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Abstract: In the smart grid (SG), user consumption data are increasing very rapidly. Some users
consume electricity legally, while others steal it. Electricity theft causes significant damage to
power grids, affects power supply efficiency, and reduces utility revenues. This study helps utilities
reduce the problems of electricity theft, inefficient electricity monitoring, and abnormal electricity
consumption in smart grids. To this end, an electricity theft dataset from the state grid corporation of
China (SGCC) is employed and this study develops a novel model, a mixture of convolutional neural
network and gated recurrent unit (CNN-GRU), for automatic power theft detection. Moreover, the
hyperparameters of the proposed model are tuned using a meta-heuristic method, the cuckoo search
(CS) algorithm. The class imbalance problem is solved using the synthetic minority oversampling
technique (SMOTE). The clean data are trained and then tested with the proposed classification.
Extensive simulations are performed based on real energy consumption data. The simulated results
show that the proposed theft detection model (CNN-GRU-CS) solved the theft classification problem
better than other approaches in terms of effectiveness and accuracy by 10% on average. The calculated
accuracy of the proposed method is 92% and the precision is 94%.

Keywords: data analytics; deep learning; electricity fraud detection; optimization; smart grid

1. Introduction

In light of the expensive cost of attaining energy, just as the constrained measure
of energy resources, operative, productive, and efficient utilization of power resources
is a significant part of financial and social improvement for any state. The Smart Grid
(SG) became the only solution to monitor future energy generation and consumption
for its efficient utilization [1]. The SG system can be portrayed as a whole electrical
network comprising the infrastructure of the power system foundation and computer
systems to oversee and screen the power use, alongside an insightful checking system to
overview the usage patterns and method of activity of every consumer associated with the
system [1–3]. The SG facilitates utility companies and clients to foresee and control energy
use by coordinating present-day advanced digital components with the current power
system. Through this system, the collective digital devices convey usage readings with the
help of the internet to operational centers, and the power transmission organization plays
out the billing procedure relying upon these readings. Simultaneously, the operation centers
gather client readings from nearly clients’ periodical updates through a remote system.
The principle target is to minimize loss because of energy wastage and give reasonable,
secure, and cheap electricity supplies [4]. The reporting of usage is performed by a Smart

Forecasting 2022, 4, 936–948. https://doi.org/10.3390/forecast4040051 https://www.mdpi.com/journal/forecasting

https://doi.org/10.3390/forecast4040051
https://doi.org/10.3390/forecast4040051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forecasting
https://www.mdpi.com
https://orcid.org/0000-0002-1153-5401
https://orcid.org/0000-0002-9616-5701
https://orcid.org/0000-0002-5269-9234
https://orcid.org/0000-0003-0886-9061
https://orcid.org/0000-0003-4305-0908
https://doi.org/10.3390/forecast4040051
https://www.mdpi.com/journal/forecasting
https://www.mdpi.com/article/10.3390/forecast4040051?type=check_update&version=3


Forecasting 2022, 4 937

Meter (SM) device. SM is the traditional meter’s digital edition. The high-speed processor,
nonvolatile capacity, communication services, and ability to keep up across-the-board client
energy generation make SMs a significant piece of SG systems.

Today, loss of electrical power has become the most prominent issue influencing both
traditional power grids and SGs. The difference between generated and delivered consumer
energy is acknowledged as power loss. Advanced SMs get data from users’ load devices
and calculate energy utilization in hourly periods. The SM gives service provider companies
and administrators detailed information to improve monitoring and billing services. It
also delivers bi-directional communications between service provider corporations and
users [5]. It is also possible with SMs to limit the peak usage amount of electrical energy,
which can be used to terminate and remotely reconnect the electrical supply [6].

Specifically, two categories, non-technical loss (NTL) and loss from technical issues
(TL), are the major electricity losses. TL happened due to power lines affected by joules
and the transformer loss through the transportation of electrical power [7]. It is complex to
calculate the TL because finding the point of loss is difficult. It is impossible to stop the TL
completely, but it can be minimized with the help of some enhanced techniques throughout
the system. The difference between a total loss and TL is described as NTL [8]. The main
reasons behind NTL are faulty energy meters, unpaid bills, fraud, and electricity theft [9].
NTL affects both developing and developed nations’ economies. For example, every year,
the power sector of Brazil and India lost 3 billion US dollars and 44.5 billion US dollars,
respectively, due to NTL [10]. Energy theft is a big challenge in the way of strengthening
the economy of these countries. Real-time electricity theft recognition is the only solution
to this issue.

