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Abstract: Building a sophisticated forecasting framework for solar and photovoltaic power produc-
tion in geographic zones with severe meteorological conditions is very challenging. This difficulty is
linked to the high variability of the global solar radiation on which the energy production depends.
A suitable forecasting framework might take into account this high variability and could be able
to adjust/re-adjust model parameters to reduce sensitivity to estimation errors. The framework
should also be able to re-adapt the model parameters whenever the atmospheric conditions change
drastically or suddenly—this changes according to microscopic variations. This work presents a new
methodology to analyze carefully the meaningful features of global solar radiation variability and
extract some relevant information about the probabilistic laws which governs its dynamic evolu-
tion. The work establishes a framework able to identify the macroscopic variations from the solar
irradiance. The different categories of variability correspond to different levels of meteorological
conditions and events and can occur in different time intervals. Thereafter, the tool will be able to
extract the abrupt changes, corresponding to microscopic variations, inside each level of variability.
The methodology is based on a combination of probability and possibility theory. An unsupervised
clustering technique based on a Gaussian mixture model is proposed to identify, first, the categories
of variability and, using a hidden Markov model, we study the temporal dependency of the process
to identify the dynamic evolution of the solar irradiance as different temporal states. Finally, by
means of some transformations of probabilities to possibilities, we identify the abrupt changes in the
solar radiation. The study is performed in Guadeloupe, where we have a long record of global solar
radiation data recorded at 1 Hertz.

Keywords: bayesian inference; GMM; HMM; viterbi decoder; possibility theory

1. Introduction

The major difficulty in setting up a statistical prediction tool for PV power production
is to take into account fluctuating atmospheric conditions. Photovoltaïc (PV) energy pro-
duction depends strongly on solar irradiance which depends on meteorological conditions.
A significant challenge related to building an efficient PV management system is to perform
suitable prediction for PV production. Due to the important problem related to the high
variability observed in the solar irradiance, since the daily atmospheric conditions (weather,
temperature, etc.) encounter many changes, this challenge can be difficult, especially under
tropical conditions. The variability in solar resources poses difficulties in grid management,
as solar penetration rates rise continuously. In addition, fluctuations in solar irradiance can
generate long-memory dependencies leading to the non-stationarity of the underlying pro-
cess. Therefore, forecast methods generally lack accuracy because they cannot capture these
long-term dependencies. In order to generate reliable future estimation of PV production,

Forecasting 2023, 5, 1–21. https://doi.org/10.3390/forecast5010001 https://www.mdpi.com/journal/forecasting

https://doi.org/10.3390/forecast5010001
https://doi.org/10.3390/forecast5010001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forecasting
https://www.mdpi.com
https://orcid.org/0000-0002-6402-8438
https://doi.org/10.3390/forecast5010001
https://www.mdpi.com/journal/forecasting
https://www.mdpi.com/article/10.3390/forecast5010001?type=check_update&version=1


Forecasting 2023, 5 2

it is important to build a suitable forecasting tool able to automatically adjust the model
parameters when the weather conditions encounter changes. Several works in the field of
solar energy prediction make the strong assumption that the entire process is stationary.
However, under the conditions of untimely changes in atmospheric conditions, as can be
observed under tropical climate, this assertion may suffer from some shortcomings, thus
leading to modeling errors.

To the best of our current knowledge, the literature does not provide physical and
statistical forecasting tools capable of automatically selecting the best PV forecasting model
from a given set of candidate models, in accordance with the dynamic changes caused
by atmospheric conditions. The literature is full of very good papers related to solar and
PV power-production forecasts [1–3]. These works, which focus on statistical prediction
methods, use very powerful machine-learning techniques such as SVM (support vector
machine), PCA (principal component analysis), ARMA, Kalman filter, and neural networks,
etc. However, they do not solve the delicate problem of significant fluctuations in solar
irradiance and sudden changes caused by weather conditions [4]. In addition, the pro-
posed models are generally based on the calibration of a single process and, very often,
this requires a lot of data to improve the accuracy of the results. None of the proposed
approaches offers a system in which we have the possibility of switching from one model
to another taking into account changes in the dynamics of solar irradiance. In addition,
several methods make strong assumptions about stationarity in order to be able to apply
machine-learning techniques. Such an assertion can lead to significant prediction errors if
the model parameters are not well-calibrated. In [5], we created a prediction tool which is
based on the assumption of the stationarity of the global process. In addition, we obtained
results with an RMSE around 10%, which we can consider to be non-negligible and which
might be improved. The calibration of the model parameters was performed carefully by a
maximization algorithm, to minimize prediction errors.

On the other hand, the issue related to the fluctuations in solar irradiance in the field of
the implementation of tools for forecasting solar and photovoltaic PV power has attracted
the interest of utilities and researchers towards developing state-of-the-art forecasting
techniques for forecasting wind speeds and solar irradiance over a wide range of temporal
and spatial horizons. Several works have been published to try to understand how to
predict solar irradiance in order to set up efficient forecast frameworks. One can find a
good review of the solar-irradiance forecasting techniques in [6,7]. The main forecasting
approaches employ physical, statistical, artificial intelligence and hybrid methodologies.
The main drawback in these works is that most of the proposed methods require a huge
volume of data, which can increase the complexity requirements. Only the so-called
‘persistence model’ technique uses a small volume of data. These techniques also suffer
from the potential problem of correlation between wind and solar irradiance. The accuracy
of the predictions over different horizons is severely impacted if the spatio-temporal
correlations are not well-identified. The most striking thing about these works is that, no
method has given the possibility of discovering, for the different time horizons, both the
classes of variability and, in each of them, the sudden and untimely, or abrupt, changes in
atmospheric conditions.

