (32) are chosen.

4.2. Multivariate Models

In this section, the best performing model of Section 4.1, i.e., the DL model (LSTM)
is re-evaluated with the addition of new variables to understand how the accuracy of
the model change with the change in the number of input variables. The results of the
comparison of univariate models are presented in Section 5.1. Six distinct types of LSTM
models are evaluated in this section with multivariate datasets.

4.2.1. Multivariate-LSTM

As the name suggests, this model incorporates multiple input variables like solar
power output, DNI, GHI, DHI, Wind speed, and temperature and predicts the solar power
production as output. The working principle of Multivariate LSTM is presented in Figure 8
below which is similar to the univariate LSTM model.

Forecasting 2023, 5, FOR PEER REVIEW  15 
 

handle sparse gradients in stochastic datasets [47]. To avoid the overfitting of the data in 

the model, drop-out layers are used. Drop out layer randomly enable/disable neuron and 

update memory cell in LSTM. To ensure accurate forecasting, large epochs (30) and a 

small batches size (32) are chosen. 

4.2. Multivariate Models 

In this section, the best performing model of Section 4.1, i.e., the DL model (LSTM) is 

re-evaluated with the addition of new variables to understand how the accuracy of the 

model change with the change in the number of input variables. The results of the com-

parison of univariate models are presented in Section 5.1. Six distinct types of LSTM mod-

els are evaluated in this section with multivariate datasets. 

4.2.1. Multivariate-LSTM 

As the name suggests, this model incorporates multiple input variables like solar 

power output, DNI, GHI, DHI, Wind speed, and temperature and predicts the solar power 

production as output. The working principle of Multivariate LSTM is presented in figure 

8 below which is similar to the univariate LSTM model. 

 

Figure 8. Basic architecture of Multivariate LSTM model. 

4.2.2. Stacked LSTMs 

The stacked LSTM is an improvement to the multivariate LSTM model that includes 

several hidden LSTM layers (Figure 9) with numerous memory cells in each layer. The 

model becomes deeper because of the stacked LSTM hidden layers, more appropriately 

deserving of the label “deep learning approach”. In a stacked LSTM, the output of the first 

LSTM layer is utilized as the input for the second LSTM layer, which creates sequence 

vectors. The next LSTM’s input at time t + 1 receives the output of the LSTM at time t [48]. 

Figure 8. Basic architecture of Multivariate LSTM model.



Forecasting 2023, 5 271

4.2.2. Stacked LSTMs

The stacked LSTM is an improvement to the multivariate LSTM model that includes
several hidden LSTM layers (Figure 9) with numerous memory cells in each layer. The
model becomes deeper because of the stacked LSTM hidden layers, more appropriately
deserving of the label “deep learning approach”. In a stacked LSTM, the output of the
first LSTM layer is utilized as the input for the second LSTM layer, which creates sequence
vectors. The next LSTM’s input at time t + 1 receives the output of the LSTM at time t [48].
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4.2.3. Bi-Directional LSTM

In addition to being an expansion of the multivariate model, bidirectional long-short-
term memory allows for the transmission of data in both ways, either backward or forward
(Figure 10). The conventional LSTM only allows for unidirectional input flow, in either
direction. On the other hand, using bidirectionality, we can ensure that data are kept both
in the future and in the past [49].
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4.2.4. Encoder-Decoder LSTM

