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Abstract: Climate change and global warming drive many governments and scientists to investigate
new renewable and green energy sources. Special attention is on solar panel technology, since
solar energy is considered one of the primary renewable sources and solar panels can be installed
in domestic neighborhoods. Photovoltaic (PV) power prediction is essential to match supply and
demand and ensure grid stability. However, the PV system has assertive stochastic behavior, requiring
advanced forecasting methods, such as machine learning and deep learning, to predict day-ahead
PV power accurately. Machine learning models need a rich historical dataset that includes years
of PV power outputs to capture hidden patterns between essential variables to predict day-ahead
PV power production accurately. Therefore, this study presents a framework based on the transfer
learning method to use reliable trained deep learning models of old PV plants in newly installed PV
plants in the same neighborhoods. The numerical results show the effectiveness of transfer learning
in day-ahead PV prediction in newly established PV plants where a sizable historical dataset of
them is unavailable. Among all nine models presented in this study, the LSTM models have better
performance in PV power prediction. The new LSTM model using the inadequate dataset has 0.55
mean square error (MSE) and 47.07% weighted mean absolute percentage error (wMAPE), while the
transferred LSTM model improves prediction accuracy to 0.168 MSE and 32.04% wMAPE.

Keywords: deep learning; transfer learning; photovoltaic production prediction; sequential model

1. Introduction

Following the necessity of smart grids and microgrids, whose dependence on renew-
ables has been increasing recently—specifically PV plants, since the net-zero emission
policies settled for the decarbonization of the electricity generation sector—the necessity of
production of affordable forecasting of PV power output has become a primary issue. PV
power predictions are helpful since the variability of global radiation can affect the amount
of electricity production and also grid stability. Therefore, identifying reliable forecasting
can help to improve system stability, providing possible power generation for the future.
In particular, this process is useful when the energy production comes not only from PV
plants but from a combined system of electricity generators. Affordable forecasting leads
to energy optimization and management, making PV integrable into smart buildings and
also charging infrastructures for electric vehicles (EVs) [1,2]. Therefore, providers require
a way to implement a switching controller to shift from one energy source to another to
optimize the combination of electricity sources [3–6].

Recent studies have explored various methods to forecast photovoltaic (PV) power out-
put, including phenomenological, statistical, machine learning, and hybrid approaches [7].
Deterministic forecasting predicts power production by examining and modeling a specific
phenomenon, but this method can be inadequate as it ignores uncertain data. On the other
hand, statistical and machine learning approaches have many benefits over determinis-
tic forecasting. They are capable of dealing with complex relationships, providing more
accurate forecasts, managing unstructured data, automating the forecasting procedure,
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adapting to changing data, being versatile, and handling randomness effectively, making
them ideal for forecasting purposes [8,9]. The use of artificial neural networks, support
vector machines, multiple linear regression, and adaptive neurofuzzy interference systems
has recently led to improved forecasting performance in statistical and machine learning
approaches. These algorithms can function even when data are incomplete and can dis-
cover general patterns, making predictions [10]. These techniques work on data acquisition
thanks to continuous sensor calibration to increment the accuracy and reliability of data.
The various models can be selected based on the specific application; however, the devel-
opment of the machine learning (ML) approach has made it possible to predict PV power
output using a large dataset [11]. This intelligent technique can handle linear, nonlinear,
and nonstationary data patterns, demonstrating its versatility and usefulness. Hybrid
approaches combine the benefits of two methods to meet specific needs and requirements.
Table 1 summarizes the application of the forecasting models based on the type of approach,
forecasting type, methodology, and utility [5,6,12,13]. On the other hand, probabilistic ap-
proaches can offer more comprehensive information about future tendencies, making them
very effective for decision-making processes in dynamic environments [14–17].

Table 1. Forecasting type, method, and utility based on the different approaches for predic-
tions [8,11,14,18–21].

Approach Type Forecasting Type Method Utility

Phenomenological approach Medium/long-
term forecasting

Numerical weather prediction,
satellite images for
regional models.