Therefore, our aim consists of providing a first case study for the need of developing
an effective tool to predict solar irradiance, in the sense that the system is composed of a set
of several statistical models/classes. In addition, the management system will be able to
automatically select the appropriate model according to the weather conditions and cloud
distribution. We believe that it is possible to build a prediction model much less sensitive
to errors. To achieve this goal, the model must be robust enough to identify and extract
meaningful information (statistically) about the dynamic evolution of the solar radiation to
achieve good performance. We believe that the different levels of solar-irradiance variability
can be captured in different models, each model having its own calibration parameters.
Consequently, it would be possible to see the entire model as a series of parametric models
and the challenge will become being able to automatically select and calibrate dynamically
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the appropriate model whenever the corresponding atmospheric conditions exist. For
this reason, in this paper, we implement a robust monitoring framework for a thorough
analysis of the dynamics of solar irradiance to make a tool robust enough to discover
both the macroscopic variations seen as the different levels of solar-radiation amplitude
and the underlying microscopic variations or abrupt changes. For this scope, we build a
methodology based on combining statistical inference techniques and possibility theory.
Statistical inference methods based on a Gaussian mixture modeller and a hidden Markov
model can be properly used to extract the different levels of variability in the global solar-
radiation data. In addition, finally, we use a convenient method related to combining
probability and possibility theories to learn more about the intrinsic variability of each class
of variability. In this work, we use global solar-radiation data recorded with a time step of
one second over three years, from 2011 to 2013, at the facility of the LARGE laboratory.

In summary, the solar-irradiance prediction framework that we propose allows :

1 The detection of the different MAVs corresponding to solar classes of variability;
2 The identification of MIVs (abrupt changes) inside each MAV;
3 The study of the probabilistic characteristics of each MAV to build a means of deter-

mining whether or not the framework should renew the MAVs.

2. Methodology

The aim of this work is to build a sophisticated framework for solar resources forecast-
ing, in real-time conditions. We believe that to achieve high accuracy for this purpose, this
framework should take into account the dynamic evolution of the variability in the solar
irradiance, which might encounter many abrupt changes. The high variability observed
in the meteorological conditions (clear sky, cloudy sky, wind, and temperature, etc.) are
the major sources of the different levels of variation for the measured irradiance. The
main levels of variability in solar irradiance can be classified into two categories. The first
category, named “macroscopic variations” (MAV), corresponds to a time interval [t, t + δt]
where the conditions remained stable and where the sky is either clear or cloudy, making it
possible to observe the same production of solar irradiance. The second kind of variability
consists of “microscopic variations” (MIV) inside the MAV. An MIV corresponds to points
of time or short time intervals in [t, t + δt] inside a given MAV and when sudden changes
in meteorological conditions arise causing abrupt changes in solar fluctuations. Abrupt
changes can be seen as points of time where the irradiance encounters an important in-
creasing or decreasing in its amplitude. In order to extract the MAVs and, consequently,
the MIVs, we follow a methodology which applies a series of mathematical techniques, as
shown in the architecture described in Figure 1.

As a first step, we assume that the real distribution of the process representing the
solar radiation is an ensemble of normally distributed processes. This assertion allows
us to build a method which has the ability to model the MAVs with different families of
Gaussians. Therefore, with the calibration of a Gaussian mixture model (GMM), we find
the K best number of clusters corresponding to the MAVs. Thereafter, since we plan to
study the dynamic evolution of the variability over time and to detect the abrupt changes
or MIVs, we follow a second step where we calibrate a hidden Markov model by means
of the Viterbi decoder to learn the temporal dependencies of the detected MAVs. At this
point, we can see how the different MAVs evolve over time intervals.

We refer the reader to the papers [8–11] to gain a complete view of the calibration of
the GMM and HMM models.
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Figure 1. Architecture to track the dynamic evolution of the variability in solar irradiance. We show
how the different mathematical tools are linked to achieve the discovery of the different levels of
solar-irradiance variability and the underlying microscopic changes.

Recall that our main objective for this present work is to detect both the MAVs and,
inside each MAV, the MIVs. The technique we developed to identify MIVs is based on
possibility theory. Probability theory has a long and successful record for solving the
problem of uncertainly. Possibility theory is another innovative field which can go beyond
the study of uncertainly by taking into account the incompleteness and inconsistency of the
data. This new approach gives us a sophisticated tool to solve the generally hard problem
of building thresholds in order to separate given processes into several sub-spaces.

3. Organization of the Paper

In Section 4, we discuss previous works related to forecasting methods for solar
irradiance and PV power production. We will see that current research does not offer a
framework which detects both macro and micro variations and the possibility of automatic
model selection based on probability laws. The detection of MAV variables is performed
using Bayesian inference tools using probabilistic models based on Gaussian distribution
laws. Section 5, therefore, uses the approaches of GMM and HMM models to determine
the classes of variability (MAVs) and study the spatio-temporal correlations in order to
locate the latter in the temporal scale. In this section, we also show how to calibrate and
turn the two model parameters. In Section 6, we discuss how the detection of MIVs can
be performed by a thorough use of the paradigm of possibility theory. Section 6.1 details
the implementation details for possibility theory which can be used to effectively quantify
the degree of possibility of each MAV. Section 6.2 focuses on the implementation details
to quantify each MIV by a degree of possibility. Section 7 discusses the validaton of the
whole procedure and the results obtained. Section 8 is reserved for the explanation of
how to use the results of the analysis of the solar irradiance to set up a tool for predicting
the production of photovoltaic energy. Section 9 gives som challenges in mastering the
proper implementation of such a framework and in Section 10 we give conclusions and
future perspectives.

4. Related Works

We are interested in investigating the field of solar- and photovoltaic-power production
forecasting techniques. We focus on case studies where the energy exploitation zone
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undergoes strong meteorological changes. In this case, it would be judicious to provide a
framework in which the management infrastructure can automatically choose a prediction
model depending on weather conditions. According to current knowledge, there are
no tools for this purpose. However, several works relating to the prediction of global
solar irradiance are proposed in the literature, but none of them develops a tool which, at
the same time, simultaneously detects the changes which we have defined as MAV and
MIV [1–3]. The different statistical approaches used apply techniques which analyze a
single process describing the dynamics of the system. Authors often make assumptions that
allow system parameters to be calibrated only once, which may result in larger prediction
errors. We recently proposed a robust PV forecasting technique based on a linear dynamical
Kalman filter [5]. The calibration of the proposed model can be performed either by an auto-
regressive model or by the EM (expectation-maximization) algorithm [12,13]. The method,
also, was able to take into account exogenous variables (temperature, cloud cover, etc.) and
we obtained better results than without these features. Compared to others techniques in the
literature, the approach gave a better performance, with a RMSE of around 10%. We made
the strong assumption of accepting that the process under consideration is stationary, which
has the effect that the calibration of the model was performed only once, at the beginning
(i.e., the model parameters were calculated once). A method of process normalization
was proposed to make the assumption reliable. The data used to validate the model were
collected in the sub-tropical zone of Guadeloupe where the atmospheric conditions, more
often, change drastically in very short time intervals, thus having a great influence on the
solar irradiation on which the PV production depends [14,15]. Therefore, we think that,
in this situation, the process which governs the dynamics of the solar irradiance might be
composed of many components with different statistical properties. If this assumption
is true, it would be necessary to define a multi-model forecasting framework to suitably
analyze the entire system. Thus, beyond this study, we believe that the error rate can be
reduced to a much lower level if we analyze the high variability in the solar flux, which
has a significant impact on energy production. The different levels of this variability might
correspond to different probabilistic models.