Both the encoder and the decoder are generally LSTM models. To enable the input
sequence, an encoder creates a set of numbers called internal state vectors (in the case of
LSTM, these are called the hidden state and cell state vectors). The states of the Decoder
LSTM are initialized to match those of the Encoder LSTM’s output states. Decoder begins
creating the output sequence using these starting states. The input sequence is first summa-
rized by the encoder into state vectors (also called thought vectors), which are then sent to
the decoder, which begins creating the output sequence based on the thought vectors [50].
Figure 11 depicts the above information in pictorial form.
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The working architecture of GRU (Figure 12) is like LSTMs, but with two gates instead
of three (a reset gate and an update gate). It is the job of the reset gate to decide how much
of the prior state to retain, while the update gate decides how to mix the incoming input
with the stored data. The input gate and forget gate of an LSTM have been replaced with
an update gate in a GRU. Unlike the LSTM unit, the GRU unit does not need a memory
unit to regulate data transfer. It has unrestricted access to all latent states and may utilize
them directly. Since GRUs have fewer parameters, they could learn more quickly or with
fewer data. However, LSTMs with more expressiveness may provide superior results with
huge datasets. In addition, the vanishing gradient issue, which plagues most RNNs, is
solved by GRUs [51]. The neural network may become untrainable if the grade becomes
too tiny over time due to backpropagation. Two gates, the update gate and the reset gate,
help GRUs deal with this issue. These gates are responsible for determining what data are
sent to the output and may be taught to remember data from earlier in the chain. By doing
so, it may improve its predictions by relaying information through a causal chain [52].
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4.2.5. Stacked GRU

The stacked GRU is functioning like the stacked LSTM where the output of the first
GRU layer is utilized as the input for the second LSTM layer, which creates sequence
vectors. The next GRU’s input at time t + 1 receives the output of the GRU at time t. Stacked
GRU is an improvement to the multivariate GRU model (Figure 13) that includes several
hidden GRU layers with numerous memory cells in each layer [53].
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4.3. Ensemble Model

The idea behind an ensemble model is to make the model more accurate by putting
together several different forecasting models. The different methods of model composition
are called “bagging”, “stacking”, and “boosting”. By averaging the results of several similar
models with high variance, bagging can reduce variance. Boosting builds multiple models
one step at a time to reduce bias and keep the variance small. In the same way, stacking is
the process of using different forecasting models one after the other, where the predictions
from each model are added to make a new feature [54].

4.3.1. Random Forrest (RF)

RF regression is a supervised learning approach for regression that uses the bagging
ensemble learning method. The random forest model is presented to improve the perfor-
mance of the machine learning algorithm decision tree [55]. The issue with decision tree
algorithms is that they tend to overfit smaller datasets [56]. This results in a large variance,
which might be interpreted as high test mistakes on the test dataset despite the training
dataset’s high accuracy. The RF approach resolves this problem by picking dataset features
at random. This implies that RF will use a restricted amount of these qualities on each
iteration. The output is ultimately selected depending on the results of each repetition with
a separate subset [57]. One hundred Decision Tree (DT) results are gathered in this study.
In Figure 14, only four DT trees are represented (for simplified representation of the model)
where total datasets are divided into 4 different classes based on the N1, N2, N3 and N4
features.
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4.3.2. ARIMA-LSTM

The study’s top-performing and bottom-performing models are combined to see
whether there is a performance increase over separate models. To describe a linear rela-
tionship in time series paradigms, the ARIMA model works quite well [58]. In contrast, it
is inadequate for modeling nonlinear connections. To counter this, the LSTM model may
describe both linear and nonlinear relationships, albeit not all datasets will provide the
same result [59]. Nonlinear and linear components of differential modeling were presented
as part of the hybrid model idea for optimal prediction. In this study, the hybrid model
is implemented first by removing the seasonal component in the dataset (Yt). To do this,
we used the yt = mt + st + εt decomposition, the first phase of the ARIMA model. Three
functions are obtained: trend mt, seasonal component st, and noise εt. To recreate seasonal-
ity, st and εt are kept, and εt is used to create confidence ranges for the projected values.
Now that the datasets are devoid of seasonal variations, the datasets are passed to the deep
learning model as input [60,61]. The remaining operation is analogous to the operation of
the ARIMA and LSTM models separately.