Maintenance and PV
plant planning.

Statistical approach Short-term forecasting up to
one day ahead

Include regression
models, exponential

smoothing, autoregressive
models, autoregressive

moving integrated
average, time series ensemble,
and probabilistic approaches.

Control of power system
operation, unit commitment,

and sales.

ML approach From short-term forecasting
up to the long-term horizon

Cross-sectoral method, which
combines models and
Artificial Intelligence.

Production, anomaly
detection, and

energy disaggregation.

Hybrid approach From short-term forecasting
up to the long-term horizon

Combine one of the
mentioned advanced methods

with one physical or
statistical approach.

From short-term power
production to maintenance

and plant planning.

Probabilistic approach From short-term forecasting
up to medium-term horizon

Provide output with quantile,
interval and density function. Electric load forecasting

The ML approach is a powerful tool that leverages the computational power of artificial
intelligence. This approach can learn from historical data and continuously improve its
predictive ability. As a result, it can identify unreliable and inconsistent data without the
need for explicit formulae [22,23]. Consequently, the use of ML has expanded to a wide
range of fields, including pattern recognition, data mining, classification, filtering, and
forecasting, due to its ability to handle and process large amounts of data and improve its
accuracy over time [9]. Its adaptability and effectiveness in solving complex problems have
made it a popular and widely used technique across various industries. Among the ML
techniques are artificial neural networks, multilayer perceptron neural networks, recurrent
neural networks, feed-forward neural networks, and feedback neural networks. Nowadays,
the state of the art are deep learning (DL) and deep neural networks, which are a specific
artificial neural network. The main characteristic is the possibility to create a complex and
complete model from huge dataset input and through improved learning algorithms, better
parameter analysis methods and numerous hidden layers [24]. DL is a machine learning
technique that uses algorithms to make predictions based on the logic found in the input



Forecasting 2023, 5 215

data. It improves the ability to identify local optima and estimate aggregation rates [3].
Several DL techniques exist, working on different types of data in their algorithms and they
can be clustered by the application. DL techniques are widely used in forecasting related to
electric power system applications, such as load forecasting, renewable power production,
power quality disturbance detection, and fault detection [25–27]. Deep learning can be
divided into several categories, each with a different approach to learning from data [26]. In
deep supervised learning, the algorithm uses labeled data to make accurate predictions with
minimal error. Deep semisupervised learning uses a combination of labeled and unlabeled
data for training. On the other hand, deep unsupervised learning does not rely on labeled
data and instead focuses on finding patterns in the dataset itself [28]. Another essential
aspect of deep learning is deep reinforced learning, which utilizes reinforcement learning
techniques to optimize decision-making in fields such as building energy management and
smart grid applications. In this approach, the goal is to increase rewards through responses
to changing conditions [29].

The ML application process able to forecast targets is divided into three main steps:
preprocessing, forecasting, and evaluation. In the first part of the process, the dataset is
preprocessed in order to be in the correct format, with no missing data values, outliers, or
erroneous values. In this stage of the process, the required characteristics are identified and
selected. During the forecasting stage, the known target values of the data are processed
with the selected feature set to implement the prediction model. Thus, in the last stage,
models are generated, evaluated, and merged using statistical evaluations. Finally, the best
model and feature set is used to process data and generate predictions [24].

Following the ML techniques above, several worldwide applications were imple-
mented with different aims [9,30,31]. Ref. [32] is an in-depth review of condition mon-
itoring of PV systems based on ML, which have been divided into three subcategories:
ordinary sensors, image acquisition (conventional ML and DL), and knowledge-driven.
In addition, [33] presented a case study in Malaysia where ML was used to implement
power plant planning with the cooperation of GIS tools and remarked on the capability
of AI to make other sources interoperable with PV plants. As mentioned, ML is used also
to identify not only production and faults but also if issues linked to shaded or partially
shaded cells occur [34]. In [35] is proposed a case study with an innovative ML model for
short-term PV power prediction, and in [36] PV output predictions are applied to ships.
Significant innovative applications operate in the Middle East region, as reported in [37],
where three ML models for PV power output in Saudi Arabia are implemented. Similarly,
in [7,38] an ML-based prediction was studied for PV power forecasting considering several
environmental parameters in Qatar.

