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Abstract: The main purpose of coherent mortality models is to produce plausible, joint forecasts
for related populations avoiding, e.g., crossing or diverging mortality trajectories; however, the
coherence assumption is very restrictive and it enforces trends that may be at odds with data. In
this paper we focus on coherent, two-sex mortality models and we prove, under suitable conditions,
that the coherence assumption implies sex gap unimodality, i.e., we prove that the difference in life
expectancy between women and men will first increase and then decrease. Moreover, we demonstrate
that, in the model, the sex gap typically peaks when female life expectancy is between 30 to 50 years.
This explains why coherent mortality models predict narrowing sex gaps for essentially all Western
European countries and all jump-off years since the 1950s, despite the fact that the actual sex gap was
widening until the 1980s. In light of these findings, we discuss the current role of coherence as the
gold standard for multi-population mortality models.

Keywords: life expectancy; sex differential; sex gap; coherence; mortality modeling; projection;
forecasting

JEL Classification: G22; J11

1. Introduction

The aim of coherent multi-population mortality models is to forecast the mortality of
related populations preserving the structural differences observed in the past, e.g., preserv-
ing differences between countries, regional differences within a country, or higher mortality
for men than for women. The idea is to prevent divergence or implausible crossings of mor-
tality trajectories that can arise from forecasting each population individually. The concept
of coherence was introduced by Li and Lee [1], as an extension to the popular Lee-Carter
model [2], and later formalized by Hyndman et al. [3]. Since then a number of coherent
models have been proposed, both within the Lee–Carter framework [4–7], with added
cohort effects [8–10], and based on the functional data approach [3,11]. Today, coherence
still serves as the gold standard for multi-population mortality models.

Technically, coherence means that the ratio of age-specific mortality rates of the popula-
tions being forecasted converges (to finite, age-specific constants). This requirement ties the
forecasts together and it ensures that differences in aggregate characteristics, e.g., survival
probabilities and life expectancies, remain bounded as desired. The flip-side, however, is
that converging mortality sex ratios may not be supported by data and enforcing it can
lead to unrealistic continuations of historic trends despite the intention, see [12,13]. In this
paper, we investigate and exemplify the implications of coherence in two-sex mortality
models, in particular, the implications for the dynamics of the life expectancy difference
between the sexes.

The sex differential in life expectancy is a key statistic for summarizing and com-
municating discrepancies in sex-specific mortality curves. The differential has varied
considerably over time, although its general shape has been fairly consistent from country
to country. In the Western world, the gap has the shape of a (unimodal) hill; the differential
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widened substantially in favor of women throughout most of the 20th century, but the
trend reversed around the 1980s and the gap has continued to narrow since then [14,15].

Studies have sought to explain the observed trends in the sex gap through changes
in behavioral, socioeconomic, and health factors, for example, smoking and drinking
habits [16–18], labor market participation [19,20], risk behavior [21], and cause-of-death
contributions [22–24]. The rationale being that changes in external risk factors explain
changes in mortality sex ratios, which in turn explain trends in the life expectancy differ-
ential. This common-sense reasoning assumes that changing mortality sex ratios is the
main driver of the sex gap, both when it increases and when it decreases. However, demo-
graphic analyses have challenged this assumption. In particular, Glei and Horiuchi [15]
and Cui et al. [25] show that while the widening sex gap was indeed caused by changing
mortality sex ratios, the narrowing of the sex gap was primarily caused by general mortality
improvements for both sexes in combination with heterogeneity in the death distributions.
In simpler terms, the expanding sex gap in the Western world was caused primarily by
female mortality improving faster than male mortality (i.e., changing mortality sex ratios),
while the subsequent narrowing of the gap was caused primarily by improvements in
mortality for both sexes, with women retaining their relative advantage (i.e., improvements
under stable mortality sex ratios).

In this paper, we demonstrate that coherent two-sex models generally imply unimodal
sex gap dynamics. At first sight, this might seem as an attractive feature given that the
sex gap in the Western world has also been unimodal, as described above. It turns out,
however, that in practice the forecasts are almost always on the declining part of the sex gap
trajectory. This in turn implies that coherent models are ill-suited to forecast the mortality in
periods with increasing sex gaps. Coincidentally, the concept of coherence was introduced
after a prolonged period of narrowing sex gaps and the continuation of this trend was seen
as an argument in favor of coherent models, see Hyndman et al. [3]. That coherent models
produce sensible forecasts only in periods with narrowing sex gaps does however question
the status of coherence as a universally desirable feature in multi-population models. We
will return to this point towards the end of the paper.

The rest of the paper is organized as follows. First, we illustrate the evolution of the sex
gap in Western Europe since the 1950s and we survey the existing sex gap decomposition
methods, formalizing the ratio and level effects responsible for the widening and the nar-
rowing of the gap respectively. Second, we present our main mathematical result showing
sex gap unimodality in (strongly) coherent models under certain conditions; we discuss
the intuition behind the conditions and show by example when multi-modality can occur.
Third, we analyze a dynamic Gompertz model as a simple example of a coherent model
satisfying the conditions; we compute the typical sex gap trajectories that can arise under
this model and we use this to explain why the forecasted sex gap will almost always be
narrowing. Fourth, we apply the coherent models of Li and Lee [1] and Hyndman et al. [3]
to Western European countries at selected jump-off years during the period with expanding
sex gaps; with reference to the mathematical results, we discuss why the majority of these
forecasts predict narrowing gaps. Finally, we end with some concluding remarks.

Data and Notation

Data is obtained from the Human Mortality Database [26] and consists of death
counts, D(x, t), and central exposure-to-risk estimates, E(x, t), on Lexis A-sets, that is,
age-period cells of the form [x, x + 1) × [t, t + 1) for integer ages x ∈ {0, . . . , 110} and
calendar years t ∈ {1950, . . . , 2020} for countries in Western Europe. The empirical death
rate is estimated as

m(x, t) = D(x, t)/E(x, t). (1)

Death rates for Western Europe are obtained by pooling death and exposure counts
across individual countries. Throughout, (period) life expectancies are calculated by
numerical integration whenever a continuous mortality curve is available, and under
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the assumption of piecewise constant mortality, whenever the mortality curve is only
available at integer ages. That is,

e(x, t) =
1

S(x, t)

∫ ω

x
S(y, t)dy =

∫ ω

x
e−
∫ y

x µ(z,t)dz dy =
ω−1

∑
i=x

1− e−µ(i,t)

µ(i, t)
e−∑i−1

j=x µ(j,t), (2)

where S(x, t) = exp(−
∫ x

0 µ(y, t)dy) is the (period) survival function, µ(x, t) the force of
mortality at age x and time t, and ω ∈ (0, ∞) the age at truncation. Note that ω is not
necessarily the maximum attainable age, and we do not assume that µ(x) = ∞ for x > ω.
We return to the role of the truncation age later in the paper. The last equality in Equation (2)
assumes piecewise constant mortality, a full derivation is given in Appendix C.

2. Changes in Mortality, Life Expectancy, and Sex Differentials

In this section, we briefly survey the existing methods for decomposing changes in life
expectancy and the sex differential. This provides the basis for the subsequent treatment of
sex differentials in coherent mortality models.

2.1. Decomposing Changes in Life Expectancy

There are two main approaches for decomposing changes in life expectancy into
constituent parts. The first approach, pioneered by Pollard [27] and Arriaga [28], focuses on
the effect of changing mortality from one age-specific schedule to another, and is typically
used to assess how different age groups contribute in driving life expectancy progress
between two distinct points in time. The second approach, popularized by Keyfitz [29],
examines the effect of a local change to the mortality curve by quantifying how various
age-specific improvements in mortality,

ρ(x, t) := − µ̇(x, t)
µ(x, t)

= − ∂

∂t
log µ(x, t), (3)

translate into changes in life expectancy. In (3) and throughout, a dot over a function is
used to denote its derivative with respect to time as in Vaupel and Romo [30].