5. Models’ Performance Comparison and Evaluation
5.1. Comparison between Univariate Models (ARIMA, SVR, LSTM)

A comparison between three different models is presented in Figures 15 and 16.
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Figure 15. Comparison between the ARIMA, SVR, and LSTM model for solar power forecasting.
Row 1, 2, 3 and 4 represents comparison between models for next 1-day, 3-days, 5-days and 15-days
prediction respectively. Column 1, 2, 3 represents ARIMA, SVR and LSTM model respectively (red
line = actual, blue line = Predicted).
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Figure 16. Comparison between ARIMA, SVR, and LSTM models.

In terms of long-term forecasting of solar power generation, it is evident from
Figures 15 and 16 that the DL model (LSTM) performed better than the statistical model
(ARIMA) and the ML model (SVR) for predicting the next 15 days-ahead solar power
generation. The performance of the ML and DL models is found to be comparable; the
ML model predicted the next 15 days’ solar power generation with an RMSE of 30 and
the DL model predicted the same with an RMSE of 23. The statistical forecasting model
was not as effective as the ML and DL models in capturing the intermittent behavior of
solar power generation. Similarly, a significant reduction in the forecasting accuracy was
observed in the statistical model (ARIMA) with an increase in the prediction horizon. On
the other hand, the accuracy of ML and DL models is found to exhibit a gradual decrease
in accuracy with an increase in the prediction horizon. Since the statistical model failed
to accurately predict long-term solar power production, it is not advisable to use it for
making long-term forecasts of solar power output. Although, ML Model (SVR) is found
to exhibit better accuracy for predicting up to the next 5 days of predictions. The LSTM
model is the better-performing model out of the three models (ARIMA, SVR, and LSTM)
in this univariate model’s performance analysis, as the focus of the study is to analyze
the efficacy of the model for its ability to accurately predict long-term forecasting (up to
next 15 days). Though ML/DL models performed better, they have several drawbacks,
such as overfitting on small datasets, a requirement for massive amounts of training data, a
complex architecture, a need for more computational capacity, etc.
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5.2. Comparison between Different Multivariate Models

This section examines the performance of six distinct multivariate models. The choice
of these models is based on the result obtained from the univariate model analysis presented
in Section 4.1. DL model (LSTM) outperforms the statistical (ARIMA) and ML (SVR)
models. In Section 4.2, several multivariable models are explored to comprehend the effect
of multivariable inputs on the DL (LSTM) model. In this part, several kinds of multivariate
LSTM models are analyzed, and model accuracy is compared based on the RMSE error. The
findings indicate that, out of six distinct kinds of LSTM models, stacked LSTM performed
the best (six models are Multivariate, bi-directional, GRU, stacked GRU, and Encoder-
Decoder). The Encoder-Decoder model seems to exhibit the problem of overfitting. The
situation of overfitting occurs when a model performs extraordinarily well on the dataset
used to train it but badly on new/unseen data, hence precluding its relevance. Overfitting
is predominant when the model trains for too long (many training iterations) on a sample
dataset and attempts to replicate irrelevant data details, including noise, resulting in poor
generalization and a complicated model. Also, when there are insufficient data points, the
model attempts to reproduce every single training data point and fails to discern relevant
information in the data, leading to overfitting circumstances. The performance of the other
five models, except for the Encoder-Decoder LSTM model, was superior to that of the
univariate model. Among all models, the stacked LSTM performed the best with an RMSE
of 14 when predicting the next 15 days of solar power generation at a case study site. The
RMSE value for all tested multivariate models is presented in Figures 17 and 18.
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Figure 18. Performance of the Stacked LSTM model for predicting 15 days-ahead solar power
generation (red line = actual value, blue line = predicted value).

5.3. Comparison of Different Ensemble Models

The results suggest that the random forest ensemble model outperformed the ARIMA-
LSTM hybrid model. The RF model predicted the next 360 h/15 days of solar power
production with an RMSE value of 11. The hybrid ARIMA-LSTM model predicted the same
with RMSE of 30. The hybrid ARIMA-LSTM model performed better than the ARIMA
model alone but did not perform as well as the LSTM model alone. Figure 19 represents the
RMSE value for different forecasting time horizons for the above two hybrid models. RF
model outperformed all other 10 different univariate and multivariate statistical, ML, DL,
and ensemble models. The best-performing ensemble model RF, actual versus predicted
value for the next 15 days is presented in Figure 20.
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In addition to the RMSE value comparison of different forecasting models, MAPE
(Mean Absolute Percentage Error) value is also provided in the following Table 1.