We believe that all the proposed methods could provide better results if they were able
to predict even the type of model that would be most accurate in predicting production.
Therefore, this work is dedicated to studying and analyzing the features of the solar
irradiance variability with the ultimate aim of building more sophisticated PV forecasting
methods. To the best of our knowledge, this study is the first of a series of works that we
will complete to arrive at such solutions.

5. Tracking the Macroscopic Variabilities-MAV

In this work, we use mathematical tools to achieve our hope of building a technique
for solar-power variability detection. We plane to mathematically model the process
governing the evolution of this feature by a finite set of probability distributions. We
propose the usage of a parametric model to capture the dynamics of the variations by a
family of probabilistic distribution functions. We assume that the underlying distribution
of each type of variability can be modeled by a Gaussian random process and so the entire
evolution of the system can be modeled by a mixture of Gaussians. Mixture distributions,
in particular normal mixtures, are applied to data for two main purposes. One is to provide
a semiparametric framework in which to model unknown distributional shapes, as an
alternative to the kernel density method. The other is to use the mixture model to provide a
probabilistic clustering of the data into g clusters corresponding to the g components in the
mixture model. Anvari et al. [16] provide strong evidence that renewable wind and solar
sources exhibit multiple types of variability and non-linearity in the timescale of seconds.
Wind-power outputs for six hours can be forecasted by Gaussian processes in order to
reflect the trend of wind power in the optimization framework by Lee et al. [17]. Therefore,
we propose to explore the latter purpose of a mixture model, since we believe that the
different levels of variability in solar power is an ensemble of Gaussian distributions.
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We follow a three-phase process to run the the tool in order to detect MAVs. First of
all, since we believe that the underlying distribution of a type of variation is Gaussian,
we can retrieve, from the entire dataset, all the levels of variability. A tool based on
Gaussian mixture model (GMM) is suitable to achieve this aim. This first step consists of
an unsupervised classification operation which makes possible only the discovery of the
classes of variability or MAVs. The only challenging task here is to identify the best number
of classes. Afterwards, we wish to study the dynamic evolution of these classes on the time
scale in order to see how these are linked on the temporal horizon. This second step consists
of studying the temporal dependencies of the classes of variability. To solve this issue, we
propose the use of a hidden Markov model (HMM), which gives, as output, a set of states,
each of them containing a subset of the Gaussian components. The forward-backward
algorithm helps us to achieve this second step. However, this step shows that, in reality,
there are several possible sequences of states (inside the HMM trellis) which capture the
dynamic evolution of the variability classes on the time scale. In addition, we would like
to know which sequence of states in this HMM trellis is the unique best-state sequence,
which explains the dynamic evolution of the process over time. Therefore, as a third and
final step, we follow the forward-backward algorithm to another algorithm, namely, the
Viterbi decoder, to extract the single best sequence of states evolving over time. In other
words, the Viterbi algorithm is suitable to identify the true temporal dependencies of the
underlying processes of the identified states.

5.1. Model Selection Criteria for GMM

The main challenge to overcome in order to ensure that the tool performs well is
certainly the calibration of the GMM model. Therefore, the main question is how many
components to include in the normal mixture model. If the ideal number of components of
the GMM is found, this will ensure, in part, that the HMM will be well-calibrated, since the
number of states is equal or less than the number of Gaussian components. The beginning
of our dataset is used as learning data. By applying the EM algorithm [18], we calibrated a
set of g GMM models (g = {2, 3, 4, . . . , } classes) and put our choice in the model, which
minimizes some criteria.

A Gaussian mixture model (GMM) is a probabilistic framework which builds clusters
based on a family of Gaussian/normal densities. GMMs are well-known for their ability
to represent arbitrarily complex distributions with multiple modes. A GMM is based on
density estimation with a linear combination of component densities of the form:

p(x) =
M

∑
j=1

p(x|j)P(j), (1)

where p(x|j) are the Gaussian component densities and P(j) the mixing parameters. To
build a GMM, one has to choose a mixture component based on P(j) and generate a data
point x from the chosen component using p(x|j). This framework is generally used to
perform unsupervised clustering, since the clusters are a-priori unknown (they constitute
the hidden states of the mixture model).

It has already been stated that a mixture density with g components might be em-
pirically indistinguishable from one with either fewer than g components or more than r
components, McLachlan et al. [19,20]. It is, therefore, sensible in practice to approach the
question of the number of components in a mixture model in terms of an assessment of
the smallest number of components in the mixture compatible with the data. Therefore,
the true order go of the g-component normal mixture model is defined to be the smallest
value of g such that the model is compatible with the data, with the model having different
normal components and with all the associated mixing proportions πm being non-zero.
There is a large number of criteria for selecting the ideal number of components, but here
we focus on two criteria, namely, AIC (Akaike’s information criterion) and BIC (Bayesian
information criterion), McLachlan et al. [20].
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To derive this two quantities, let us rewrite equation Equation (1) as follow:

f (x, Ψg) =
g

∑
i=1

πiφ(x; µi, Σi), (2)

The vector Ψg consists of the mixing proportions πi, the elements of the components
means µi and the elements of the component covariance matrices Σi. The unknown
parameters Ψg are estimated by maximum likelihood via the EM algorithm [18]. AIC
selects the best number of clusters by minimizing the quantity, McLachlan et al. [20]:

− 2logL(Ψ̂g) + 2d; (3)

where the log-likelihood is maximized over the model parameters and the penalty terms in-
volve d, which denotes the total number of parameters in the g model. For more information
on the AIC criterion, see Akaike [21,22].