It could happen that for one specific issue, there is no possibility to work on historical
data, which can help to create a forecasting model based on the techniques described.
Therefore, since it is difficult to build an accurate model or leverage historical data col-
lection or learning, similar learned situations with other data can be used [39]. Transfer
learning (TL) is an ML method where the model can apply new challenges thanks to a
knowledge transfer from a related challenge learned [40]. The TL process requires similar
environments for the replicability of the model, and a validation process, due to the depen-
dence on applications and the difficulty in generalizing for some necessities. An interesting
application of the TL model is proposed in [41]: given the difficulty in receiving enough
data for monthly forecasting of electric load, a modern predictive scheme based on TL is
proposed using similar data from other cities or districts. Many other applications suit TL
perfectly, such as the ones reported in [42]. Among the different applications, also in PV
output prediction, TL techniques have shown their value. TL deals with the automatic
detection of PV module defects [43]. Finally, in [44], TL is proposed to predict PV power
output through historical irradiance data, hyperparameters of a long short-term memory
neural network, and fine-tune the deep transfer model with output data.

Accurate PV power prediction based on machine learning models requires a rich
historical dataset that includes years of PV power outputs to recognize hidden patterns
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between the most impact variables related to PV productions. In recent years, deep learning
has provided a unique capability in extrapolation and prediction in various applications,
such as PV or solar energy generation. Since the reliability of these methods depends
heavily on historical datasets, these advanced methods are ineffective in making an accurate
prediction in conventional ways, especially in newly installed PV plants. Therefore, this
study presents a new framework based on the transfer learning method to transfer learned
knowledge from the deep learning models of old PV plants to newly installed PV plants in
the same region.

This study sheds light on the application of transfer learning in day-ahead PV power
prediction, demonstrating its potential to significantly improve the efficiency and perfor-
mance of newly installed PV plants. The proposed framework is a novel approach that
leverages the knowledge obtained from the deep learning models of established PV plants
to tackle the challenges faced by newly installed ones for day-ahead PV power prediction.
This approach not only reduces the need for extensive training data but also ensures that
new plants can benefit from the experiences and insights gained from the existing ones.
Therefore, the main contribution of this study lies in the transfer learning ability to promote
the efficient and effective deployment of new PV plants, thus contributing to the sustainable
development of renewable energy. The findings of this study indicate that the transferred
models that have been retrained using the new dataset outperform other models. Of the
nine models presented in this study, the retrained transferred LSTM model demonstrated
the best accuracy, as evidenced by its low MAE of 0.211, MSE of 0.168, MAPE of 74%, RMSE
of 0.403, and wMAPE of 32.04. The achieved results demonstrate the effectiveness of the
proposed approach and provide strong support for the viability of transfer learning in the
context of day-ahead PV power production for a newly installed PV plant.

The remainder of the article is structured as follows. Section 2 explains the methodol-
ogy used in this study based on neural networks and transfer learning. The results of the
modeling and discussion about achieved outcomes are presented in Section 3. Section 4
summarizes with final remarks and conclusions.

2. Methodology

The different deep learning models, such as feedforward neural network (FNN),
convolutional neural network (CNN), and long short-term memory (LSTM), have been
used in this paper to analyze the effectiveness of transfer learning in predicting day-ahead
PV power production in newly installed PV farms. FNN is a simple and straightforward
model that can be used for basic prediction tasks. CNN is particularly suitable for image
and signal processing tasks, making it an ideal choice for analyzing time-series data with a
strong spatial component, such as day-ahead PV power production in a newly installed
PV farm. LSTM, on the other hand, is a type of recurrent neural network (RNN) that is
particularly effective in capturing long-term dependence in sequential data. In predicting
day-ahead PV power production, LSTM can effectively capture the temporal dynamics of
the data and make more accurate predictions according to the literature. The FNN model
performed well in the initial stages, but the CNN and LSTM models provided better results
with their ability to extract spatial and temporal features. The models are trained with
the Adam stochastic optimization method and exponential decay learning rate technique
for 1500 epochs. A Bayesian optimization algorithm has chosen the hyperparameters for
each network.