MAPE =
1
n ∑n

t=1

∣∣∣∣∣ xj − yp
j

xj

∣∣∣∣∣× 100% (19)

Table 1. Performance results of different forecasting models.

Model t = 1 Day t = 3 Days t = 5 Days t = 15 Days

ARIMA 0.42 0.8 1.36 2.24
SVR 0.07 0.11 0.16 0.34

u-LSTM 0.08 0.12 0.19 0.28
m-LSTM 0.06 0.10 0.12 0.18
s-LSTM 0.05 0.08 0.11 0.16

GRU 0.07 0.10 0.13 0.20
s-GRU 0.06 0.10 0.12 0.17

ED-LSTM 1.97 2.01 2.12 2.13
b-LSTM 0.09 0.13 0.15 0.19

ARIMA-LSTM 0.12 0.17 0.20 0.25
RF 0.03 0.07 0.10 0.13

Here, xj, yp
j , and x′j indicate the actual, predicted, and mean values of the solar power,

respectively, and n is the number of samples. The limitation of the MAPE calculation is that
the 0 value of actual solar power production should be disregarded. The abbreviations used
in the table below- u, m, s, ED, b, t are univariate, multivariate, stacked, Encoder-Decoder,
bidirectional, and prediction horizons, respectively.

6. Discussion

The study compares the effectiveness of four types of models: Statistical, Machine
Learning (ML), Deep Learning (DL), and ensemble models, for forecasting solar power
output over long terms using a case study of a hypothetical solar power plant located in
Lubbock, Texas. The study found that the ML and DL models performed similarly and
outperformed the statistical model. The statistical model was found to be unable to learn
the intermittent nature of solar power production, thus it is not recommended for long-term
forecasting of solar power generation.
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The study further concludes that by adding five input variables (DNI, DHI, GHI,
temperature, and wind speed), the ML and DL models improved their accuracy over
univariate models (which use power output as the only input variable) by 36%. The study
also found that while a slight increase in the prediction horizon caused the accuracy of the
statistical model to decline drastically, a slight increase in the prediction horizon in the ML
and DL models resulted in a gradual decrease in prediction accuracy.

Additionally, the study found that there was evidence of overfitting in a DL model
(Encoder-Decoder) for small and univariate datasets whereas underfitting was observed in
statistical and ML models when dealing with large and multivariate datasets. The Random
Forest (RF) model was found to be the best-performing model among the four types of
models tested, with 50% better accuracy over univariate models and 10% better accuracy
over multivariate models. Therefore, the RF model is recommended for the case study’s
setting.

The study suggests that future research could examine how the error distribution
changes as the prediction horizon lengthens, which would be useful for estimating the
confidence interval and ultimately for establishing the probabilistic character of forecasts.
Similarly, it could be interesting to investigate the impact of adding feature engineering
(the process of generating new features from pre-existing datasets) to ML/DL models.

7. Conclusions

In summary, the study provides a comprehensive performance analysis of various
Statistical, ML, DL, and ensemble models for long-term forecasting of solar power output.
The study found that the Random Forest (RF) model was the best-performing model among
the four types of models tested, with 50% better accuracy over univariate models and 10%
better accuracy over multivariate models. Thus, it is recommended for forecasting solar
power output. This study is important for the renewable energy industry as accurate
forecasting of solar power output is crucial for efficient planning and management of solar
power plants. By understanding the strengths and limitations of different models, the
industry can make informed decisions on which model to use for long-term solar power
forecasting provided with the limited datasets and input variables. The future potential of
this research is to apply these findings to real-world solar power plants and to continue to
improve the accuracy of forecasting methods, which will play a key role in the sustainable
development of renewable energy.
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