On the other hand, the BIC criterion of Schwarz [23] gives the ideal number of compo-
nents of the model by minimizing the quantity:

− 2logL(Ψ̂g) + dlogn; (4)

In addition to the model selection purpose, one should know that each successive EM
iteration will not decrease the likelihood, a property not shared by most other gradient-
based maximization techniques. Therefore, if one runs the algorithm for a model g and
discovers that the likelihood decreases for successive iterations, he/she will conclude, in
this case, that it would not be necessary to analyze these two criteria in order to know if the
model in question is suitable.

5.2. Initial Parameter Setting and Tuning for the HMM

The calibration of an HMM is not straightforward, since the initialization procedure
is a crucial phase to ensure that the model achieves good performance. Generally, this
initialization consists of performing an initial random guess using a short part of the
learning dataset. Instead, we use a more elaborated technique related to using the outputs
of the Gaussian mixture modeler as input to set up the initialization parameters of the
HMM. The HMM requires a transition matrix between states. To find this matrix, we apply
a maximum a-posteriori (MAP) criterion to the classes of GMM in order to discretize the
data (in symbols 1, 2, 3, etc.). Thereafter, for each symbol of this set, we simply calculate
its proportion in the set with respect to the other symbols and we construct our transition
matrix (N × P), where N is the number of states and P the number of symbols or clusters.
The mixing probability matrix (observation matrix) is simply obtained by calculating for
each symbol its proportion with respect to the overall learning data.

5.3. Results of the Statistical Properties of the HMM States

After applying the Viterbi decoder, we discover the single best-state sequence suitable
to capture the dynamic evolution over time of the variability in the solar-power irradiance.
In addition to the analysis of the accuracy of the detection of the different levels of variability,
we can show that the corresponding states are statistically different. To perform this
accuracy measure, we calculate three quantities, namely, the mean (µ), variance (σ) and
coefficient of variation ( σ

µ ) on suitably well-defined sequences of data for each state. To this
end, we progress in three steps. First, after applying the Viterbi algorithm, for each obtained
state, we extract the largest continuous sub-sequence. Let us say that we construct the vector
T containing all Ts, where Ts is the length of the largest sub-sequence in state s. This largest
sub-sequence corresponds to the highest time period where a level of variability occurs for
that state. Afterwards, we take the maximum of T (let us denote Tmax) and then the whole
process of the three combined states is subdivided into several sub-sequences of size Tmax.
Finally, we calculate, for each sub-sequence, the mean, variance and coefficient of variation
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to see the accuracy of the detection and separation of the different levels of variability by
showing that their respective statistics are typically singular. The coefficient of variation,
which is the ratio between the variance and the mean, measures the dispersion of the data
around the mean because the standard deviation alone often makes it impossible to gauge
the dispersion. This statistic serves to perform comparison between many data series.

6. Possibility Theory as a Tool to Detect MIVs Inside an MAV

We present here the details of a new formalism based on possibility theory to analyze
the MAVs of the solar-irradiance variability and extract the abrupt changes defined as
microscopic variations (MIVs). Afterwards, we will see how to extract the probabilistic
laws of the different types of variations. We follow a two-step process to do so. First, we
need to associate to each cluster/MAV a degree of possibility to quantify its existence inside
the overall process and, as a second step, we quantify each occurrence of data inside an
MAV by a degree of possibility. An MIV will correspond to a time instant where the degree
of possibility of the corresponding data has a certain value.

A consistency principle between probability and possibility can be stated in a non-
formal way [24]: “what is probable should be possible”. This requirement can then be translated
via the inequality:

P(A) ≤ Π(A) ∀A ⊆ Ω (5)

where P and Π are, respectively, a probability and a possibility measure on the domain Ω.
In this case, Π is said to dominate P. This consistency principle means that we can always
use possibility theory to build a more reliable statistical test by combining probability and
possibility, as we can see in the following.

Dubois and Prade built a procedure [25,26] which produces the most specific possi-
bility distribution among the ones dominating a given probability distribution. In this
paper, this method is generalized to the case where the prior probabilities (of generating the
GMM clusters/MAVs) are unknown. We assume the above clusters were generated from
an unknown probability distribution. It is proposed to characterize the probabilities of
generating the different clusters by simultaneous confidence intervals with a given confidence
level 1− α. A procedure for constructing a possibility distribution is described, insuring
that the resulting possibility distribution will dominate the true probability distribution in
at least 100(1− α) of the cases.

6.1. Inferring Possibility Distribution for the MAVs

Let nk denote the number of occurrences of cluster k in a sample of size N. Then,
the random vector n = (n1, . . . , nK) can be considered as a multinomial distribution with
parameter p = (p1, p2, . . . , pK). A confidence region for p at level 1− α can be computed
using simultaneous confidence intervals, as described in [27]. Such a confidence region can be
considered as a set of probability distributions.

It is proposed to characterize the probabilities p = (p1, p2, . . . , pK) of generating the
different classes by simultaneous confidence intervals with a given confidence level of 1− α.
Here, pk represents the probability of generating the class of events Aωk . From this specifi-
cation, a procedure for constructing a possibility distribution is described, insuring that the
resulting possibility distribution will dominate the true probability distribution. Since the
probabilities p of generating classes are unknown, we can build confidence intervals for
each of them. In interval estimation, a scalar population parameter is typically estimated
as a range of possible values, namely, a confidence interval, with a given confidence level
1− α.