Electricity theft is one of the many forms of NTL that savagely undermines the revenue
of organizations in the energy sector, leading to a huge loss of power assets and harming
the economies of all countries. Several techniques have been created to address the issue of
power theft. Game theory-based, classification-based, and state-based detection were the
three categories into which the researchers divided electricity theft detection (ETD) [11].
In previous studies [12–14], updated devices and sensors gave higher accuracy results
for state-based detection. Utilizing the analyzing solutions is primarily constrained by
vulnerability, the higher cost of equipment devices, and device upkeep. The authors of [15]
described the game theory-based detection framework as the best option for ETD. The
main issue of this process is calculating the utility charges among service providers, users,
and thieves. Several authors used machine learning techniques for classification-based ETD
systems. They analyzed the consumption patterns of electricity using machine learning
techniques and established them for classification models such as neural networks [16],
decision support systems, decision trees, and support vector machine (SVM) [17].

Deep learning techniques performed well throughout the machine learning-based
classification techniques and wildly succeeded in computer vision and image classification
areas [18]. It can handle large amounts of data, has better feature selection capability, and
has an efficient classification process. These methods are used to build models with SM
data from SG. The author in [19] proposed a deep convolutional neural network (CNN)
for ETD in SG environments. A combination of CNN and LSTM techniques was used
for load forecasting through SG [20]. The hybrid of CNN-LSTM is also proposed for
household energy consumption [21] and price forecasting [22]. In these studies, authors
used different deep learning and machine learning techniques to perform classification
using electrical datasets in SG. For ETD, this paper developed a hybrid model using a CNN
and a gated recurrent unit (GRU). Additionally, the CNN-GRU parameters are set using
the grey wolf optimization (GWO) method. The main contribution of this research work is
described below:

1. Feature correlation and class separation problem is mitigated by oversampling the
classes with a smaller observation sample using the SMOTE balancing algorithm.

2. For better training and classification, the CNN is combined with GRU and then tuned
with the CS meta-heuristic technique.
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3. To detect theft users with no time, computational complexity is reduced by using the
optimal parameters of CNN-GRU.

4. Accurate classification is evaluated using performance evaluation metrics and gain
classification performance is state of the art.

The remainder of the manuscript is organized as follows. Section 2 gives a detailed
discussion of materials and methods. The proposed CNN-GRU-CS classification model is
described in Section 3. Section 4 explains simulation results along with relevant detailed
discussion. Finally, Section 5 concludes this study.

2. Materials and Methods

This paper uses users’ energy consumption patterns to detect electricity theft. CNN-
GRU-based deep learning technique classifier is used for this purpose. Further, CS is
used to optimize the hyperparameters of CNN-GRU. CNN-GRU classification technique
is trained by power consumption-related datasets, which consist of both standard and
fraudulent users. To train the model, the dataset is prepared by preparing the data
with a preprocessing technique. Following the model’s introduction, data are fed into the
heuristic algorithm CS for tweaking the CNN-GRU classifier’s hyperparameters. Finally,
the classifier findings are validated using test data. Figure 1 depicts the suggested model.

Figure 1. Detailed flowchart of System Model.
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2.1. Electricity Theft Dataset

This analysis is based on a compilation of authentic customer power use data made
available by China’s State Grid Corporation [23,24]. In Table 1, dataset information is
presented. The dataset consists of the 9655 consumer’s power consumption patterns over a
12-month duration. The first observation revealed that regular and fraudulent users have
different power consumption patterns, as shown in Figure 2.

Figure 2. Consumption Patterns for Normal and Theft Users.

It shows that both users’ habitual consumption patterns and trends are standard and
fraudulent. It indicates that there is more fluctuation in the pattern of fraud users than
regular users.

Table 1. Dataset description.

Indicator Value

Dataset Period 2 February 2021 to 2 February 2022
Normal users 8562

Fraudulent users 1394
Total users 9956

The data on electricity consumption is commonly obtained through SMs or different
sensors at the consumer end. Then, data are accumulated using a data communication
system to any central location. Throughout this scenario, there may be a failure in the smart
meter, sensors malfunctioning, or faults in transmission lines and storage servers. Due
to these reasons, the dataset may have missing or invalid values. Several missing values
were found in this dataset, but when these values are discarded, then the dataset could be
shrinking. So, this study avoids downsizing using a preprocessing algorithm. The missing
values of the dataset are filled using this proposed preprocessing algorithm. The electrical
theft dataset is an example of an unbalanced dataset since it comprises two classes, with
cases of one class being less than the others. Figure 3 depicts the class distribution.

