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Abstract: Credit scoring models help lenders decide whether to grant or reject credit to applicants.
This paper proposes a credit scoring model based on boosted decision trees, a powerful learning
technique that aggregates several decision trees to form a classifier given by a weighted majority vote
of classifications predicted by individual decision trees. The performance of boosted decision trees
is evaluated using two publicly available credit card application datasets. The prediction accuracy
of boosted decision trees is benchmarked against two alternative machine learning techniques: the
multilayer perceptron and support vector machines. The results show that boosted decision trees are
a competitive technique for implementing credit scoring models.
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1. Introduction

The accurate assessment of consumer credit risk is of uttermost importance for lending
organizations. Credit scoring is a widely used technique that helps financial institutions
evaluate the likelihood that a credit applicant defaults on a financial obligation, and decide
whether to grant credit or not. The precise judgment of the creditworthiness of applicants
allows financial institutions to increase the volume of granted credit while minimizing
potential losses. The credit industry has experienced tremendous growth in the past few
decades [1]. The increased number of potential applicants impelled the development of
sophisticated techniques that automate the credit approval procedure and supervise the
financial health of the borrower. The large volume of loan portfolios also implies that
modest improvements in scoring accuracy may result in significant savings for financial
institutions [2].

The goal of a credit scoring model is to classify credit applicants into two classes:
the “good credit” class that will likely reimburse the financial obligation, and the “bad
credit” class that should be denied credit due to the high probability of defaulting on the
financial obligation. The classification is contingent on the sociodemographic characteristics
of the borrower (such as age, education level, occupation, and income), the repayment
history on previous loans, and the type of loan. These models are also applicable to
small businesses since these may be regarded as extensions of an individual costumer.
In the last few decades, various quantitative methods were proposed in the literature to
evaluate consumer loans and improve the credit scoring accuracy (for a review, see, e.g.,
Crook et al. [1]). These models can be grouped into statistical or machine learning models.
The most popular statistical models are the linear discriminant analysis and the logistic
regression. Linear discriminant analysis was the first parametric technique suggested for
credit scoring purposes [3]. This approach has attracted criticism due to the categorical
nature of the data and the fact that the covariance matrices of the good credit and bad credit
groups are typically distinct. The logistic regression allows to overcome these deficiencies
and became a common credit scoring tool of practitioners in financial institutions [4].
Machine learning techniques applied to credit scoring include the k-nearest neighbor [5],
decision trees [6,7], artificial neural networks [2,8–10], genetic programming [11], and
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support vector machines [12–16]. Research on hybrid data mining approaches has also
showed promising results [17–19].

While the pursuit of better classifiers for credit scoring applications is an important
research effort, improved accuracy can be easily achieved by aggregating the predictions
given by an ensemble of individual models; see, e.g., [20]. West et al. [21] found that the
accuracy of an ensemble of neural networks is superior to that of a single neural network in
credit scoring and bankruptcy prediction applications. This paper proposes a credit scoring
model of consumer loans based on boosted decision trees, a powerful learning technique in
which an ensemble of decision trees is developed to form a classifier given by a weighted
majority vote of classifications predicted by the individual trees. The decision trees are
grown sequentially using reweighted training sets. If an instance is misclassified by a tree
its weight is increased. Consequently, the predominance of “hard-to-classify” instances
in the training sample increases with the number of grown trees. The performance of
boosted decision trees was evaluated using two real world credit datasets from the UC
Irvine Machine Learning Repository [22] and compared to that of a multilayer perceptron
and a support vector machine (this paper is an extended version of an early draft titled
“Credit scoring with boosted decision trees” [23]; many important papers on credit scoring
with boosted decision trees have been published in the meantime (e.g., [24–28])).

The rest of this paper is organized as follows. In the next section, boosted decision
trees are introduced. This is followed by a description of the data sets and a comparison
of the predictive accuracy of the models. A discussion of the relative contribution of
the attributes to separate the good credit and bad credit classes is also given. Section 3
concludes the paper.