2.1. Linear Model

Linear regression is a statistical method that finds the best linear relationship between
independent variables (also known as predictor variables or explanatory variables) and
dependent variables (also known as outcome variables or response variables). Linear
regression can be used for both simple and multiple regression analysis and is widely
used in various fields to make predictions about real-world phenomena, such as eco-
nomics, finance, and social sciences. Linear regression is a powerful tool that can be used
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to make predictions about future outcomes based on past data. However, this model
assumes a linear relationship between the variables, which may not always be the case
in real-world situations. Therefore, there may be better methods for modeling complex
nonlinear relationships.

2.2. Feed-Forward Neural Network

The feed-forward neural network or dense network is the first and most straight-
forward neural network used in many applications, such as regression, classification,
clustering, optimization, and forecasting. In this type of neural network, the information
always moves forward (in one direction only) to learn the patterns from inputs associated
with desired outputs. In other words, FNNs have no loops or cycles in their network. The
feedforward neural network architecture in this study consists of eight layers of dense and
dropout, which are stacked together. The dense layer has 256 neurons with rectified linear
unit (ReLU) activation function, while the output is a dense layer of 24 neurons with the
sigmoid activation function.

2.3. Convolutional Neural Network

The convolutional neural network is a popular neural network for analyzing images
that learns patterns by applying convolutional filters with different kernel sizes and pooling
layers on inputs. The one-dimensional convolutional neural network works similarly to
two- or three-dimensional CNN to analyze 1D signals, texts, or other sequences. The convo-
lutional neural network architecture in this study consists of six layers of one-dimensional
convolution and dropout, which are stacked together. The one-dimensional convolutional
layer has 184 filters with rectified linear unit (ReLU) activation function, while the last layer
is linear with 24 outputs.

2.4. Long Short-Term Memory Network

The long short-term memory network is one of the most advanced neural networks to
analyze sequences, taking into account the dependence between each time step of input
feature space, like recurrent neural networks (RNNs). The LSTM cell has various so-called
gates to improve the performance of regular RNNs by avoiding vanishing or exploding
gradient issues occurring in RNNs. The long short-term memory network architecture in
this study consists of four layers of LSTM and dropout, which are stacked together. The
LSTM layer has 120 neurons with the hyperbolic tangent activation function, while the last
layer is linear with 24 outputs.

2.5. Transfer Learning

Transfer learning is transferring the learned knowledge from a similar task to new
problems. In this method, a model trained with a large dataset is reused for a new task in
which insufficient data are available. One of the main advantages of this method is that the
pretrained model has learned a rich set of patterns from a problem set with a considerable
amount of data. Applying such a model to a new similar task with considerably few
data improves the performance of modeling. Transfer learning also saves computational
resources by using the pretrained model. This study first trains the model on a PV system
with a rich historical dataset, then reuses the model on a newly established PV system in
the same region.

2.6. The Model Framework

This study uses an hourly historical dataset of two different PV power farms in
the same neighborhood. The two different PV power farms located within proximity of
1.25 km are analyzed. As presented in Table 2, database one (db 1) encompasses a longer
data period compared to database two (db 2). In order to train a precise model, db 1 is
utilized, while db 2 serves as a testing ground to evaluate the effectiveness of transfer
learning in predicting day-ahead PV power production. The datasets consist of information



Forecasting 2023, 5 218

on PV power output, ambient temperature, and humidity. This study aims to investigate the
potential of transfer learning in improving the accuracy of day-ahead PV power prediction
for the PV power farm with limited historical data (db 2). The study will compare the
prediction accuracy of the model trained on db 1 with the accuracy of the transfer-learned
model. The results of this study will provide valuable insights into the feasibility of using
transfer learning in real-world applications for day-ahead PV power prediction, especially
in cases with limited historical data.