Figure 3 shows that the number of theft consumers is lower than that of regular clients.
This is referred to as a class imbalance problem. The outcomes of training a model with such
an unbalanced dataset are presented in the results section. The classification model can only
properly classify the more significant class. The imbalance problem in this class was solved
by producing synthetic data to extend the minority class. The suggested categorization
model was created utilizing balanced data at the moment.
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Figure 3. Distribution pattern of Normal and Fraudulent customers.

2.2. Data Preprocessing

This part is broken into two sections. To tackle the imbalance problem, the prepro-
cessing procedure is utilized first to calculate the missing values. Then, the missing values
are changed with synthetic values in the second phase [25].

2.2.1. Missing Values Computation

The missing values are calculated with the proposed algorithm. The method used the
local average power usage values to compute missing data. If there is any missing value at
position x, then it will be calculated as in Equation (1):

f (X)i =
i+5

∑
n=i−5

. . . Gn Hnxi Average local (1)

The local average is presented in Equation (2) as follows:

Average local =
1
10

X
1+5

∑
1−5

f (xi) (2)

The binary values of the Hn parameter are based on the entry n threshold value. The
thresholding procedure is implemented as follows in Equation (3):

Hn =


1, if xn ≥ Average
0, if xn < Average
0 local

(3)

The local values are discovered that have the same occurrence probability, and the
selected value of Gn is 0.10. One specific instance with a persistent NaN entry should have
been handled. Before preprocessing, such situations are addressed by embedding the row
average in those items.

2.2.2. Creating Synthetic Data Points

As shown in Figure 3, the number of fraudulent users in the dataset is lower than the
number of non-fraudulent users. If the classifier model is created through this dataset, it
could have a bias in the direction of the majority class. The model may be accurate, but
the minority class could be misclassified. The class imbalance problem may be solved
through cost mechanisms and parameter estimation. For this project, a sampling-based
technique is employed. This approach solves the imbalanced problem with the under-
sampling and oversampling methods. The under-sampling values of the majority class
are reduced by randomly discarding the instances to make balance. It shrinks the dataset
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size, which is also helpful in reducing computational time. Nonetheless, random values
can lose important information, and the remaining portion of the data may be poorly
represented after sampling. The produced results may not be highly accurate using this
method. However, the oversampling technique increases the instances of the minority with
replication of the minority class. Because of the data point replication, no information is
lost through this approach, but overfitting may occur in this developed model. Overfitting
can be prevented by producing synthetic values rather than duplicating instances.

In this study, the synthetic minority over-sampling method (SMOTE) is utilized to
generate synthetic data from minority cases. In features space, SMOTE provides synthetic
data over line segments neighboring all or any of the minority class’s nearest k neighbors.
If the minority class instance is (x1, x2) and the nearest neighbor is

(
x′1, x′2

)
× 2
)
, the data

point is synthesized as in Equation (4).

(X1, X2) = (x1, x2) + random(0, 1)XD (4)

where D =
(

x′1, x1
)
, (x2, x′2) and random (0, 1) provides a random number between 0 and 1.

The minority class instances increased using the SMOTE algorithm to make a balance
between both classes, i.e., normal and theft users. Figure 4 represents the distribution of
both classes after SMOTE algorithm utilization.

Figure 4. Normal and theft users’ distribution after SMOTE balancing.

3. Proposed CNN-GRU-CS Classification Model

Figure 5 shows the suggested response to electricity fraud detection. The suggested
system model primarily consists of five components: preprocessing data, creating data-
points using SMOTE, fraud class classification, and validation of data. Initially, this study
takes the dataset of electricity theft from SGCC [26]. Electricity data are first preprocessed
using normalization, the three-sigma rule, and interpolation of missing values techniques.
The following model gets the preprocessed data and uses them to balance the data. The
data are balanced using the SMOTE approach. Third, significant features are retrieved from
time series data using CNN, and finally, CNN-GRU-CS is provided the significant features
for classification. A comparison is performed to compare the performance of proposed
model using several performance measures, including accuracy, recall, F1-score, ROC-AUC,
and PR-AUC.