1.1. Decision Trees

Suppose one has a database of several credit applicants described by n attributes or
characteristics: x1, x2 · · · xn. These applicants belong to two classes that will be denoted by
“good credits” and “bad credits”. The goal of a credit scoring model is to find a classifier that
separates the good credit sample from the bad credit sample. A decision tree consists of a
set of sequential binary splits of the data. The algorithm begins with a root node containing
all credit applicants. Then, the algorithm loops over all possible binary splits in order to
find the attribute x and corresponding cut-off value c, which gives the best separation into
one side having mostly good credits and the other mostly bad credits. For example, in
Figure 1 this is achieved when the data in the root node are split between instances with
the attribute xi ≥ ci and those with xi < ci. This procedure is then repeated for the new
daughter nodes until a stopping criterion is satisfied. Defining the purity p of a node as
the fraction of good credit instances in it, the splitting attribute and cut-off value are those
that minimize the sum of the Gini indices p(1− p) of the created daughter nodes. If, for
any attribute or cut-off value, the sum of the Gini indices of the daughter nodes is higher
than the Gini index of the parent node, the parent node is not split. Since the Gini index is
a measure of the statistical dispersion or diversity of the population in a node, minimizing
the Gini index results in daughter nodes that are more homogeneous than the parent nodes.

Unsplit nodes are denoted by “leafs” and are depicted by rectangles in Figure 1. The
leafs are classified according to the most prevalent class in them. A leaf is called a “good
credit leaf” if it contains a number of good credit applicants larger than the number of
bad credit applicants. Otherwise, it is called a “bad credit leaf”. A good (bad) credit is
correctly classified if it lands on a good (bad) credit leaf. Very frequently the resulting
trees are quite large. Note that, in principle, a decision tree could be grown until all leafs
contain only good credit instances or only bad credit instances. However, such a tree would
overfit the training data. In these circumstances, the generalization performance may be
improved if the tree is “pruned”. Pruning consists in cutting back the tree in order to get
rid of redundant nodes [29].
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Figure 1. Illustration of a decision tree for credit scoring.

Decision trees have been available since the 1980s, and have been applied to the
implementation of credit scoring models [6,7]. They are a powerful and flexible classifier.
However, a well-known limitation of decision trees is their instability, since small fluctua-
tions in the training data may result in large variations in the classifications assigned to
the observations. For example, if there are two attributes having similar discrimination
power, a small fluctuation in one of these attributes may cause the algorithm to split a given
node using the other attribute, while the former would have been selected without the
fluctuation. Since the whole tree structure is modified below this node, the fluctuation may
produce a very different classifier. This difficulty is overcome by growing an ensemble of
decision trees, and classifying the instances by the majority vote of the classifications given
by the individual trees.

1.2. Boosting

Boosting [30,31] is a procedure that aggregates many classifiers in order to achieve
a high classification performance. Additionally, boosting helps stabilize the response of
classifiers with respect to changes in the training sample. The boosting algorithm initiates
by giving all credit applicants the same weight w(0). After a classifier is built, the weight of
each applicant is changed according to the classification given by that classifier. Then, a
second classifier is built using a re-weighted training sample. This procedure is typically
repeated several hundreds of times. The final classification of a credit applicant is a
weighted average of the individual classifications over all classifiers. There are several
methods to update the weights and combine the individual classifiers. A popular boosting
algorithm is AdaBoost [32], which was adopted in this study. After the kth decision tree is
built, the total misclassification error εk of the tree, defined as the sum of the weights of
misclassified credits over the sum of the weights of all credits, is calculated:

εk = ∑
i mis

w(k)
i / ∑

i
w(k)

i , (1)

where i loops over all instances in the data sample. Then, the weights of misclassified credit
applicants are increased (boosted):

w(k+1)
i =

1− εk
εk

w(k)
i . (2)
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Finally, the new weights are renormalized, w(k+1)
i → w(k+1)

i / ∑i w(k+1)
i , and the tree

k + 1 is constructed. Note that, as the algorithm progresses, the predominance of hard-to-
classify instances in the training set is increased. The final classification or “score” of credit
applicant i is a weighted sum of the classifications over the individual trees:

Fi =
K

∑
k=1

log
(

1− εk
εk

)
f (k)i , (3)

where f (k)i = 1(−1) if the kth tree makes the instance land on a good (bad) credit leaf, and K
is the number of grown trees. Therefore, good credits will tend to have large positive scores,
while bad credits will tend to have large negative scores. Furthermore, trees with lower
misclassification errors εk are given more weight when the final classification is computed.