Analyzing the effects of local change have been instrumental for understanding the
linkage between the age pattern of mortality and the trends in e(0, t) observed in data.
Indeed, studies have shown that the dispersion of the life table death distribution is a main
determinant of the pace at which life expectancy improves [29,31,32].

The average number of life-years lost due to death (lifespan disparity) is given by

e†(t) =
∫ ω

0
w(x, t)dx, (4)

where w(x, t) = µ(x, t)S(x, t)e(x, t) is the (life table) probability of dying at age x times the
remaining life expectancy at that age. Lifespan disparity, e†, is a dispersion measure, i.e., it
quantifies the effect of age of death being distributed across ages. At one extreme, if e†

is zero then everyone dies at the same age. Conversely, if e† is large then the population
experiences a high number of premature deaths and large gains in e(0, t) can be made by
reducing mortality. Improvements among the young are particularly important as more
life years are lost upon death at these ages. This relation was formalized by Keyfitz [29]
who showed that if the same rate of mortality improvement, ρ(t), applies to all ages, then
the change in life expectancy can be expressed as ė(0, t) = ρ(t)e†(t). The absolute change
in e(0, t) can thus be interpreted as a product of the proportion of deaths averted (ρ) and
the average number of life-years gained (e†) by those who now survive.

Vaupel and Romo [30] generalized Keyfitz’s formula to the case of age-dependent
improvement rates, and suggested that a change in life expectancy at birth be decomposed
into two components
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ė(0, t) =
∫ ω

0
ρ(x, t)w(x, t)dx = ρ̄(t)e†(t) + Cov(ρ, e), (5)

where the first term captures the main effect of improvement, while the second term
arises due to heterogeneity in ρ(x, t) at different ages. In (5), ρ̄ denotes the average rate
of improvement and Cov(ρ, e) is the covariance between improvement rates and life
expectancy, see Vaupel and Romo [30] for details. Equation (5) is often taken as the
basis for deriving the dynamics of life expectancy sex differentials.

2.2. The Rise and Fall of Sex Differentials in Western Europe

The difference in life expectancy at birth between females and males in a given
population (the sex gap) is defined as

θ(t) = e f (0, t)− em(0, t) =
∫ ω

0
e−
∫ x

0 µ f (y,t)dy dx−
∫ ω

0
e−
∫ x

0 µm(y,t)dy dx, (6)

where the subscripts f and m denote female and male quantities, respectively. In applica-
tions we might be interested also in (remaining) life expectancy and sex differential at other
ages than 0; all formulas apply, mutatis mutandis, for a general age, but for ease of notation
we develop the theory for age 0 only.

Figure 1 shows the evolution of the sex gap over time since 1950 in Western Europe.
The overall pattern is the same across all countries with the gap being shaped as a coun-
tryside hill. That is, the gap initially widened, but has since fallen into a decline with
differentials currently around 3–6 years. The timing of the turning point varies by country,
occurring first in the United Kingdom circa 1970 and lastly in Spain towards the end of
the 1990s.

Spain Sweden Switzerland United Kingdom West Germany Western Europe

Ireland Italy Luxembourg Netherlands Norway Portugal

Austria Belgium Denmark Finland France Iceland
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Figure 1. Life expectancy sex gap across Western Europe (black dots) with a fitted LOESS curve
superimposed (blue line).
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The rise and fall of sex differentials observed in the data has recently been studied
using demographic decompositions. The principal method of Glei and Horiuchi [15]
separates change in θ into effects due to changing mortality ratios and effects due to
changing mortality levels, namely

θ̇(t) =
∫ ω

0

wm(x, t) + w f (x, t)
2

ċ(x, t)
c(x, t)

dx +
∫ ω

0
[wm(x, t)− w f (x, t)]

ζ̇(x, t)
ζ(x, t)

dx, (7)

where c(x, t) = µm(x, t)/µ f (x, t) is the mortality sex ratio, ζ(x, t) =
√

µm(x, t)µ f (x, t)
the geometric average of the two mortality rates, and, w f and wm are as in Equation (4)
for females and males, respectively. Note that ċ(x, t)/c(x, t) = ∂

∂t log c(x, t) = ρ f (x, t)−
ρm(x, t), and ζ̇(x, t)/ζ(x, t) = ∂

∂t log ζ(x, t) = −[ρ f (x, t) + ρm(x, t)]/2. It follows that the
ratio effect is positive when ρ f > ρm, while the sign of the level effect depends on the
relative size of mortality dispersion for the two sexes (as measured by w f and wm); thus,
the two effects can work either in the same direction, or against each other.

Using (7) , Glei and Horiuchi [15] show that the initial widening of θ seen in Figure 1
is caused primarily by women experiencing comparatively larger rates of mortality im-
provements than men (ρ f > ρm), while the subsequent narrowing is largely attributable
to differential dispersion between the sexes (wm > w f ) in combination with general im-
provements. These results are echoed by Cui et al. [25], who use (5) to separate θ̇ into
three components of change through which they obtain conditions for the sex gap to be
widening, narrowing, or at a turning point.

Pollard’s Paradox

Glei and Horiuchi [15] and Cui et al. [25] both stress that differential dispersion plays
a pivotal role in determining changes in θ. In fact, differential dispersion may give rise
to somewhat counter-intuitive changes. Pollard [27], for example, demonstrated that
two populations may experience the same absolute change in mortality, but, at the same
time, a widening life expectancy differential. The argument is as follows. For i ∈ { f , m},
consider an absolute decrease in mortality at all ages, that is, µ̃i(x) = µi(x)− ε for some
ε > 0. Let S̃i(x) = Si(x)eεx denote the new probability of surviving to age x. Assuming
µ f (x) < µm(x) for all x, the new life expectancy differential is then larger than before,

θ =
∫ ω

0

[
S f (x)− Sm(x)

]
dx <

∫ ω

0

[
S f (x)− Sm(x)

]
eεx dx = θ(ε, ε), (8)

where θ(ε f , εm) denotes the life expectancy differential when female mortality is decreased
by ε f and male mortality by εm. If we subsequently increase female mortality slightly, we
obtain a situation with 0 < ε f < ε and θ < θ(ε f , ε), i.e., a narrowing mortality differential
with a widening life expectancy differential. This phenomenon is sometimes referred to as
Pollard’s paradox.

In a similar fashion we can argue that a narrowing life expectancy differential does
not guarantee narrowing mortality ratios. For instance, taking outset in Keyfitz’s formula,
when the rate of improvement is the same at all ages, we have

θ̇(t) = ρ f (t)e†
f (t)− ρm(t)e†

m(t). (9)

Suppose e†
m(t) > e†

f (t), and let k = e†
m(t)/e†

f (t) > 1. If ρm(t) < ρ f (t) < kρm(t), then

θ̇(t) < 0, even though ρm(t) < ρ f (t). This situation could occur if female life expectancy is
close to ω in which case e†

f (t) is small, but male life expectancy is not in which case e†
m(t) is

comparatively larger. In this scenario, female mortality can improve at a faster pace than
male mortality, but because males benefit from the improvements across a larger span of
ages, they gain life expectancy faster than females. Generally, constant mortality ratios can
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occur together with both increasing and decreasing life expectancy differentials. Therefore,
on its own, a narrowing life expectancy differential cannot be interpreted as male mortality
rates “catching-up” to female mortality rates.