To build confidence intervals for multinomial proportions, it is possible to find simul-
taneous confidence intervals with a joint confidence level 1− α. The method attempts to

find a confidence region Cn in the parameter space p = (p1, . . . , pK) ∈ [0; 1]K|
K

∑
i=1

pi = 1
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as the Cartesian product of K intervals [p−1 , p+1 ]...[p
−
K , p+K ] such that we can estimate the

coverage probability with:
P(p ∈ Cn) ≥ 1− α (6)

At this moment, we can use the Goodman [28] formulation in a series of deriva-
tions to solve the problem of building the simultaneous confidence intervals. We define
the quantity:

A = χ2(1− α/K, 1) + N (7)

where χ2(1− α/K, 1) denotes the quantile of order 1− α/K of the chi-square distribution

with one degree of freedom, and N =
K

∑
i=1

ni denotes the size of the sample. We also have

the following quantities:
Bi = χ2(1− α/K, 1) + 2ni, (8)

Ci =
n2

i
N

, (9)

∆i = B2
i − 4ACi, (10)

Finally, for each class of variability AωK , the bounds of the confidence intervals are
defined as follows:

[p−i , p+i ] =

Bi − ∆
1
2
i

2A
,

Bi + ∆
1
2
i

2A

 (11)

It is now possible, based on these above interval-valued probabilities, to compute the
most likely distributions of a class dominating any particular probability measure. Let P
denotes the partial order induced by the intervals [pi] = [p−i , p+i ]:

(ωi, ωj) ∈ P⇔ p+i < p−j (12)

This partial order may be represented by the set of its compatible linear extensions
Λ(P) = {lu, u = 1, L} or, equivalently, by the set of the corresponding permutations
{σu, u = 1, L}. Then, for each possible permutation σu associated to each linear order in
Λ(P), and each class Aωi , we can solve the following linear program:

πσu
i = max

p1,...,pK
∑

{j|σ−1
u (j)≤σ−1

u (i)}
pj (13)

under the constraints: 
K

∑
i=1

pi = 1

p−k ≤ pk ≤ p+k ∀k ∈ {1, . . . , K}
pσu(1) ≤ pσu(2) ≤ . . . ≤ pσu(K)

(14)

Finally, we can compute the possibility degree of the cluster Aωk dominating all the
distributions πσu :

πi = max
u=1,L

πσu
i ∀i ∈ {1, . . . , K} (15)
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6.2. Inferring Possibility Distribution for MIVs Inside an MAV

After clustering with a GMM model, we can calculate the posterior probability distri-
bution of the datasample [29]. For a cluster k and a data point xt, the posterior probability
is derived as (θ is the vector of parameters of the GMM model):

Pr(k|xt, θ) =
πkφ(xt|µk, ∑k)

K

∑
n=1

πnφ(xt|µn, ∑n)

. (16)

In addition, transforming a probability measure into a possibilistic one then amounts
to choosing a possibility measure in the set =(P) of possibility measures dominating P.
This should be carried out by adding a strong order-preservation constraint, which ensures
the preservation of the shape of the distribution:

pi < pj ⇔ πi < πj ∀i, j ∈ {1, . . . , q}, (17)

where pi = P({Eωi}) and πi = Π({Eωi}), ∀i ∈ {1, . . . , q}. It is possible to search for the
most specific possibility distribution verifying (5) and (17). A possibility distribution π is
more specific than π

′
if π ≤ π

′
, ∀i. The solution of this problem exists, is unique and can

be described as follows. One can define a strict partial order P on Ω represented by a set of
compatible linear extensions Λ(P) = {lu, u = 1, L}. To each possible linear order lu , one
can associate a permutation σu of the set {1, . . . , q} such that:

σu(i) < σu(j)⇔ (ωσu(i), ωσu(j)) ∈ lu, (18)

The most specific possibility distribution compatible with the probability distribu-
tion p = (p1, p2, . . . , pq) can then be obtained by taking the maximum over all possible
permutations:

πi = max
u=1,L

∑
{j|σ−1

u (j)≤σ−1
u (i)}

pj (19)

The permutation σ is a bijection and the reverse transformation σ−1 gives the rank of
each pi in the list of the probabilities sorted in ascending order. The number of permutations
(L) depends on the duplicated pi in p. It is equal to 1 if there is no duplicate pi, ∀i and, in
this case, P is a strict linear order on Ω.

Complexity

The complexity of our computational procedure is related to the discovery of the
possibility degrees of the different K classes. To solve this problem, the conceptually
simplest approach is to generate all the linear extensions compatible with the partial order
induced by the probability intervals, and then to solve the associated linear programs
(i.e., Equation (19)) . However, this approach is, unfortunately, limited to small values of
K (say K < 10) due to the complexity of the algorithms generating linear extensions of
complexity O(L), where L is the number of linear extensions. Even for moderate values of
K, L can be very large (K! in the worst case) and generating all the linear extensions and
solving the linear programs soon becomes intractable. A new formulation of the solution
can be derived to considerably reduce the computations. This formulation is based on
several steps. First, all the linear programs to be solved will be grouped in different subsets;
then, an analytic expression for the best solution in each subset will be given; and lastly, it
will be shown that it is not necessary to evaluate the solution for every subset. A simple
computational algorithm will be derived, see [27] for more details. In addition, the actual
complexity might be close to O(|Pi|), where Pi denotes the set of indices of the classes with
a rank possibly, but not necessarily smaller than ωi.



Forecasting 2023, 5 11

7. Validation and Results
7.1. Experimental Dataset

To validate our approach, we use a three-year collection of global solar-radiation data
recorded by the LaRGE laboratory facility, from 2011 to 2013. This dataset is measured in
1-second timestamps. We performed some aggregation by resampling the data to different
timestamps, from 5 min to 60 min increments, to make our technique more robust when
performing with several types of granularity. The method presented here deals with global
horizontal irradiance (GHI), which is applicable to solar PV systems. Before using the data,
it is important to remove the clear sky index, since it is a deterministic process. Within the
normalization procedure, we obtain a signal without the deterministic component and we
form several samples at different time horizons including 1, 5, 10, 30 and 60 min, upon
which we apply the whole procedure.

The solar irradiation is normalized by the theoretical clear sky, GHIcsk curve. The
global horizontal irradiance (GHI) is the total amount of shortwave radiation received
by a horizontal surface on the ground, which consists of the direct irradiance and the
diffuse irradiance. The GHIcsk is the GHI calculated in the condition of clear sky, using the
Kasten clear-sky model. This model accounts for atmospheric turbidity and solar elevation
angle. The inputs to this model are air mass, Linke turbidity, and elevation [30]. The Linke
turbidity factor is a very convenient approximation to model the atmospheric absorption
and scattering of the solar radiation under clear skies. It describes the optical thickness of
the atmosphere due to water vapor and the aerosol particles relative to a dry and clean
atmosphere. With larger Linke turbidity, there is more attenuation of the radiation by the
clear-sky atmosphere. We obtain, then, the clear-sky index, kc, defined as:

kc(t) =
GHI(t)

GHIcsk(t)
(20)

The input data at time (t) is then normalized into P̄(t), the normalized value of the
solar irradiance with respect to the maximum value at time (t), Pmax(t).