Table 2. Dataset description used in this study.

Database Rated Power
[kW] Duration Average of Power

[kW]

Standard
Deviation of

Power

Location *
[◦N ◦E]

db 1 75 2015 (January)–2017
(December) 10.05 16.44 [39.1385, −77.2155]

db 2 243 2017 (September)–2018
(January) 33.14 52.94 [39.1319, −77.2041]

* Location in this table is presented in latitude and longitude pairs.

This study presents a framework, as presented in Figure 1, based on deep learning
and transfer learning. This framework consists of two phases. In the first phase, the rich
dataset of db 1 is used to build and train the optimal model for hourly day-ahead PV power
forecasting. Then, such a model is transferred to phase II for PV power prediction on db
2. The presented framework leverages the power of deep learning and transfer learning
to improve the accuracy of day-ahead PV power forecasting. The deep learning model in
phase I is trained using a large and diverse dataset from db 1, allowing for the capturing of
complex relationships between various meteorological variables and PV power production.
The transfer learning process in phase II fine-tunes the pretrained model from phase I,
utilizing the limited data from db 2, and improves its ability to perform accurate predictions
for the second PV power farm. The proposed framework provides a practical solution
for PV power forecasting in real-world applications, especially in cases where limited
historical data are available. As presented in Table 2, these two databases have different
statistical behavior; for example, the rated power of db 1 is about 75 [kW], while db 2 rated
power is much higher (243 [kW]). However, as presented later, the advantage of transfer
learning using neural networks prevents the trained model from working poorly on db 2.
In the preprocessing step, each dataset is cleaned and normalized with the z-score formula
presented in (1), considering their mean (µ) and standard deviations (σ) of input feature
space (x).

x′ = (x − µ)/σ (1)

In phase II, the achieved optimal model in phase I is loaded to be retrained by the
normalized dataset of db 2. In the training step in phase II, the earlier layers of the
transferred model are frozen to avoid losing the learned patterns from db 1; therefore, their
weight values are not updated, and only the weight values of the last layer are updated.
The test dataset of db2 is normalized by the mean and standard deviation calculated for the
training dataset of db2. The outputs of models are then denormalized with these values to
have the same actual scale to evaluate the accuracy and performance of the models.
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3. Results and Discussion

The linear model and three state-of-the-art deep learning models—a feedforward
neural network, convolutional neural network, and long short-term memory—have been
trained based on the framework presented in Figure 1. The models are optimized con-
sidering MAE (mean absolute error) as a cost function (2), and Bayesian optimization is
employed to select the best hyperparameters for models. Bayesian optimization, a proba-
bilistic method for optimizing hyperparameters, ensures that the models are trained with
optimal settings, resulting in improved prediction accuracy:

MAE =
1
n

n

∑
i=1

∣∣∣ypredict, i − ytrue, i

∣∣∣ (2)

where n is the total number in the sample. The sliding window is used to build the input–
output pairs for the regression purpose of this study. Each input consists of information
for five days (PV power, temperature, and time), and the associated output is a day ahead
of the PV power output. In other words, a model will predict PV power production
(24 samples, 1 per hour) by looking only at the historical dataset of the last five days
(120 input samples for each PV power, temperature, and time per hour).