3. Sex Differentials in Coherent Mortality Models

In this section, we present our main mathematical result about sex gap unimodality
under coherence. Since coherence implies that the modeled mortality schedules evolve
in parallel, it is clear that the forecasted life expectancies approach the same maximal
age, or age of truncation, when time approaches infinity. Likewise, it is clear that if we
backcast, i.e., “run the model backwards”, both mortality schedules will degenerate and
the life expectancies converge to zero. Hence, in both limits the sex gap converges to zero.
The question is, what happens in between these limits? It might appear obvious that the sex
gap will first increase and then decrease, i.e., be unimodal. However, in full generality, this
is not true; assuming only coherence, the sex gap can in general exhibit an arbitrary number
of modalities. The condition we provide indicates that the mortality schedules have to
have the same “shape”, in a sense to be made precise later, to guarantee unimodality of the
sex gap. Although the mathematical result may not cover most coherent mortality models
used in practice, the implications of the result in terms of the location of the peak seems to
be valid in much greater generality than proven. The result thereby provides an insight as
to why coherent mortality models almost always forecast closing sex gaps.

3.1. Coherent Mortality Modeling

In demographic applications it is often required to make forecasts of related popula-
tions, e.g., Western, low-mortality countries, or males and females in a given population.
Separate forecasting of even very similar populations runs the risk of exaggerating short-
term differences leading to diverging projections, but such outcomes seem implausible if
the populations have evolved in parallel in the past. For instance, in the case of females
and males, we expect the mortality of both groups to keep improving, but we also expect
shorter life spans of men relative to women to persist despite converging social and lifestyle
factors [1,13,33,34]. The intuitively appealing property that forecasts of related popula-
tions should “stay together” is formalized by the concept of coherence and its use is often
motivated by a desire for preserving historic relationships.

The notion of coherence was introduced by Li and Lee [1] and later formalized by
Hyndman et al. [3]. Given a model for the mortality of two populations, µi(x, t), we let
µ̄i(x, t) denote the forecast for population i ∈ {1, 2}. The distinction is, that µi is typically
a stochastic process, while µ̄i is a deterministic forecast, e.g., obtained as the median
projection of µi. The mortality forecasts are said to be coherent if their ratio converges to
positive, finite, age-specific constants c(x), that is

µ̄1(x, t)
µ̄2(x, t)

−−→
t→∞

c(x), for each age x. (10)

Forecasts for a group of populations are coherent, if the forecasts are pairwise coherent
(Box 1).
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Box 1. On the definition of coherence

The literature is marked by some confusion regarding the precise, mathematical definition of coher-
ence. Scholars seem to agree on the property as one ensuring non-diverging forecasts, but one can
find contradictory definitions depending on the context in which the concept is used. In particular,
it is often unclear whether coherence is a property concerning deterministic or stochastic forecasts,
especially when authors define coherence as a property related to the mean forecast but apply the
concept in a stochastic setting. In the original paper by Li and Lee [1], coherence was directed at
deterministic forecasts, namely “to avoid long-run divergence in mean mortality forecasts” (p. 577) by
“imposing shared rates of change by age” (p. 575). The definition given by Hyndman et al. [3] is often
quoted as the one formalizing coherence and labels “mortality forecasts as coherent when the forecast
age-specific ratios of death rates for any two subpopulations converge to a set of appropriate constants” (p.
262). This definition, however, seems inappropriate for stochastic models. The proper, mathematical
definition of coherence in the spirit of Hyndman et al. [3] would be to label forecasts as coherent if
the age-specific mortality ratio converges to a stationary distribution π, that is,

µ1(x, t)/µ2(x, t) d−→ πx, for each age x.

In this paper, however, we use the usual deterministic definition given in (10).

The model proposed by Li and Lee [1], namely the augmented common-factor model
or colloquially the Li-Lee model, models the observed death rate in population i as

log mi(x, t) = log µi(x, t) + εx,t,i = αx,i + BxKt + βx,iκt,i + εx,t,i, (11)

where Kt and κt,i are stochastic processes modeling common and population-specific
secular trends, respectively, and εx,t,i is the observation error, i.e., the difference between
the underlying mortality rates, µi(x, t), and the observed death rates, mi(x, t). Median
forecasts are obtained by inserting the estimates for the age-specific loadings, α̂x,i, B̂x and
β̂x,i, and turning off the error terms, i.e., by

log µ̄i(x, t) = α̂x,i + B̂xK̄t + β̂x,iκ̄t,i, (12)

where K̄t and κ̄t,i denote median forecasts of the corresponding processes. The model is
coherent (i.e., it produces coherent forecasts) when the κt,i’s are modeled as stationary, zero-
mean processes, e.g., AR(1)-processes. This assumption ensures that each κ̄t,i converges
to zero, implying that asymptotically all population mortalities are subject to the same
age-specific rates of improvements, which is the content of (10). The Li-Lee model is an
archetypical coherent mortality model, and we recall it here to remind the reader of the
type of models that we are considering. We return to this model in Section 5.

For the rest of the paper we focus on coherent, two-sex mortality models. Of course,
mathematically, it makes no difference whether the mortalities are interpreted as sex-
specific or not, but with the applications in mind and for ease of presentation, from now on
we phrase everything in terms of female and male mortality.

3.2. Example: Sex Gap Unimodality for Truncated Exponential Distributions

To gain some intuition for the problem and method of proof, we start with a simple
example in which the calculations can be made explicit. Assume female and male mortality
are given by µ f (x, t) = µ/t and µm(x, t) = cµ/t, respectively, for 0 ≤ x ≤ ω < ∞ and
t ∈ (0, ∞), where µ > 0 and c > 1 are given constants. Hence, the period life times are
distributed as truncated exponential variates with life expectancy

e(µ) =
∫ ω

0
e−xµ dx =

1
µ

(
1− e−ωµ

)
, (13)
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expressed as a functional of the level of mortality. Defining θ(t) as in (6), we then have

θ(t) = e(µ/t)− e(cµ/t) =
t
µ

(
1− e−ωµ/t

)
− t

cµ

(
1− e−ωcµ/t

)
. (14)

For t tending to zero, both sexes die instantaneously after birth, while for t tending to
infinity, both sexes become immortal on [0, ω]. Thus, θ is zero in both limits, while strictly
positive for 0 < t < ∞. Consequently, since θ is smooth, it must have at least one stationary
point, i.e., there must exist a t such that θ̇(t) = 0. If we can prove that this is the only
stationary point, it follows that θ is unimodal.

Now, note that if θ were to have more than one stationary point they cannot all be
local maxima, some of them have to be local minima or points of inflection. From this
observation, it follows that if we can prove that all stationary points are (local) maxima,
there can be only one stationary point and we are finished. This in turn follows, if we can
prove that θ̈(t) < 0 whenever θ̇(t) = 0. By direct calculations we find

θ̇(t) = ė(µ/t)− ė(cµ/t) =
µ

t2

∫ ω

0
x
[
e−xµ/t − ce−xcµ/t

]
dx, (15)

and

θ̈(t) = ë(µ/t)− ë(cµ/t) =
ω2µ

t3

(
ce−ωcµ/t − e−ωµ/t

)
. (16)

Let t be a stationary point for θ, and define the functions p(x) = e−xµ/t and q(x) =
ce−xcµ/t for x ∈ [0, ω]. We want to prove p(ω) > q(ω), since that implies θ̈(t) < 0 by (16).
By assumption, θ̇(t) = 0 and it therefore follows from (15) that

∫ ω
0 x[p(x)− q(x)]dx = 0.

Since p(0) = 1 < c = q(0) and since p and q can cross at most once (consider the straight
lines x 7→ log p(x) and x 7→ log q(x)) we must have that p(ω) > q(ω). Because otherwise
the integrand would be strictly negative Lebesgue almost surely on [0, ω], contradicting
that the integral is zero. This concludes the proof.