P̄(t) =
P(t)

Pmax(t)
(21)

This maximum value can be retrieved from the GHImax curve with the following
equation:

Pmax(t) =
GHIcsk(t)

max(GHIcsk)
PVinstalled (22)

7.2. Tracking Microscopic Variabilities—MIV

A careful analysis of the MAVs shows that the Viterbi decoder is unable to detect all
the sets of time intervals where we observe the same meteorological conditions. From the
perspective of trying to understand all the meteorological conditions that might have a
significant influence on the solar irradiance, one should analyze the macroscopic fluctu-
ations to identify the abrupt changes. We present a new formalism based on possibility
distribution to detect these special variations. In Section 6, we developed a procedure of
calculating the degrees of possibility of the dataset with the contribution of the posterior
probability distributions of these data inside the different clusters or MAVs. The possibility
degrees dominate the true probability distribution, as we can see in Figure 2. The degree of
possibility clearly shows that the classes that might appear more frequently should have a
high degree and the rare and specific phenomenon seen as drastic abrupt changes should be
given a low degree of possibility. The results drawn in Figure 3a–c confirm this hypothesis
and show clearly how the MIVs buried in the MAVs are detected. If one performs a careful
visual inspection of these results, he/she sees that the types of fluctuations covered have a
great and significant deviation in their amplitude regarding the rest of the sub-sequence.
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Figure 2. Possibility distributions of the dataset for the three states which dominate the probability
distributions. Cases where the dataset are resampled in 10 min bins.

Another result of this analysis concerns the importance of the probability of the
different MAVs. In probability theory, one generally asked question is to quantify a variable
by a probabilistic density function. This problem does not have always a solution. The
theory of possibility is another way to solve this problem, as it offers the possibility of
affecting a value to a given variable to estimate its existence. By applying Equation (15), we
can set a degree of possibility to each state. States with high degrees of possibility are most
likely to happen for long time scales.

In our experience, we discovered a result which is not obviously a-priori. For each

state j, we calculate the percentage of its duration with the formula

[
P

N j

∑
i=1

(
Sj(i)

)]
/D,

where P is the increment of the sampling period, Sj the vector containing the sizes of the N j

sub-sequences found by the Viterbi decoder and D the total duration of all the states. We
found that the rate of state duration is strongly correlated with the degree of possibility of
the states. The two quantities vary in the same direction, as we can see in Table 1. This result
is not at all obvious since the degree of possibility of a state is built using the proportions
(in term of probability) of the other states/classes. Therefore, the result clearly shows that
the state with the highest degree of possibility also has the longest duration.
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(a) Detection of MIVs, Time (10 min bins)
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(b) Detection of MIVs, Time (5 min bins)
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(c) Detection of MIVs, Time (1 min bins)

Figure 3. Detection of the MIVs by the degrees of Possibility (in color red, blue and green) of the
dataset. Each HMM state detects the pics (meaningful abrupt changes) of the corresponding Viterbi
path (sub-sequence). The Viterbi path has three levels corresponding to the three HMM states of
variability. The MIVs correspond to bins where the degree of possibility is minimal. Case where the
dataset is, respectively, resampled in 10, 5 and 1 min bins.
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Table 1. Correlation between the state degree of possibility and the proportion of state duration. p−i
and p+i are the lower and upper bounds of the confidence interval of the probability distribution
of the state, where the true probability of the state is located and πS

i is the corresponding degree
of possibility.

Sampling period = 1 s

State i 1 2 3

p−i 0.2599 0.5484 0.1751
p+i 0.2710 0.5610 0.1848
πS

i 0.4516 1.0000 0.1848
Duration Rate 37% 61% 2%

πregular 0.3821

Sampling period = 5 min

State i 1 2 3

p−i 0.2285 0.2855 0.3921
p+i 0.2888 0.3496 0.4603
πS

i 0.5776 0.6079 1.0000
Duration Rate 2% 38% 60%

πregular 0.5917

Sampling period = 10 min

State i 1 2 3

p−i 0.1410 0.2478 0.4862
p+i 0.2152 0.3362 0.5832
πS

i 0.2152 0.5138 1.0000
Duration Rate 2% 37% 61%

πregular 0.4806

7.3. Discovering the Probabilistic Distributions of the Parameters

We recall that this study is relative to the prediction of solar irradiance, a very impor-
tant element for the implementation of an appropriate tool for the prediction of energy
of solar and photovoltaic origin in a geographical area whose meteorological conditions
vary significantly. Generally, a forecasting framework is deterministic, parametric or non-
parametric. When the useful information about the probabilistic laws which govern the
intrinsic process of the studied system can be properly defined, parametric models can be
used. Therefore, here, we investigate an interesting issue related to the identification of the
probability distributions of the characteristic parameters of our different MAVs. We believe
that the three kinds of MAVs we extracted with the Viterbi decoder might correspond to
different statistical models. In addition, if we know exact information about each of these
models, we could build PV forecasting techniques for each and combine them into a single
prediction tool for the end manager.

In this work, we discover three kinds of macroscopic variation corresponding to
the three HMM states. If we carefully inspect these three types of MAVs, we see that
one of them has a more regular trend than the two others. Therefore, it is important to
distinguish this regular type of MAV, since it might correspond to the situation where the
atmospheric conditions are more likely to happen. The two other states will be the ones
where these conditions change suddenly. Using the model-based possibility distributions,
we found a decision method to extract and automatically label the regular state. A class
will be set as “regular” if its degree of possibility is less than a given threshold πregular,
which we extract by means of the degrees of possibility related to the data, as described in
Equation (19). This equation calculates the possibility distribution of each data point xt of
the sample x. We obtain a matrix πN

K of dimension K× N (K is the number of components,
i.e., clusters/MAVs) and N is the length of the data sample x). We take the average (mean)
for each column (each column contains the possibility distribution for data point xt) lying
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in all clusters. Then, we obtain a second matrix πN
1 and, finally, we use the following

equation to derive the decision variable πregular:

πregular = max(πN
1 ) (23)

From the obtained results we give in Table 1, one can see much useful information.
First, we observe that the class with the smallest degree of possibility is always considered
as the “regular” sequence, which happens less frequently and where the fluctuations are
neither highly increasing nor highly decreasing. In addition, in this class, we also have the
fewest number of observations. This situation is particularly interesting and it corresponds
to a physical aspect of the behavior of the solar irradiance. Since the meteorological condi-
tions are very likely to change in Guadeloupe, the fluctuations observed in the irradiance
are most likely changing. The results also reveal that the “regular” state happens less
frequently with the lowest duration rate; the other cases (highly increasing and decreasing)
are observed more often.