3.1. CNN

The CNN technique is introduced by [27] and is part of the neural network family.
CNN is trained to identify objects along with their classes in image classification. The
only difference between CNN and traditional neural networks is that it can extract the
best features with layers. CNN design typically includes many convolutional and pooling
layers. Following the CNN layers, there is at least one completely linked layer. CNN’s basic
building block is the convolutional layer. This layer comprises many different learnable
filters or kernels. Convolutional activity is carried out by distributing the kernel throughout
the whole input, producing a feature map. Additional filters generate varied feature maps
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to play out multiple convolutions. The output of the convolutional layer is formed by
integrating these feature maps.

Nonlinearity in the model is represented by activation functions such as ReLU, sig-
moid, tanh, and linear. Rectifier linear unit (ReLU) has a better ability to efficiently train
the model and also gives assurance optimization of nearly global weights. After the convo-
lutional layer, the pooling layer appears. Through this layer, the overfitting problem and
training time can be reduced with the downsampling of every feature map. This paper
uses a max-pooling layer in which only maximum values are selected from every feature
map. In CNN, fully connected layers take input from one layer and connect it to every
other activation unit. The pooling and convolution layers extract low-level properties
such as lines and edges. These low-level properties are used for categorization in a fully
connected layer. The SoftMax function is commonly used as an activation function in the
final classification layer; this function also assigns a probability value to each class.

Figure 5. CNN-GRU-CS classification model.

3.2. GRU

An artificial neural system appropriate for processing and interpreting time-sequential
data is known as a recurrent neural network (RNN). This technique performs well while the
output is adjacent to its associate inputs. However, when the interval of time and number
of weights increase, input leaves a minor effect on output values because of a problem
called the gradient vanishing problem. A particular type of RNN is presented called Gated
recurrent unit (GRU) to solve this problem. The update gate manages data that enter the
memory, while the reset gate holds data that must flow via output. These two gates are
the foundation of the GRU. These gates are the two vectors that decide what information
is used to train the model and what kind of irrelevant information must be discarded to
increase accuracy.

3.3. CS Algorithm

Cuckoo species that deposit their eggs in the nests of host birds of other species are
known as obligate brood parasites, where the concept for cuckoo search originated. It is
conceivable for certain host birds and intruding cuckoos to engage in direct conflict. If the
host bird discovers the eggs are not its own, it could either throw the foreign eggs away or
abandon the nest and build a new one somewhere else. Female parasitic cuckoos of some
cuckoo species, such as the New World brood-parasitic Tapera, are frequently quite good
at replicating the colors and patterns of the eggs of a small number of host species. CS, a
tool that has the potential to address many optimization problems, idealized this type of
breeding behavior. Figure 5 also describes CNN-GRU-CS’ internal structure [28].

The qualities mentioned earlier allow CS to be represented as three idealized rules:

• Each cuckoo lays one egg at a time, and it is placed in a nest that is picked at random.
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• The best nests and greatest eggs (solutions) will be passed down to the following
generations.

• The host bird finds the alien egg with a probability of pa[0,1], and the number of
available host nests is fixed. The nest is abandoned and a new one is constructed in a
different location if the alien egg is found.

The Lévy flights can be integrated using the CS method. Using the D-dimensional
vector xi = (xi1,xi2,. . . ,xid) in the ith nest’s location is specified, and a Lévy flight is carried
out in Equation (5):

Xt+1
i = xt

i + a⊗ levy(λ)(i = 1, 2, . . . , n) (5)

a = a0 ⊗
(

xt
j − xt

i

)
± (6)

where α > 0 is the step size used to regulate the range of the random search, which should
be connected to the scales of the problem of interest, and step size information may be
derived by Equation (6). Entry-wise multiplicands are meant by the term “product”. Two
randomly chosen solutions are xti and xtj. Partial solutions are eliminated, followed by a
new solution with the same number of cuckoos. A straightforward power-law equation
may represent levy() with the random walk as in Equation (7).

lev y(β) ∼ µ = t−1−β, 0 < β ≤ 2 (7)

where t and µ are two normal-distributed random values and frequently take the fixed
value of 1.5.

levy(β) ∼ φ× µ

|v|1/β
(8)

φ =

Γ(1 + β)× sin
(

π×β
2

)
Γ
(

1+β
2

)
× β× 2

β−1
2

1/β

(9)

where the gamma function is described in Equations (8) and (9). A normal distribution
with a mean of 0 and a standard deviation of 1 has an infinite variance with an infinite
mean. The random numbers µ and v are taken randomly from this distribution. A cuckoo’s
repeated leaps and steps create a random walk process that follows a power-law step length
distribution with a long tail. Equation (10) produces the new solution Xi in the Lévy flights’
random walk component [28].