In this specific example we could of course also have investigated the monotonicity
properties of θ more directly to arrive at the same conclusion. However, the approach
of examining stationary points better extends to the general situation in which explicit
expressions for θ are not available.

Note that the existence of a maximum for θ hinges on θ being zero as time tends to
infinity. In the example, both sexes experience rectangularization of the survival curve
such that their life expectancies converge to the same, finite upper limit. However, if we
remove the truncation the situation changes. Without truncation, the sex gap is θ(t) =
t/µ− t/(cµ) = t(c− 1)/(cµ) with θ̇(t) = (c− 1)/(cµ) > 0. In this case the sex gap is
monotonically increasing to infinity as t tends to infinity. Assuming that an upper limit
on life expectancy exists is probably uncontroversial, but it is worth noting that it is this
assumption that forces a diminishing sex gap in the limit.

3.3. Main Result

We are now ready to state our main mathematical result concerning sex gap uni-
modality in coherent models. Since our main purpose is to provide insights into the role
of coherence; we will only prove the result under the assumption of uniform rates of
improvement. More general versions of the result exist, but the conditions become less
intuitive, harder to interpret, and tedious to verify.

A twice continuously differentiable function f is called (strongly) unimodal on A ⊆ R,
if there exists an a ∈ A such that f is (strictly) increasing for t < a, and (strictly) decreasing
for t > a. Let µ : [0, ω] × R → (0, ∞) be a twice continuously differentiable function
satisfying

lim
t→−∞

µ(x, t) = ∞, and lim
t→∞

µ(x, t) = 0. (17)
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We think of µ as the backcasted/forecasted mortality surface in a given mortality
model, but for ease of notation we leave out the bar over µ that we used in Section 3.1. We
assume that the relevant time limits are plus/minus infinity, but other limits could also
have been used, e.g., zero and infinity as in the example in Section 3.2.

Let µ f (x, t) = µ(x, t) and µm(x, t) = µ(x, t)c(x) denote female and male mortality,
respectively. Thus, µm(x, t)/µ f (x, t) = c(x) and the mortality forecasts are therefore
strongly coherent, in the sense that the limit in (10) is replaced with an equality. In particular,
females and males have the same rates of improvement at all ages and times. As previously,
let θ(t) = e f (0, t) − em(0, t) denote the sex gap. Finally, for g ∈ { f , m}, let Ig(x, t) =∫ x

0 µg(u, t)du, and let I−1
g (z, t) denote the age, x, for which Ig(x, t) = z.

Theorem 1. Assume − ∂
∂t log µ(x, t) = ρ(t) > 0 for all x, i.e., the rates of improvement is the

same for all ages and strictly positive at all times. If c(x) > 1 for all x, and

∂

∂x
log

(
µm(I−1

m (x, t), t)
µ f (I−1

f (x, t), t)

)
≤ 0, (18)

for all t ∈ R, and all x where the argument is defined, then θ is strictly unimodal on R.

The proof of Theorem 1 relies on a decision-theoretic argument and is given in
Appendix A. As in the example in the previous section, the proof consists in showing that
stationary points are local maxima. In brief, the stationarity assumption, ė f (0, t) = ėm(0, t),
is used to construct two probability measures and the monotonicity assumption (18) is used
to show that these two measures are stochastically ordered from which ë f (0, t) < ëm(0, t),
and thereby local maximality, can be deduced.

As demonstrated by the counterexample in Section 3.4, coherence on its own is not
enough to ensure sex gap unimodality. Specifically, exceedingly large jumps in mortality
levels can cause sex gap multimodality and, intuitively, the role of Equation (18) is to
prevent such jumps. Increases in mortality levels are revealed by the cumulative death rate
I(x), which can be interpreted as the expected number of deaths that would have occurred
at age x had the event been repeatable. Thus I−1(x) is the age at which we would have
experienced x deaths. Equation (18) looks at the rate of change in log-mortality differences,
but with the age input transformed by I−1(·). Because female mortality is lower than male
mortality, I−1

f (x) will be higher than I−1
m (x). Loosely speaking, condition (18) states that

“high age” female mortality must increase faster than “low age” male mortality. This is
typically, but not always, satisfied. As age and thereby mortality increases, I−1(x) flattens.
If there is a sharp transition in the age-specific mortality curve, this flattening occurs at
a comparatively much lower x-value for females than for males and means that (18) is
comparing µ f evaluated at a high age to µm evaluated at a much lower age. Figure 2
shows I−1(x) and µ(I−1(x)) in the two-level mortality example from Figure 3 and for two
Gompertz mortality curves. Condition (18) is violated in the former case as µ(I−1(x)) does
not “jump” at the same time for both sexes, turning the left-hand side of (18) positive once
the male rate “jumps”. Although counterexamples as these can be constructed, in practice,
(modelled) female and male mortality schedules are sufficiently aligned that (18) is satisfied.
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Figure 2. Illustration of I−1(x) and µ(I−1(x)) for the two-level mortality curve depicted in Figure 3
(left panels) and a Gompertz mortality curve (right panels).

Theorem 1 formalizes Pollard’s paradox; under the stated conditions we have a
situation with fixed mortality ratios and a sex gap that is both widening and narrowing,
in two distinct epochs. In the terminology of Section 2, both the initial widening and the
subsequent narrowing of the sex gap are caused by the level effect, since the ratio effect
is absent by construction. Moreover, it is possible to characterize the point where the sex
gap peaks in terms of the life expectancy of one of the sexes, e.g., females. This will be
illustrated in Section 4.

µf(x)
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Mortality ratio:

c(x) =
µm(x)

µf(x)
= 4
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µ(
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θ(
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e f

(0
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−
e m

(0
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Sex gap

Figure 3. Mortality rates and the resulting life expectancy differential over time when the same,
positive mortality improvement rate is applied to both sexes. In the right panel, the superimposed
dashed line is the sex gap had the life expectancy calculation been truncated at x0. The curves are
calculated using µ(x) = µ when x ∈ [0, x0) and µ(x) = µδ when x ∈ (x0 + ε, ω] with µ = e−1,
x0 = 60, δ = 50, ε = 5, and ω = 120. Continuity between x0 and x0 + ε is achieved by quadratic
interpolation as in (19). The means of interpolation is not important for the calculation; using any
C2-interpolating curve or applying a bump function to make µ(x) smooth and continuous yields
virtually the same result.

3.4. Counterexample

The sex gap is not unimodal for arbitrary mortality profiles. As a counterexample,
consider a two-level piecewise constant mortality curve made continuous through quadratic
interpolation

µ(x) =


µ , x ∈ [0, x0),
µδ[3(x− x0)

2/ε2 − 2(x− x0)
3/ε3] , x ∈ [x0, x0 + ε],

µδ , x ∈ (x0 + ε, ω],

(19)
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for fixed constants µ, δ, ε > 0. That is, suppose the mortality schedule between ages 0
and x0 is constant at level µ, but is “bumped” to a new level µδ over the age range x0 to
x0 + ε for some large δ and small ε. The left panel in Figure 3 shows an example mortality
curve of this form, while the right panel shows the resulting life expectancy differential
when mortality is subject to the same fractional improvement in the age-specific death
rate at all ages; corresponding to µ(x, t) = µ(x) exp(−ρt) for some ρ > 0. For reference,
the unimodal curve shown as the dashed line is the life expectancy differential had ω = x0.

The gap takes on a multimodal (“roller-coaster”) shape. The additional humps are
created by the jump in mortality after age x0, which creates a false life expectancy barrier (if
δ is sufficiently large). This barrier is broken by the females first, whereby the life expectancy
differential starts to rise again, creating another modality. Thus, even with monotonically
increasing hazards and µm(x, t)/µ f (x, t) > 1, unimodality is not guaranteed. The example
could be extended to create any number of modes by introducing more barriers. It is clear,
however, that counterexamples are necessarily somewhat contrived and that they do not
arise in “normal” situations.