Another result is related to the underlying probability distributions of the sequences
of data under the different classes of MAVs. We would like to know if the three classes
of fluctuations have the same laws. As we propose a parametric model, we also want
to determine the parameters of these models in order to be able to implement them and
to be able to decide when it is appropriate to completely recalibrate the global system.
In other words, could we find some parameters describing the behavior of each class of
MAV and establish parametric distributions for them? To address this issue, we proceed in
several steps.

We consider the data in each class of MAV and calculate some statistical parameters as
the mean, the standard deviation and the coefficient of variation. These features suffice to
characterize and differentiate the statistical properties of the different MAVs. Their choice
is obvious, since we make the assumption that the underlying distribution of the processes
under consideration is a mixture of Gaussians and a Gaussian is typically characterized by
its first- and second-order moments.

Each MAV is a sequence of disjoint sub-sequences (of different lengths) interlaced
in time with the other sub-sequences of the other MAVs. Thus, for an MAV, one of its
sub-sequence might not have enough data to calculate the needed statistical parameters.
Therefore, to ensure that we can always have these given features, we sub-divide each
MAV into a set of sub-sequences of suitable length. The best time window (we defined
as TW) to subdivide an MAV is taken as the length of the sub-sequence with the highest
duration rate. We take the sequence of maximum size because it is the one which contains,
statistically, all the information needed to detect an MAV category. In this present work, we
focus on the extraction of the underlying statistical properties of the MAVs. Another scope
of this sub-division is to make it possible to apply, for our future PV forecasting technique,
(re)-calibration for periodic time intervals in each MAV, to ensure that the model will have
enough data to set the best values of the parameters.

The application of this subdivision procedure is not performed in the same way for the
different types of MAV. Therefore, for the “regular” MAV, due to the regularity observed in
the fluctuations, we divide the whole sequence into a set of sub-sequences of length TW.

For the “non-regular” MAVs, we might take into account the high variance in the data
and the abrupt changes. Therefore, for each MAV, we form two other MAVs, named Type I
and Type II, and, finally, each type is subdivided into several sub-sequences of length TW.
Type I is the set of data corresponding only to the abrupt changes and the remaining data
are labeled as Type II.

After performing the subdivision, we calculate the probabilistic distributions of the
three parameters, namely, the mean, standard deviation and coefficient of variation, and,
thereafter, we build the corresponding histograms. Finally, the data in the different cases
are properly characterized by the two following parametric distributions, namely, a non-
centered and non-normalized Gaussian probability distribution defined as:
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y(x) = a exp−(x−x0)
2/2σ2

(24)

and a polynomial form of the probability distribution:

y(x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 (25)

In Figures 5–7, we draw the density probabilities, respectively, for the coefficient
of variation, the mean and the standard deviation of Type-I and Type-II data sequences
for states 1 and 3, when the sampling period is 1 min. The mean parameter can be
modelled by the non-centered and non-normalized Gaussian probability, while the standard
deviation and the coefficient of variation are modelled by the polynomial function with
given parameters. For the sequence represented by the regular data, we see in Figure 4 that
the mean (Figure 4a), STD (Figure 4b) and coefficient of variation (Figure 4c) are modelled
by the non-centering Gaussian density or by the polynomial function. In this case, the
choice to model the distribution of the process can be made either by the Gaussian density
or the polynomial function. However, the non-centered Gaussian gives a better model than
the polynomial.
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Figure 4. Probability distribution of MEAN, STD and COEFFVAR parameters for data segmentation
Type Regular for states 1 and 3. Case where the sampling period is 1 min bin increment.

The calculation of the parameters of the probability laws which govern the stochastic
process of each MAV plays a dual role. First, it allows to define the appropriate model to
apply to the future framework for the prediction of photovoltaic energy production. Then,
these parameters constitute the means of identifying whether or not the system should
be recalibrated to re-detect new MAVs if the atmospheric situation requires it. Indeed, if
the limits of the confidence intervals for calculating these parameters go below a certain
value, this would mean that the global model should be rebuilt to define a new one. For
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the model to remain usable with high performance, one should ensure that the definition
of the parameters is performed with a confidence interval of at least 95% (Figures 5–7).
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Figure 5. Probability distribution of COEFFVAR parameter for data segmentation Types I and II for
states 1 and 3. Case where the sampling period is 1 min bin increment.
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Figure 6. Probability distribution of MEAN parameter for data segmentation Types I and II for states
1 and 3. Case where the sampling period is 1 min bin increment.
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Figure 7. Probability distribution of STD parameter for data segmentation Types I and II for states 1
and 3. Case where the sampling period is 1 min bin increment.