Xg+1,i = Xg,i + α0
φ× µ

|v|1/β

(
Xg,i−Xg,best

)
(10)

where 0 is a scaling factor and Xg is the best answer. The Lévy distribution is a process
of random walking; Lévy flights might abruptly acquire a comparatively greater step
size following a succession of smaller steps. At the beginning of the process, the Lévy
distribution is used, which aids in breaking out of the local optimum.

Xg+1,i = Xg,i + α0
φ× µ

|v|1/β

(
Xg,i−Xg,best

)
(11)

In Equation (11), Xm
t and Xn

t are the tth generation’s random solutions. Between 0 and
1, r creates a random number. The CS algorithm flowchart is shown in Figure 6.



Forecasting 2022, 4 944

Figure 6. Steps of CS Algorithm.

4. Results and Discussion

The effectiveness of the suggested CNN-GRU model is validated by comparing several
benchmark methods. To assess performance, this study employs a variety of performance
measures.

Experimental Results

For this study, a CNN-GRU combination is proposed. Furthermore, the parameters of
this combination are tweaked using the Cuckoo Search method. The suggested approach is
also compared to several benchmark techniques.

The autocorrelation between regular and theft users is presented in Figures 7 and 8,
respectively. It can be seen that the data distribution of normal users has a specific usage
flow between the orders. Only some consecutive days in a month have high consumption.
In the same way, the theft autocorrelation is presented in Figure 8. The distribution of
theft has many variations on normal days also. The consumption pattern has too many
deviations from the normal variation.

In Figure 9, initially at epoch 0, the train and test accuracy is very low. As the iteration
increases, the model gets the best training with the help of optimized parameters. The
difference between the train/test is reduced and attains an accuracy of 93%. The proposed
algorithm is training by covering all the data points with very minimum error, as seen
in Figure 9. After good training, the trained model is tested on unseen data as seen in
Figure 10.

Figure 10 illustrates how the model achieves a decent training level as its loss decreases
as accuracy rises.
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Figure 7. Data Distribution of normal users.

Figure 8. Data distribution of theft users.

Figure 9. Proposed model accuracy vs. epoch.

Figure 10. Proposed model loss vs. epoch.
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False-positive rates and true-positive rates of the proposed technique and conventional
techniques are also displayed in Figure 11. Figure 11 shows the ROC curve of the proposed
method and state-of-the-art. The proposed method betters classify the data as true and
false positive values.

Figure 11. ROC curve of proposed and existing methods.

After successful training and testing, the proposed method is validated using perfor-
mance evaluation metrics as shown in Figure 12. The figure further describes that as the
spike of error rate is decreasing, it gives us an achievement of an increase in the values
of performance evaluation metrics and true positive rate. The ROC curve shows that
the proposed algorithm better classifies the normal and theft user by gaining more true
positive rates.

Figure 12. Performance evaluation results proposed vs. existing.

The performance evaluation of the suggested model and existing methods is shown
in Figure 12. It can be observed that the suggested model’s accuracy rate and f1-score
(CNN-GRU-CS) are higher, demonstrating the proposed strategy’s effectiveness.

5. Conclusions

Using historical power data of 10,000 users, this study proposes a strong CNN-GRU
model for identifying electrical theft. In this study, a data preprocessing technique is
employed to fill in multiple missing data points instead of deleting the missing data points.
Furthermore, it was observed in available data that there are fewer stolen users in the
sample data than ordinary users. Because of this class imbalance, the model’s efficiency in
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categorizing thieving users is insufficient. After that, SMOTE is used to generate new data
points to correct the class imbalance problem. The proposed model’s hyperparameters are
tuned using the Cuckoo Search (CS) algorithm. The model performance increased after
using the additional dataset in the training phase. Overall, 92.3% classification accuracy
is achieved with the proposed electricity theft detection model (CNN-GRU-CS), which is
higher than the simulation results of other techniques, namely SVM, LG, and CNN-GRU
using the same dataset.

In the future, other optimization algorithms will be used with the proposed method to
reduce the time complexity and gain an effective ROC curve.
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