4. The Dynamic Gompertz Model

Parametric models can be used for mortality projections by letting calendar year
enter the model through its parameters. That is, for each calendar year the parameters of
the model are estimated and then viewed as stochastic processes, forecasted by standard
time series methods. By linking the stochastic processes driving the models of different
populations, coherence and other dependency structures can be achieved, see e.g., [8,9,13].
In this section, we analyze a particularly simple, coherent mortality model of this type.
The model is too simple to be of practical use, but it is useful as an illustration of the sex
gap trajectories implied by coherence.

4.1. The Model

The Gompertz mortality law prescribes that mortality increases exponentially,

µ(x) = eα+βx, 0 ≤ x ≤ ω. (20)

This mortality profile is a remarkably good fit to adult mortality from age 20, say,
onwards. For younger ages, and in fact also for very old ages, the profile is not appropriate.
A simple two-sex model for adult mortality can be constructed by fitting a Gompertz
law to period, sex-specific mortality data resulting in estimated coefficients (αt,g, βt,g) for
g ∈ { f , m} and t ranging over the years in the estimation window.

If the parameters are modeled as random walks with the same drift for both sexes,
the median forecast for population g becomes

µ̄g(x, T + h) = exp
{

αT,g + βT,gx + h(ξα + ξβx)
}

, (21)

where T denotes the projection jump-off year, h ∈ N0 is the forecasting horizon, and ξα

and ξβ are the (shared) drift terms of the α- and β-processes, respectively. By design,
the forecasts in (21) are (strongly) coherent since the mortality sex ratios do not depend
on h,

µ̄m(x, T + h)
µ̄ f (x, T + h)

= exp
{
(αT,m − αT, f ) + (βT,m − βT, f )x

}
= c(x). (22)

More complicated time-series models could also be used, but the current structure suf-
fices for our purposes. Note that although h is assumed non-negative, we can evaluate (21)
for all values of h. Specifically, we can think of a forecast as the right tail of an implied
surface obtained by letting h range over all integers, negative and positive.
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4.2. Sex Gap Unimodality under Uniform Rates of Improvement

Assuming uniform rates of improvement, the continuous-time analog of the dynamic
Gompertz model is given by

µ(x, t) = eα+βx−ρt, 0 ≤ x ≤ ω, (23)

with level parameter α, slope parameter β > 0, and rate of improvement ρ > 0. As in
Section 3.3, let µ f (x, t) = µ(x, t) and µm(x, t) = µ(x, t)c(x), where c(x) = exp(∆α + ∆βx),
with ∆β > −β, such that µm is also of form (23) with positive slope. Thus, mortality for both
sexes follow a Gompertz mortality schedule with, in general, differing levels and slopes.

The cumulative death rate is

I(x, t) =
∫ x

0
µ(u, t)du = eα−ρt(eβx − 1)/β, (24)

while its inverse for fixed time t is I−1(x, t) = log(1 + xβ/(eα−ρt))/β, whereby

µ(I−1(x, t), t) = eα−ρt + βx. (25)

It follows that

∂

∂x
log

(
µm(I−1

m (x, t), t)
µ f (I−1

f (x, t), t)

)
=

eα−ρt[∆β + β(1− e∆α)
]

[eα−ρt + βx]
[
eα+∆α−ρt + (β + ∆β)x

] . (26)

In practice, we typically find excess male mortality relative to female mortality with
∆α > 0 and ∆β < 0, that is, the level is higher for males than for females, but the curve is
less steep. In this situation, the right-hand side of (26) is negative, since the numerator is
negative while the denominator is positive. It then follows from Theorem 1 that the sex
gap is strictly unimodal.

We note that Theorem 1 only provides sufficient conditions for unimodality. For in-
stance, having c(x) < 1 at high ages does not imply that unimodality of the gap will not
occur. In fact, using empiric estimates we typically have this situation, but still the sex gap
is unimodal.

4.3. Sex Gap Trajectories

We define the sex gap trajectory as the pairs of female life expectancy and sex gap that
can occur together on a given two-sex mortality surface,

T = {(e f (0, t), θ(t)) : t ∈ R}, (27)

where as usual θ(t) = e f (0, t)− em(0, t) denotes the life expectancy differential (sex gap).
In the continuous-time version of the dynamic Gompertz model, we have

µ f (x, t) = eα−ρteβx, µm(x, t) = eα−ρteβxe∆α+∆βx. (28)

Since ρ > 0, we see that as t goes from minus infinity to plus infinity the common
factor, exp(α− ρt), takes all values in (0, ∞), regardless of the value of α and ρ. It follows
that for the dynamic Gompertz model the sex gap trajectory is a function of the female
slope parameter and excess mortality only, i.e., T = T (β, ∆α, ∆β).

Based on mortality data from Western Europe 1950–2020, estimates of β are in a narrow
range around 0.10, while excess mortality shows greater variability from country to country
and over time. Figure 4 shows two sets of trajectories for typical values of β; the left plot
corresponds to the average male excess mortality profile in the data, and the right plot
corresponds to very high male excess mortality, as seen in, e.g., Finland.
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Figure 4. The sex gap trajectory implied by a dynamic Gompertz model for different values of the
female slope parameter, β, for average and high excess male mortality. Left plot has ∆α = 1.25 and
∆β = −0.012, right plot has ∆α = 2.2 and ∆β = −0.021.

We notice that although the size of the sex gap is different in the two plots, the overall
shape of the trajectory is almost the same in all cases. In particular, we notice that the sex
gap peaks when female life expectancy is in the range 30 to 50 years. This means that if a
dynamic Gompertz model is fitted to data and forecasts are produced from a jump-off year where
female life expectancy is larger than 50 years then the model will forecast a closing sex gap; at least
if the slope parameters are relatively constant (i.e., if ξβ ≈ 0).

Note that the speed with which the sex gap trajectory is traversed in the forecast
depends on how fast female life expectancy evolves. We only know that as female life
expectancy increases beyond 50 years, the sex gap closes. Since female life expectancy will
not increase linearly, the shape of the sex gap in the forecast will typically not resemble the
shape of the sex gap trajectories in Figure 4.

That the coherent, dynamic Gompertz model typically produces narrowing sex gaps
also for age-dependent rates of improvement, is illustrated in Figure 5. The forecasts are
produced by (21) for dynamic Gompertz models fitted to different countries in different peri-
ods. The Gompertz models are calibrated using data in the age range {20, . . . , 100} to avoid
the poor fit at younger ages to influence parameter estimates; for the same reason we look
at the life expectancy differential at age 20, instead of at birth. Parameters of the Gompertz
models are estimated by maximum likelihood assuming independent, Poisson-distributed
death counts, D(x, t)|E(x, t) ∼ Pois(E(x, t) exp(αt + βtx)). The model’s parameters are
calibrated to the latest 30 years of data available before projection jump-off. If data do not
exist for all 30 years, only available data are used. We estimate and project the models for
all countries in Western Europe and for periods with jump-off in 1960, 1980, 2000, and 2020,
respectively.

As seen, almost all forecasts in Figure 5 produce narrowing gaps. In some periods
the forecasts provide a good description of the future, e.g., the recent forecasts for Finland,
France, Portugal and Spain, but in most cases the forecasted sex gap does not provide a
sensible continuation of the historic trend. The problem is, that the behavior of data leading
up to the jump-off year matters very little; it is the assumed coherence in the forecasts
that produces the (implied) unimodal sex gap trajectory and it is the fact that female life
expectancy is larger than 50 years at all jump-offs that places us on the declining part of
that trajectory.
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Figure 5. Forecast of the life expectancy sex gap in Western Europe using a dynamic Gompertz model
with parameters forecasted as a random walk with drift, cf. Equation (21), and varying jump-off years.