8. How to Use the Extracted Knowledge about MAVs and MIVs to Build the
Forecast Framework

If we want to set up an effective tool for the prediction of solar and photovoltaic energy,
we must first control for the variability caused by atmospheric conditions. Fluctuations in
solar irradiance, wind, cloud cover, amd temperature are all exogenous variables that can
strongly influence the performance and accuracy of a prediction tool. The implementation
of a good solar-irradiance prediction scheme should take into account two fundamental
elements. First, it is necessary to be able to identify the time intervals where the atmospheric
conditions are practically the same. This amounts to dividing the underlying process into
different classes of statistical models, each with its own parameters. In our study, these
statistical models were defined as macroscopic variables (MAV) and the paradigm of
Gaussian mixture models allows us to identify them clearly, as described above. However,
in certain regions of the globe where the atmospheric conditions are untimely and very
changeable, it often happens that, for a short period of time, the model undergoes sudden
deviations which can have severe consequences for the production of energy. Thus, to
avoid performance drops, one should identify the instants of time when these abrupt
changes take place and automatically recalibrate the system parameters. In addition, if
the changes become too important during a given interval, the system should definitely
choose another, more appropriate, model. To solve this problem, it is necessary to study
the spatio-temporal correlations in the process. Therefore, as a second step, we resolve
this problem by proposing a solution consisting of applying a hidden Markov model on
the sequence of classes/models found by the GMM and applying the Viterbi algorithm.
This phase makes it possible to identify how the different classes are spread out and how
they evolve over time. At each instant of time, the system knows the model to be applied.
Finally, using a method carefully developed from the theory of possibilities, we detect
the microscopic variations (MIV variables) which correspond to the abrupt changes. In
Figure 3a–c, we show, for different time scales (1 min, 5 min, 10 min), the decomposition of
the process into different classes of variability and, in each class, the detection of abrupt
changes. In a given class, if we do not observe sudden changes, the parameters of the
model remain the same; otherwise, a recalibration is necessary.
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A major question in the implementation of this tool is how to know if a given model
must persist in two time intervals. To answer this question, we studied the probability
laws of certain performance criteria such as the first- and second-order moments and
the coefficient of variations. If, in time interval T1, these statistics follow probabilistic
distributions with well-defined parameters and, in a later time interval T2, these parameters
change in value in a significant way, this means that the system is in a position to modify its
different states. Clearly, we affirm that in this case, the reloading process of the GMM and
HMM models must resume to potentially detect other states which definitely correspond
to new meteorological situations not previously observed.

9. Major Challenges for This Framework for Forecasting Solar Irradiance and
Wind Speeds

The implementation of such a framework has some weak points. Indeed, the main
challenge is to control the number of classes/models that the system must have over a
fairly long time interval. The global warming observed today is causing strong changes
in the climate in the different geographical areas of the world. Therefore, if the global
environmental conditions vary to different degrees from one point to another in the same
region, such a model may lack precision if the detection of classes of variability becomes
very challenging. The prediction system must, therefore, take climate changes into account
and, therefore, be capable of effecting fairly quickly a readjustment of the classes if the
situation so requires. Another point of weakness can be linked to the slowness of the
management system to recalibrate the parameters of a model when the latter undergoes
spontaneous variations. This means that the algorithms put in place must take very little
time to run to find the correct parameters of the model which are subject to turbulence.

10. Conclusions

This paper tackles the critical problem related to the forecast of global solar radiation
fluctuations for the scope of building efficient PV-power production forecasting tools.
Thus, in this work, we implemented a decision support tool to predict the effects of solar
irradiance and atmospheric conditions. In conditions where climate change is notable, it is
important to study the variability in sunshine if we want to set up an efficient infrastructure
for the forecasting of photovoltaic energy. The elaboration of such a framework was
made possible with a succinct combination of the theory of probabilities and the theory
of possibilities. The proposed model is based on the fact that two essential elements
must be analyzed to correctly predict the variability in solar irradiance. The first element
concerns the variability observable over a given time interval corresponding to particular
meteorological conditions. The latter, which we labelled MAVs, could be detected in the
form of classes corresponding to Gaussian probability laws, which we analyzed using the
probabilistic models GMM and HMM. The detection of these classes is effectively carried
out by the GMM model and their evolution on the timescale was calculated by the HMM
model. The second element in the analysis of the variability in solar irradiance concerns
the sudden changes that can take place within an MAV and which correspond to real-time
measurements of atmospheric conditions due to wind, temperature, cloud cover, etc. To
clearly and unequivocally identify these instants of time or MIV, we made use of possibility
theory, which defines a mathematical framework which allows us to reinforce the tools
offered by probability theory.

We also discussed an important point related to the MAVs themselves. In fact, among
all the classes of detected MAVs, there is necessarily one which corresponds to the climatic
conditions most generally observed, with less variability in the amplitude of the data, in
the region/geographical area in question. This type of MAV was labeled the ’regular state’,
the others being transient states. It is, again, thanks to the theory of possibilities that we
clearly distinguished these two categories of states.

We believe that this analysis should be a prerequisite which might serve as a frame-
work which might be coupled with a framework to perform PV prediction in order to help
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energy providers carefully control and manage their industry. Thereafter, we can extract
meaningful sequences of states and study their laws by extracting the density probabilities
of the main characteristics of the process, namely, the mean, the standard deviation and the
coefficient of variation. Having this knowledge at hand, the model parameter values of
the prediction tool could be instantly adjusted when the dynamics of the model change
from one time step to another. In addition, knowing that the model can evolve over time to
rediscover new states, i.e., classes of variability, we, therefore, proceeded to analyze the
probability distributions of certain statistical parameters (mean, coefficient of variation and
standard deviation) of each MAV in the purpose of defining the hypotheses for changing
the model. Clearly, this means an MAV becomes obsolete when the parameters of the
distribution laws are no longer correct according to the confidence intervals theoretically
established for them.

We believe that this work could serve as a promising tool in the machine-learning field,
to perform predictions for solar- and PV-power production. Indeed, instead of applying
a prediction model with fixed input parameters, this model can, rather, be calibrated
according to the weather situation. For each class of MAV, a typical scenario of parameter
model settings can be set and, more importantly, inside an MAV, when an MIV occurs,
the model could be readjusted immediately to have a better performance by reducing the
error rates. We think that in situations where the weather conditions are typically variable,
calibrating the system with various models and scenarios according to the variability in
the solar flux could reduce the global prediction error rates and increase the accuracy of
the prediction.

In this direction, we hope to reinforce the methodology with more materials. A first
idea should be to reuse the theory of possibility with the results of the degree of possibility
of the states, in order to classify each type of variability by a number in the interval [0, 1].
Clearly, it would be possible to see a state as “a class of high or low” fluctuations if its
degree of possibility exceeds a certain given threshold. Moreover, the different types of
variability would also correspond to some known parametric/non-parametric probability
distributions with specific parameters. If we know the probability laws which govern
the whole process of each type of MAV, that will help to identify where calibration and
re-calibration should be properly performed. In addition, in that case, it would be possible
to build generative simulation models to describe more general situations in the domain of
PV production monitoring. We hope to explore these ideas soon.
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