The results of these models are compared and analyzed to evaluate their performance
in terms of accuracy and computational efficiency. The comparison provides a compre-
hensive evaluation of the proposed framework and helps to determine the most suitable
model for day-ahead PV power forecasting with transfer learning. In order to evaluate the
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performance of models and compare their accuracy in day-ahead PV power prediction,
various evaluation metrics are taken into account, such as mean square error (MSE), mean
absolute percentage error (MAPE), root mean square error (RMSE), and weighted mean
absolute percentage error (wMAPE), as presented in (3)–(6), respectively:

MSE =
1
n

n

∑
i=1

(
ypredict, i − ytrue, i

)2
(3)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ypredict, i − ytrue, i

ytrue, i

∣∣∣∣× 100% (4)

RMSE =

√
1
n

n

∑
i=1

(
ypredict, i − ytrue, i

)2
(5)

wMAPE =
∑n

i=1

∣∣∣ypredict, i − ytrue, i

∣∣∣
∑n

i=1|ytrue, i |
× 100% (6)

wMAPE determines the average difference between the predicted and actual values by
considering the magnitude of the actual values. This metric generates a weighted average
of the absolute percentage errors, with the weight determined by the size of the actual
values. Hence, wMAPE is particularly apt for evaluating forecasting models in situations
where the actual values display substantial fluctuations in magnitude.

3.1. Training the Base Model

In the first modeling phase, the four models are trained using a historical dataset of
db 1: 80% of the dataset is used for training and 20% for validation of the models. When
there are limited data available, dividing it into only training and validation sets can
provide a viable solution. This approach allows for both training the model and evaluating
its performance. As shown in Figure 2, the models have good overall performance on both
training and validation sets. The models based on CNN and LSTM have comparably better
accuracy since their internal structure has been designed to analyze sequence data, allowing
them to capture important features in the time-series dataset effectively. As expected, the
LSTM model performance in capturing hidden features in a time-series dataset is superior,
thanks to the various gates it has to determine which information should be forgotten,
remembered, or passed to the next cell. With their promising performance, these base
models will serve as the foundation for the transfer learning phase. This study presents
MAE and MSE in kW units.

Figure 2. The performance of linear, dense, CNN, and LSTM learning models on the first database in
terms of MAE (kW).
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The accuracy of the trained models regarding different evaluation metrics is presented
in Table 3. The model based on LSTM has the best accuracy in all metrics, with an MAE of
0.052, MSE of 0.015, MAPE of 24%, RMSE of 0.101, and wMAPE of 25.05%. These results
show that all models have reasonable accuracy to be used in the second phase of the model-
ing. Additionally, the results of the accuracy evaluation demonstrate the effectiveness of the
proposed framework in improving prediction performance. The outstanding performance
of the LSTM model, with a low MAE, MSE, and RMSE, highlights its potential as a robust
solution for day-ahead PV power forecasting. The MAPE and wMAPE, which measure the
percentage of error in the predictions, further validate the results and show that the models
have a high level of accuracy.

Table 3. The performances of presented models on db 1 considering different evaluation metrics.

Model MAE * MSE * MAPE RMSE wMAPE

Linear 0.278 0.118 98.90 0.344 73.61
Dense 0.148 0.066 64.17 0.258 43.15
CNN 0.091 0.045 45.31 0.212 39.59
LSTM 0.052 0.015 24.00 0.101 25.05

* MAE and MSE in kW.

3.2. Transfer Learning

The trained models in phase I are transferred to the phase II setting in the second
part of modeling. The first three months (the beginning of September 2017 to the end of
December 2017) of db 2 are considered a training set, while the dataset regarding January
2018 in this database is considered for the test to evaluate the performance of the models.

This study also trains new linear, dense, CNN, and LSTM models considering the
training set of db 2 to evaluate performance models transferred from phase I. The last
layers of transferred models are also retrained by a training set constructed of db 2. This
study investigates the implementing of transfer learning by evaluating the performance
of transferred models against newly trained models. The transfer models, retrained trans-
ferred models, and new models are all evaluated on the test set of db 2 to assess their
ability to generalize to new data. By comparing the results, this study provides insights
into the efficacy of transfer learning and highlights the factors that impact its performance.
Therefore, the following sets of models are considered:

• New model: a set of new models trained by the training set of db 2. These models are
developed specifically for the data and requirements of phase II.