We note in closing, that the dynamic Gompertz model does not always forecast closing
sex gaps. Periods with little or no mortality improvements for males (Denmark, 1980),
or male mortality being very close to female mortality can lead to an increasing sex gap at
jump-off. In the latter case, the peak of the implied sex gap trajectory can occur at a much
higher age than indicated in Figure 4, cf. Box 2 “The outlier Ireland” for an example of this
rarely happening situation.

5. The Forecast of Closing Sex Gaps by Coherent Mortality Models

In the previous section we demonstrated that the dynamic Gompertz model typically
forecasts closing sex gaps, both under uniform rates of improvement, as predicted by
Theorem 1, but also under age-dependent rates of improvement. In this section, we show
that more “realistic”, coherent mortality models behave qualitatively similar to the dynamic
Gompertz model. On this basis, we conclude that closing sex gaps is indeed a general
feature of coherent models. The analysis is in two parts. First, we relax the parametric
structure of the Gompertz curve but keep the uniform rate of improvement. Second, we
show closing sex gaps for coherent, semi-parametric models with age-dependent rates
of improvement.

5.1. Location of the Sex Gap Zenith under Uniform Rates of Improvement

Based on the dynamic Gompertz model, we concluded in Section 4.3 that for Western
European data the implied sex gap peaks at an earlier age than the observed female life
expectancy, leading to closing sex gap forecasts. One might object to this analysis that
the Gompertz model allows for only a very limited set of mortality profiles, and that the
conclusion implicitly rests on this fact. Below, we extend the analysis to general, smooth
mortality profiles, retaining the assumption of uniform rates of improvement.

Consider a (strongly) coherent mortality surface with female and male mortality of the
form µ f (x, t) = µ f (x, T) exp(−ρ(t− T)) and µm(x, t) = µ f (x, t)c(x), respectively, where
T is a fixed year, µ f (x, T) is the female mortality at age x in year T, c(x) is the male excess
mortality at age x, and ρ > 0 is the (uniform) rate of improvement.

Recall from Equation (27) that the sex gap trajectory is defined as the set of female life
expectancies and sex gaps that can occur together when t varies. By the same argument
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as in Section 4.3, this set does not depend on the rate of improvement. In other words,
assuming a uniform rate of improvement, the sex gap trajectory depends only on the
female mortality profile in any given year and the excess mortality profile. In particular,
for any female mortality profile, µ f (·, T), and any c-profile, we can define the (implied) sex
gap zenith,

(amax, θmax) = (e f (0, tmax), θ(tmax)), where tmax = arg max θ(t), (29)

as the female life expectancy when the sex gap is at its maximum and the corresponding
(maximal) value of the sex gap. The notation (amax, θmax) is chosen to reflect the abscissa
and ordinate at the maximum point, cf. Figure 4.

We compute and compare (amax, θmax) for (i) a Gompertz model and (ii) a graduated
mortality curve, where the mortality curves obtained by graduation closely represent the
true underlying death rates. In short, the graduation procedure smooths the empirical
death rates by a cubic smoothing spline, while the Kannisto model of old-age mortality is
used at ages 80 and above. Further details are provided Appendix B.

The sex gap zenith is presented in Table 1 for the two models for the countries in
Western Europe. For given year, mortality data for that year only is used to estimate
female and male mortality profiles from which the c-profile is derived. Next, assuming a
uniform rate of improvement, the implied sex gap trajectory (27) can be computed. Finally,
the female life expectancy and the size of the sex gap at the zenith (29) of the trajectory
are found. The computation is performed on data from three calendar years that captures
the different epochs of the period. In the first year, 1950, all countries are on the widening
part of the observed θ-curve. The second year, 1985, is the middle of the period where the
observed θ-curve peaks, while the third year, 2020, is on the narrowing part of the curve, cf.
Figure 1. If a country does not have data at one or both of the endpoints, the nearest data
point is used instead.

Table 1. Female life expectancy (amax) when the implied sex gap trajectory is at its maximum (θmax).
For each country and model, the year refers to the data used to compute the implied sex gap trajectory,
see main text for details. Life expectancies are truncated at the age of 110.

Gompertz Mortality Curve Graduated Mortality Curve

amax θmax amax θmax

Country Data Avail 1950 1985 2020 1950 1985 2020 1950 1985 2020 1950 1985 2020

1. Austria 1947–2019 33.2 34.5 32.1 6.9 13.5 11.5 47.5 43.8 41.4 5.3 10.6 7.8
2. Belgium 1841–2020 32.8 35.0 31.8 7.6 11.5 9.8 43.0 45.0 52.0 6.2 8.3 6.2
3. Denmark 1835–2020 28.0 36.7 32.0 3.5 8.4 6.7 27.5 33.8 29.8 4.5 8.0 8.5
4. Finland 1878–2020 35.6 36.3 33.8 12.2 15.6 14.4 49.2 49.2 45.7 8.9 12.2 11.0
5. France 1816–2018 35.4 36.8 34.7 7.7 15.4 13.4 54.3 56.0 58.6 5.9 10.9 8.6
6. Iceland 1838–2018 34.1 33.9 29.9 8.9 13.0 8.8 37.6 44.5 43.1 9.2 9.4 6.2
7. Ireland 1950–2017 87.9 35.8 30.7 2.0 8.1 8.1 73.7 36.0 37.9 1.7 8.4 8.9
8. Italy 1872–2018 31.7 34.3 31.3 5.6 12.1 9.8 48.1 44.1 39.0 4.0 9.1 7.4
9. Luxembourg 1960–2019 32.1 35.8 31.8 9.8 10.0 9.5 32.4 38.3 31.3 9.1 10.3 10.1

10. Netherlands 1850–2019 28.0 36.2 30.9 3.7 9.4 5.2 30.9 66.2 37.7 4.6 7.0 4.7
11. Norway 1846–2020 29.7 34.8 30.1 5.4 12.2 7.4 34.3 39.3 40.3 6.2 10.0 7.6
12. Portugal 1940–2020 38.0 34.8 34.3 7.2 12.9 15.5 55.9 43.6 62.0 5.0 11.2 9.2
13. Spain 1908–2018 37.8 34.5 33.3 6.4 13.8 13.3 54.5 47.6 64.8 4.9 10.4 7.7
14. Sweden 1751–2020 28.8 34.3 30.3 4.0 10.1 7.1 29.6 51.5 37.8 5.5 7.3 8.4
15. Switzerland 1876–2020 32.1 34.8 30.3 6.7 11.7 9.2 41.2 42.9 38.3 5.7 9.6 7.9
16. United Kingdom 1922–2018 38.1 39.3 31.4 5.2 6.9 8.0 61.5 35.2 42.2 4.5 6.6 6.7
17. West Germany 1956–2017 31.5 34.7 32.0 8.7 11.4 10.4 39.2 54.4 55.1 7.2 8.1 6.0
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Box 2. The outlier Ireland

The only outlier in Table 1 is Ireland, 1950. In this year, the observed life expectancy for females
is 66.7 years, but according to Table 1, this is well below amax. Ireland is rather unique in a
demographic context. Men outlived women at the beginning of the 20th century, and by the 1930s,
Ireland was the only country in the West with higher survival rates for men than for women at any
age [35]. This pattern has taken a while to reverse, and even though female mortality is lower than
male mortality in 1950 (at most ages), the curves lie almost directly on top of each other as seen in
Figure 6. Interestingly, this fact makes the sex gap widen for a prolonged period, that is, the slope
of θ is rather moderate before reaching the turning point. Once the turning is passed, however,
the gap will close quite rapidly; the slope on the narrowing part is much steeper compared to the
slope on the widening part of the curve as seen in Figure 6. This feature needs to be understood
in the context of life span disparity, e†, and the maximum attainable age, ω. Because the mortality
profiles are similar not only in slope but also in level, e†

f stays higher than e†
m for longer. Female life

expectancy at the turning point, amax, is, therefore, closer to ω than had the mortality levels been
further apart, causing the subsequent “catch-up” to happen much faster.