2. Empirical Analysis
2.1. Data Sample

In this study, the credit scoring models were developed using two popular credit
card application datasets from the UC Irvine Machine Learning Repository [22]. The
German credit dataset consists of 1000 instances, of which 700 instances correspond to
creditworthy applicants and 300 instances correspond to applicants to whom credit should
not be extended. Each applicant is described by 24 attributes describing the status of
existing accounts, credit history records, loan amount and purpose, employment status,
and an assortment of personal information such as age, sex, and marital status. Three
attributes are continuous and the remaining are categorical. A detailed description of these
attributes can be found in the Appendix A.

The Australian credit dataset contains 690 instances, of which 307 correspond to
creditworthy applicants and 383 correspond to applicants to whom credit should be refused.
Each instance is described by 14 attributes. Six attributes are continuous while the remaining
are categorical. In order to preserve the confidentiality of the data, the names and values of
the attributes were replaced by meaningless identifiers. A few instances had attributes with
missing values; these were replaced by the mode and mean of the attribute for categorical
and continuous variables, respectively. Note that, because in the node splitting procedure
only the best discriminating variable is selected, boosted decision trees are insensitive to
the inclusion of attributes with weak discriminating power, while the training time only
scales linearly with the dimensionality of the input patterns.

2.2. Performance Tuning

In a pattern classification problem, the data sample is usually divided into a training
set and an independent (out-of-sample) test set. The classifier learns the data with the
training set, and its predictive power is estimated using the test set. In order to train
classifiers with a large fraction of the available data and evaluate the generalization accuracy
with the complete dataset, a 10-fold cross-validation was implemented. This technique
consists of randomly dividing the dataset into ten mutually exclusive subsets of equal
size and, sequentially, testing each of these subsets using the classifier trained on the
remaining subsets.

There is no formal theory specifying how to select the optimal hyper-parameters
for a given classifier. In practice, the selection of the best set of hyper-parameters is
accomplished either by heuristic rules or by “grid-search”. In this approach, different
sets of hyper-parameter values are scanned and the set with best predictive performance
is selected. The performance of boosted decision trees (BDT) is optimized by adjusting
two hyper-parameters: the number of decision trees that are aggregated to form the final
classifier and the minimum number of credit applicants that a tree node must contain in
order to be split. When the number of applicants in a node reaches this threshold value the
growth of the branch is terminated.
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The multilayer perceptron (MLP) contained a single hidden layer (a network with
a single hidden layer is sufficient to model a complex system to any desired degree of
accuracy, provided sufficient hidden nodes are available [33]). The input layer contained a
number of nodes equal to the number of attributes in the samples (24 nodes for the German
dataset and 14 nodes for the Australian dataset), while the output layer contained a single
node. The activation functions of the nodes were sigmoids. The network was trained
by error back-propagation using the steepest descent algorithm. Three parameters were
optimized: the number of neurons in the hidden layer, the number of epochs, and the
learning rate. The support vector machine (SVM) was implemented with a Gaussian radial
basis function. Two parameters were optimized: the width of the Gaussian kernel σ and
the cost parameter C. To find the best pair (σ, C) a grid-search was performed using the
recipe in [34], in which these parameters take values from sequences of powers of 2. All
models were implemented using the framework provided by the TMVA package [35].

2.3. Results

The performance of credit scoring models is measured in terms of the capability to
distinguish the good credit population from the bad credit population in the test sample. As
mentioned in Section 1.2, the BDT algorithm assigns to credit applicants a score according
to Equation (3). Good credits will typically have large positive scores while bad credits
will have large negative scores. Credit applicants with a score above a certain threshold
value are granted credit, while the remaining are rejected. For a given cut-off value there
are two types of incorrect predictions: the model grants credit to an applicant that will
default on the financial obligation (Type I error) and the model rejects credit to an applicant
that is creditworthy (Type II error or False Alarm Ratio). The cut-off value represents a
compromise between a large efficiency for granting credit and a large rejection of bad
credits. An excessively large tendency for granting credit may result in severe economic
losses due to delinquent costumers, while a credit policy that is too strict may result in
opportunity costs larger than the costs of default. The selected cut-off value will ultimately
depend on the relative ratio of the misclassification costs associated with Type I and Type II
errors (in general, the costs associated with misclassifying bad applicants are financially
more damaging than those associated with misclassifying good applicants).