• Transfer: a set of models transferred from phase I that have undergone minimal
modifications. These models are not retrained, but rely on their preexisting knowledge
and training to perform predictions in the new environment of phase II.

• Trained transfer: a set of models transferred from phase I, but have been further
trained using the training set of db 2. These models benefit from the knowledge and
training acquired during phase I, but also incorporate new information and adapt to
the specifics of the new environment in phase II. As a result, the performance of these
models may be improved compared to the transferred models.

Figure 3 demonstrates the accuracy of these three sets of models in terms of MAE
on the test set of db 2. As is shown, the new linear model has the worst performance
due to a lack of enough data for training. In contrast, the transferred models have better
performances, especially in the case of the linear model: the accuracy of the transferred
linear model improved dramatically. This figure examines the top models by closely
evaluating the results from the dense, CNN, and LSTM models. The chart clearly compares
the performance of models through a detailed and concise view. Considering only nonlinear
models (dense, CNN, LSTM), the new models based on CNN and LSTM work better than
the dense model. At the same time, the untrained transferred CNN works better than the
untrained transferred LSTM version. Generally, retraining models with the training set of
db 2 enhanced the precision of models. The transferred LSTM accuracy is improved more
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compared to the transferred CNN. The retrained LSTM model has the best performance
among all nine presented models. It is important to note that the choice of the model
depends on the particular problem and the characteristics of the data. Although LSTM and
CNN models may perform better in some cases, dense models may still be appropriate
for simpler tasks or smaller datasets. Transfer learning can be beneficial in reducing the
amount of training data needed and accelerating the training process.
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of the results obtained from the dense, CNN, and LSTM models. The zoomed-in chart offers a clear
and concise comparison of the performance of each model.

Figure 4 illustrates an hourly day-ahead PV power prediction of a random date in the
test set of db 2 based on the dense model. The new dense model failed to predict the day
ahead accurately due to the fact that deep learning models need a lot of data to be able
to generalize with acceptable precision. Similarly, the transferred dense network, which
has yet to be retrained, could not foresee this date well enough. However, retraining this
network with information on db 2 improves the accuracy of the model in such a way that
its prediction is closer to actual labels than the other two models presented in this figure.

Figure 5 illustrates an hourly day-ahead PV power prediction of a random date in the
test set of db 2 based on the LSTM networks. Similarly to dense networks, the new LSTM
model and transferred LSTM model do not accurately predict the day ahead of the sample
example. One of the reasons that untrained transferred models have poor performance is
the different scales and rated power that the two datasets have. Moreover, the statistical
properties and distribution of these datasets are different. Therefore, the performance of
transferred models significantly improved after retraining them even with the exiguous
training set of db 2.
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Figure 4. Day-ahead prediction of the PV power output of a random date in the test set for models
based on the dense network.
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Figure 5. Day-ahead prediction of the PV power output of a random date in the test set for models
based on the LSTM network.

Figure 6 illustrates an hourly day-ahead PV power prediction of a random date in
the test set of db 2 based on transfer learning. All the models presented in this figure are
retrained with the training set of db 2. Thus, they have superior performance compared to
other groups of models, namely, new models and untrained transferred models. Above
all, the trained transferred LSTM model shows the best precision, since it is designed to
capture hidden patterns in sequences such as time-series datasets.
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Figure 6. Day-ahead prediction of the PV power output of a random date in the test set for models
based on the transfer learning.

Table 4 presents the accuracy of all 12 models presented in phase II of the proposed
framework. The models based on transfer learning perform superiorly in day-ahead
PV power prediction compared to new models using the limited available dataset in db
2. For instance, the linear model has inferior performance, while the linear transferred
version enhanced PV prediction accuracy dramatically. The models based on the LSTM
network generally perform better in most evaluation metrics. However, the trained transfer
CNN model works slightly better than the untrained transfer LSTM model. After training
untrained transfer models, the LSTM model improves more than the CNN model in MAE,
MSE, and RMSE values and has lower values for these metrics. On the other hand, CNN
reaches the lowest MAPE—68.25%.