The Gompertz model predicts a female life expectancy of around 30–40 years when
the sex gap is at its zenith, varying slightly from country to country and period to period.
For comparison, observed female life expectancy in 1950 is between 61.0 (Portugal) and
73.6 (Iceland) and increasing over the period. Thus, all countries are on the declining part
of the implied θ-curve, and continued improvements in mortality will further narrow the
gap. The only exception is Ireland, see Box 2.

Because the Gompertz curve constitutes a highly stylized mortality profile, the life ex-
pectancy predictions from this model are fairly consistent across the different countries and
periods. The graduated mortality curve is more flexible, resulting in more diverse predic-
tions, in particular, regarding the female life expectancy at the sex gap zenith. The overall
result is, however, qualitatively the same; with the exception of Ireland, the implied sex
gap peaks when female life expectancy is below that observed at the estimation year (not
shown). The takeaway message is that for essentially all countries and jump-off years, both
models project narrowing sex gaps.
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Figure 6. Mortality and implied sex gap for Ireland, 1950. In the left panel, the Gompertz fit is
superimposed as solid lines.

5.2. Coherence Implies Closing Sex Gaps

Until now we have demonstrated sex gap unimodality and closing sex gap forecasts
under conditions imposed for mathematical tractability. In particular, strong coherence and
uniform rates of improvement. Of course, coherent mortality models used in practice are
neither strongly coherent, nor do they have uniform rates of improvement. Nevertheless,
the conclusion extends to “realistic”, coherent models also, and for the same reason. Cali-
brated to Western European mortality data, the sex gap implied by the models peaks when
female life expectancy is (much) lower than levels observed after the Second World War.

Table 2 presents the slope of the sex gap following projection jump-off based on the
dynamic Gompertz model (21), the Li-Lee model (11), and the product ratio model of
Hyndman et al. [3] for different jump-off years. For the Li-Lee model (11), we use AR(1)-
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processes to describe the sex-specific time-varying indices. The product ratio model is fitted
and forecasted using the Demography package (available on CRAN) in R.

Except for the United Kingdom, the actual sex gap was widening at all jump-off years,
cf. Figure 1. Nevertheless, essentially all forecasts predict a narrowing sex gap. Further,
for those (few) forecasts where the gap is projected to widen, the historical trend is not
reproduced. Rather, the apex of θ is predicted to be in the near future with a gap that
remains approximately constant on a short horizon (not shown); the forecast trajectories
resemble that of Denmark, 1980 seen in Figure 5 (green, dashed line).

In semi-parametric mortality models, e.g., the Lee–Carter model [2] or the Li-Lee
model [1], the fit to data is typically good due to a large number of parameters. Even
parsimonious model structures such as the dynamic Gompertz model can capture many
observed mortality patterns when parameters are allowed to vary freely. Consequently,
in the estimation window, most mortality models allow flexible, if not freely varying, rates
of improvement, ρ(x, t). In the forecasting region, however, the improvement rates are
often, directly or indirectly, constrained by (i) assuming temporal constancy, e.g., in models
of the Lee–Carter type, and (ii) by imposing coherence:

ρ(x, t) Time invariance−−−−−−−−→ ρ(x) Coherence−−−−−→ ρ f (x) ' ρm(x).

Both assumptions might be at odds with (recent) trends in data, resulting in death rate
(median) trajectories that may not conform with those observed in the past. Relaxing the
assumption of time-invariant improvement rates can be achieved by various techniques,
for example, by imposing convergence to a long-term target [36], or applying frailty
theory [37]. This, however, is not the focus of the present paper.

Table 2. Direction of the sex gap five years after projection jump-off for different coherent models
and jump-off years. The table shows whether the gap is narrowing (↘) or widening (↗). The models
are calibrated to data in the period 1950 (or the earliest year where data are available) to the listed
jump-off year. No direction is shown if the model cannot be calibrated (i.e., lack of data).

Gompertz Model Li-Lee Model The Product-Ratio Model

Country 1960 1965 1970 1975 1980 1960 1965 1970 1975 1980 1960 1965 1970 1975 1980

1. Austria ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
2. Belgium ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
3. Denmark ↘ ↘ ↘ ↘ ↗ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↗ ↘
4. Finland ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
5. France ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
6. Iceland ↘ ↘ ↘ ↘ ↘ ↗ ↗ ↘ ↘ ↘ ↗ ↘ ↘ ↘ ↘
7. Ireland ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
8. Italy ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↗ ↘
9. Luxembourg - ↗ ↗ ↗ ↘ - ↗ ↘ ↗ ↗ - ↘ ↗ ↘ ↗

10. Netherlands ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
11. Norway ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
12. Portugal ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↗ ↘ ↘ ↘ ↘ ↘ ↘
13. Spain ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
14. Sweden ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
15. Switzerland ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↗ ↘ ↘ ↘ ↘ ↘
16. United Kingdom ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
17. West Germany ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ - ↘ ↗ ↘ ↘

Although, formally only a condition in the limit, the coherence assumption built into
many multi-population mortality models all but eliminates the ratio effect, identified by
Glei and Horiuchi [15] and Cui et al. [25] as the main driver of the widening sex gap in
Western Europe until the 1980s, cf. Section 2.2. In periods where the sex gap is narrowing,
the ratio effect is less important and the coherence assumption agrees more with observed
data. Narrowing sex gap projections are produced as intended but are not guaranteed
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to replicate the latest trends, cf. Figure 5. In summary, the implied sex gap trajectory of
coherent models, being driven mainly by the level effect, is too inflexible to adequately
describe and forecast the sex gap evolution since 1950.

5.3. Does Coherence Deserve Its Special Status?

The fact that the sex gap narrows in coherent projections at essentially all levels of mor-
tality observed in the West over the last 70 years challenges the desirability of coherence as
a modeling goal and adds to the recent criticism of coherence raised by Hunt and Blake [12]
and Jarner and Jallbjørn [13]. At the time of its development, coherence coincidentally
appeared as a desirable property that (to some extent) continued the narrowing of the
sex gap that had been observed for some time, unlike most independent methods that
projected widening or diverging gaps, see for example Figure 5 in Hyndman et al. [3]. One
can understand that Hyndman et al. [3] and others concluded that coherent forecasts were
an improvement over independent forecasts, but this verdict seems somewhat anchored in
the sex gap decline of the time. Imagine standing in a year between 1950–1980, observing
sharp transitions from widening to narrowing gaps such as those in Figure 5. It then seems
far less obvious that coherence is a property one should impose on a model and certainly
questions whether coherence deserves the special status it has been given.

From the adversarial perspective, it is—at least in theory—possible for coherent models
to accommodate temporary ratio effects of varying (but bounded) size and thereby produce
trends in the sex gap that are in keeping with those recently observed. In most applications,
however, the ratio effect diminishes quickly, leading to a misalignment between historic
and projected trends as demonstrated in Table 2. Arguably, a diminishing ratio effect is
intentional, because otherwise, the rationale for imposing coherence would be undermined.
Even though coherence may be a sensible restriction to impose when extrapolating the
present mortality regime (for some populations), it does not seem to be so historically and
may not be so in the future either. In our view, this suggests a revision of coherence as the
guiding principle for multi-population mortality modeling.