Since the cut-off value depends on the credit policy of the financial institution, it is
convenient to express the performance of the models in terms of the receiver operating
characteristics (ROC) curve. The ROC curve is a plot of the true positive rate (proportion
of bad credit that are correctly classified) as a function of the false positive rate (Type II
error) for the full range of possible cut-off values. Figures 2 and 3 show the ROC curves
for the German and Australian credit datasets obtained by merging the 10 cross-validation
test sets, respectively. If a model could completely separate the two populations, it would
always give correct predictions. In this case, the ROC curve would pass through the point
(0,1) and the area under the ROC curve would be equal to 1. On the other hand, a random
guess classifier would result in as many correct predictions as incorrect predictions being
made. In this case, for any cut-off value, the true positive rate would be on average equal
to the false positive rate, and the ROC curve would be a 45 degree straight line intersecting
(0,0) and (1,1). A model that performs better than random guessing gives a concave ROC
curve above this straight line. The higher the model accuracy, the steeper will the ROC
curve be. Therefore, the area under the ROC curve (AUC) is a measure of the generalization
accuracy that is independent of the cut-off value.
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Figure 2. Receiver operating characteristics (ROC) curve for the multilayer perceptron (MLP), support
vector machine (SVM), and boosted decision trees (BDT), for the German credit dataset.

Figure 3. Receiver operating characteristics (ROC) curve for the multilayer perceptron (MLP), support
vector machine (SVM) and boosted decision trees (BDT), for the Australian credit dataset.

Table 1 presents the AUC for the three models obtained by trapezoidal integration.
For the German dataset the SVM outperformed the MLP, whereas BDT outperformed
both the MLP and the SVM. For the Australian dataset a similar ordering of the predictive
performance of the three models was observed.
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Table 1. Comparison of the area under the ROC curve for the multilayer perceptron (MLP), support
vector machine (SVM), and boosted decision trees (BDT).

Model German Data Australian Data

MLP 78.3% 92.3%
SVM 79.9% 92.9%
BDT 81.1% 94.0%

2.4. Comparison of the AUC Estimates

In order to test the statistical significance of the differences between the areas under
the ROC curves predicted by the models under consideration, the nonparametric approach
introduced in [36] was followed. The AUC can be interpreted as the probability that the
score of a randomly selected good credit applicant is higher than that of a randomly selected
bad credit applicant. Therefore, denoting by X(g)

i , i = 1, · · · , ng the estimated scores for

the good credit set and by X(b)
j , j = 1, · · · , nb the estimated scores for the bad credit set, an

unbiased estimator of the AUC is given by the Wilcoxon–Mann–Whitney statistic:

θ̂ =
1

nbng

nb

∑
j=1

ng

∑
i=1

1
X(g)

i >X(b)
j

, (4)

where the indicator function 1
X(g)

i >X(b)
j

is 1 if X(g)
i > X(b)

j , and 0 otherwise. In order to

obtain an estimate of the variance of θ̂, the structural components of the ith good credit and
jth bad credit must be calculated:

v(X(g)
i ) =

1
nb

nb

∑
j=1

1
X(g)

i >X(b)
j

, v(X(b)
j ) =

1
ng

ng

∑
i=1

1
X(g)

i >X(b)
j

. (5)

Then, an estimator for the variance of θ̂ can be obtained from:

Vâr(θ̂) =
1

ng(ng − 1)

ng

∑
i=1

[
v(X(g)

i )− θ̂
]2

+
1

nb(nb − 1)

nb

∑
j=1

[
v(X(b)

j )− θ̂
]2

. (6)

In order to compare the AUC of two alternative models, A and B, the covariance of
the corresponding AUC estimators must also be obtained:

Côv(θ̂A, θ̂B) = 1
ng(ng−1) ∑

ng
i=1

[
vA(X(g)

i )− θ̂A

][
vB(X(g)

i )− θ̂B

]
+ 1

nb(nb−1) ∑nb
j=1

[
vA(X(b)

j )− θ̂A

][
vB(X(b)

Bj )− θ̂B

]
.