Table 4. The performance of presented models on db 2 by considering different evaluation metrics.

Model MAE * MSE * MAPE RMSE wMAPE

Linear
New 7.122 176.42 5775.01 12.05 640.93

Untrained transfer 0.685 1.81 293.22 1.345 150.92
Trained transfer 0.572 1.538 252.58 1.146 120.34

Dense
New 1.044 2.67 466.67 1.636 170.76

Untrained transfer 0.390 0.346 268.22 0.589 98.69
Trained transfer 0.236 0.246 198.39 0.496 33.97

CNN
New 0.360 0.462 165.56 0.68 41.97

Untrained transfer 0.253 0.268 145.17 0.501 36.25
Trained transfer 0.231 0.197 68.25 0.437 34.98

LSTM
New 0.3615 0.55 109.99 0.745 47.07

Untrained transfer 0.313 0.387 97.20 0.622 45.07
Trained transfer 0.211 0.168 74.44 0.403 32.04

* MAE and MSE are in kW.

In this study, all the modeling was performed in Python programing language on a
workstation with an i7-8700K CPU and 16 GB RAM. Various packages and libraries were
used for data processing, neural network modeling and optimization, and visualization,
including NumPy, Pandas, TensorFlow, and Matplotlib. In transfer learning, a pretrained
model is fine-tuned on a new task, allowing the model to leverage its prior knowledge
to solve the new problem more efficiently. This can result in improved accuracy as well
as reduced training time, as demonstrated in Table 5. Table 5 presents the computational
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time for training neural networks in phases I and II. The time unit in this table is minutes.
Since more data are available in phase I, the computational time is comparably higher than
training the original model in phase II. On the other hand, implementing transfer learning
improved not only the accuracy but also the training time; for example, the training time
for the LSTM model was reduced from 201 to 76 min. Using a pretrained model, the model
can quickly adapt to the new task, reducing the time required for training and leveraging
the features learned from the previous task, leading to improved performance.

Table 5. The computational time for training neural networks in phase I and II of modeling.

Model Phase I
Phase II

Original Transfer

Dense 175 * 44 23
CNN 375 150 38
LSTM 750 201 76

* Computational times in this table presented in minutes.

4. Conclusions

Deep learning models have achieved reliable and accurate extrapolation and prediction
in solar energy prediction in recent years. However, the accuracy of these models strongly
depends on the historical dataset size, and the precision of their forecasting is low if not
enough data are available. Thus, this study presents a data-driven framework based on
transfer learning and deep neural network to predict day-ahead PV power generation for
newly installed PV power plants.

In the first phase of the framework, four predictive models based on linear, dense,
CNN, and LSTM networks are trained and optimized with a rich PV system dataset.
Then, these reliable models are transferred to the second phase associated with the newly
installed PV power plant in the same region. New models based on previous architecture
are trained with the dataset of the newly installed PV power plant. The results show that
the transferred models retrained with the new dataset perform better than other models.
Among all 12 models presented in this study, the retrained transferred LSTM model has
the best accuracy with an MAE of 0.211, MSE of 0.168, MAPE of 74%, RMSE of 0.403,
and wMAPE of 32.04%, even though the rated PV production power of two PV plants is
quite different.
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Abbreviations

Abbreviation Terminology
PV Photovoltaic
EV Electric vehicle
ML Machine learning
DL Deep learning
RL Reinforcement learning
TL Transfer learning
FNN Feedforward neural network
CNN Convolutional neural network
LSTM Long short-term memory
ReLU Rectified linear unit
RNN Recurrent neural network
db # Database number
µ Mean
σ Standard deviations
x Input feature space
MAE Mean absolute error
n Total number in the sample
MSE Mean square error
MAPE Mean absolute percentage error
RMSE Root mean square error
wMAPE Weighted mean absolute percentage error
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