(7)

To test the null hypothesis H0 : θ̂A = θ̂B versus the alternative hypothesis H1 : θ̂A 6= θ̂B
the following test statistic is computed:

T =

(
θ̂A − θ̂B

)2

Vâr(θ̂A − θ̂B)
, (8)

where:
Vâr(θ̂A − θ̂B) = Vâr(θ̂A) + Vâr(θ̂B)− 2Côv(θ̂A, θ̂B). (9)

The test statistic T is asymptotically χ2-distributed with one degree of freedom.
Table 2 shows the results of applying this test to the estimated ROC curves. For both

datasets one can reject the null hypothesis H0 : θ̂BDT = θ̂MLP with a 95% significance level
and, therefore, there is strong evidence that the performance of BDT is better than that of
the MLP. For the Australian dataset there is also strong evidence that BDT outperformed
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SVM. However, for the German dataset the difference between these methods was not
statistically significant.

Table 2. Statistical test for comparing the area under the ROC curves estimated by the different models.

Test German Data Australian Data
T p-Value T p-Value

MLP – SVM 2.781 0.095 1.132 0.288
MLP – BDT 4.916 0.027 6.778 0.009
SVM – BDT 1.774 0.183 3.737 0.053

2.5. Relative Importance of the Attributes

Boosted decision trees provide a straightforward and intuitive measure of the relative
contribution of the attributes to separate instances according to the target classification.
Using this approach, a ranking of the most useful attributes can be established. This ranking
is derived by counting the number of times an attribute is employed in the node-splitting
procedure and by weighting each split by the separation gain it has accomplished and by
the number of instances in the node [29].

Figure 4 shows the relative importance of the attributes for the German credit dataset.
The first and fourth attributes are the most important. These attributes correspond to the
status of the existing checking accounts and the credit amount, respectively. They are
followed by the second attribute (duration of the loan) and the tenth attribute (age of the
applicant). Also important is the third attribute, which represents the credit history of the
applicant (e.g., if previous credits were paid punctually or there were delays in paying off).
The fifth to ninth attributes have moderate importance. They correspond to the status of
savings accounts, the employment condition, the marital status and sex, the amount of
years living in the present residence, and the property that the applicant owns, respectively.
Figure 5 shows the relative importance of the attributes for the Australian credit dataset.
The nature of the attributes in this dataset is unknown. In this dataset, the eighth attribute
is clearly the most important. Also of note is that the contributions of attributes 1, 11, and
12 are negligible.

Figure 4. Relative importance of attributes predicted by boosted decision trees for the German dataset.
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Figure 5. Relative importance of attributes predicted by boosted decision trees for the Aus-
tralian dataset.

3. Conclusions

This paper introduced a credit scoring model of consumer loans using boosted decision
trees—a learning technique that allows to combine several decision trees to form a classifier
that is obtained from a weighted majority vote of the classifications given by individual
trees. The generalization accuracy of boosted decision trees was compared with that of a
multilayer perceptron and support vector machines. Boosted decision trees outperformed
the multilayer perceptron and the support vector machines on two real-world credit card
application datasets. On the basis of these results, it can be concluded that boosted decision
trees may be a competitive alternative to these techniques in credit scoring applications. It
was also shown that boosted decision trees provide an elegant way to rank the attributes
that most significantly affect the likelihood of default.
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number UIDB/05069/2020.

Institutional Review Board Statement: Not applicable.
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Appendix A

Table A1. Description of the variables included in the German credit dataset.

Attribute Description

1 Status of the client’s existing checking account
2 Duration of the credit
3 Client’s credit history
4 Credit amount requested
5 Client’s savings account/bonds balance
6 Client’s present employment status
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Table A1. Cont.

Attribute Description

7 Marital status and gender
8 Number of years spent at present residence
9 Type of property owned by the client
10 Age
11 Whether the client has other installment plans
12 Number of existing credits at the bank
13 Number of people for whom the client is liable to provide mainte-

nance for
14 Whether the client has a telephone
15 Whether the client is a foreign worker
16,17 Dummy variables indicating the purpose of the credit
18,19 Dummy variables indicating whether the client is a debtor or guar-

antor of credit granted by another institution
20,21 Dummy variables indicating the client’s housing arrangement
22,23,24 Dummy variables indicating the employment status
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