Moreover, as is also pointed out by Jarner and Jallbjørn [13], coherence seems too
tailored to the log-linear common factor models for which the property was introduced.
Even though single population models can be coupled via cointegration techniques to
achieve coherence, the choice of scale, i.e., ratios of mortality rates, remains somewhat
arbitrary and effectively restricts the coherence label to models of the Lee–Carter type.
Therefore, we see a need for a broader definition that covers a larger class of models and
permits less restrictive dependency structures.

As a minimum, the coherence requirement should be relaxed to allow for observed
patterns of covariation to continue in forecasts. A possible approach to tackle this issue
could be to redefine coherence into a property that concerns modeling on the parameter
scale rather than modeling on the (log) data scale. In particular, it seems more natural to
identify cointegrating relations between (time-varying) parameters, i.e., identifying linear
combinations of the parameters that are stationary, rather than requiring mean-reversion of
mortality log differences. For further discussion on this point, see Jarner and Jallbjørn [13].

6. Conclusions

The notion of coherence has been one of the most influential ideas in multi-population
mortality modeling. When projecting groups of related populations, e.g., males and females,
or countries of similar affluence, which have evolved in parallel in the past, it is natural
to expect these populations to “stay together” in the future also. Coherence solves the
problem of diverging, or crossing, forecasts that can arise when projecting, even very
similar, populations separately. It does so by requiring converging mortality ratios, or,
equivalently, asymptotically equal rates of improvement at each age. At first sight, this
seems an innocent and reasonable requirement, but in practice coherent models enforce a
rigid structure on the forecasts that can be at odds with trends in data.



Forecasting 2022, 4 837

In this paper we discussed the implications of coherence in two-sex mortality models
with focus on the dynamics of the sex differential in life expectancy (sex gap). We provided
both theoretical and empirical evidence to support the conclusion that coherent models
forecast closing sex gaps for Western European countries for almost all jump-off years since
1950. Despite the fact that the actual sex gap was widening until the 1980s. Coincidentally,
coherence was introduced after almost 20 years of narrowing sex gaps, and a continued sex
gap closing was seen as a desirable feature of coherent models. However, the inadequacy
of coherent models in the first half of the period from 1950 till today, lead us to question
coherence as a general modeling principle.

Technically, we prove in the paper that strongly coherent models with a uniform rate
of improvement produce a unimodal sex gap trajectory. Further, we demonstrate that for
Western European levels of male excess mortality (relative to female mortality) the implied
sex gap trajectory typically peaks when female life expectancy is in the range 30 to 50 years.
Although formally proven only for a specific subclass of coherent models, this insight
applies in much greater generality and it explains why forecasts from coherent two-sex
models are almost always on the declining part of the trajectory.

We also discussed the effects responsible for the observed widening and narrowing
sex gap in Western Europe from 1950 till today. In particular, with appeal to Glei and
Horiuchi [15] we identified changing sex ratios (the ratio effect) as the main driver of the
widening sex gap, and differential dispersion combined with general improvements (the
level effect) as the main driver of the subsequent narrowing of the sex gap. In light of
the similarity between the observed and implied sex gap trajectories in Figures 1 and 4,
respectively, it is a priori surprising that coherent models cannot be used to describe the
observed sex gap dynamics over the entire period. However, the implied sex gap trajectory
peaks too early, in terms of female life expectancy, and therefore cannot be aligned with
the widening part of the observed sex gap trajectory. Moreover, even on the narrowing
part of the observed sex gap trajectory, coherent forecasts often have a kink at jump-off,
see Figure 5. In conclusion, the implied sex gap trajectory of coherent models being driven
purely, or mainly, by the level effect is not sufficiently flexible to describe the observed sex
gap dynamics.

To prove unimodality of the sex gap, we relied on the assumption that life expectancies
are bounded from above, implying that we eventually approach a life expectancy plateau
and that the sex gap therefore vanishes in the limit. Even though life expectancy does not
appear to be approaching a maximum at present [38] and even though women have been
shown to “always” live longer than men [33,34], it does seem reasonable that a biological
or genetic barrier to an infinite lifespan exists; however, if an upper limit does not exist a
vanishing sex gap is not guaranteed. It is also conceivable that the present level of old-age
mortality acts similar to a de facto barrier, but that continued improvements can “break
through” the barrier and move it to even higher ages.

Although we have presented the results and the analysis as pertaining to coherent
models and their properties, the unimodality result can also be given a real-world interpre-
tation. In Western Europe, males have historically had lower rates of improvement than
females, but currently the two sexes enjoy similar rates of improvement. Combined with
the unimodality result, this indicates that the observed sex gap will continue to close in the
future but it also points to factors that need to change for the gap to start widening again.
That is, (i) if mortality undergoes a (perhaps temporary) regime change in which female
rates of improvement substantially outweigh male improvements, for instance, if certain
diseases that primarily target females are reduced or eradicated, or if sex-specific risk
behavior changes in favor of women; (ii) if the current lifetime barrier is broken through,
the sex gap dynamics could “start over” and result in a multimodal curve similar to that
exemplified in Figure 3. It is also conceivable that a widening gap in favor of men could
be brought about. This can happen, e.g., if the sex-specific mortality curves continue to
steepen in such a way that high-age male mortality falls below high-age female mortality.
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The paper focused on coherence in two-sex models. However, our main result
applies also to other coherent, multi-population models whenever an ordering of the
population-specific mortality rates exists. A noteworthy instance is mortality rates between
different socio-economic groups, a case that has attracted much recent attention, see e.g.,
Bennett et al. [39], Cairns et al. [40]. Historically, the life expectancy gap between the most
and least affluent has widened for some time, and the trend is expected to continue over
the coming years by domain experts. However, under the assumption of coherence, the gap
may inadvertently be projected to close right after projection jump-off. Other applications
with mortality orderings expected to persist over time include modeling of rich countries
relative to poor countries, insured lives relative to non-insured lives, and smokers relative
to non-smokers. In all these cases, coherent models are likely to produce immediately
narrowing gaps irrespective of the historic development leading up to jump-off.

Finally, since the main result hinges on excess mortality of one population relative
to another, it cannot be applied to situations where such an ordering does not exist. For
example, when modeling a group of neighboring countries of similar affluence, we cannot
conclude that this will generally lead to closing gaps for all pairs of countries. Arguably,
even if we could, narrowing gaps would perhaps be less of a worry in this context, at least
in the long run.
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Appendix A. Proofs and Lemmas

Appendix A.1. Stochastic Dominance

The following lemma gives a general result that is used to assess the sign of the
second derivative of the sex gap at a stationary point. The lemma has ties to the concept of
stochastic dominance, see e.g., Lindvall [41]. We say that a real-valued random variable Y
stochastically dominates another real-valued random variable X if P(Y ≤ z) ≤ P(X ≤ z)
for all z. Informally, this means that the distribution of X is to the left of the distribution of
Y. Various inequalities based on this partial ordering can be derived. The result we need is
stated below.

Lemma A1. Let f1 and f2 be strictly positive functions with compact support [0, K1] and [0, K2],
respectively, with 0 < K1 < K2 < ∞, satisfying∫ K1

0
f1(x)dx =

∫ K2

0
f2(x)dx. (A1)

Assuming that f1 and f2 have continuous first derivatives such that

∂

∂x
log f1(x) ≤ ∂

∂x
log f2(x) for 0 < x < K1, (A2)

https://www.mortality.org
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then for any strictly increasing, differentiable function h : [0, K2]→ R,∫ K1

0
h(x) f1(x)dx <

∫ K2

0
h(x) f2(x)dx. (A3)

Proof. Let m denote the common value in (A1), and let ν1 and ν2 denote measures concen-
trated on [0, K1] and [0, K2], respectively, so that g1(x) = f1(x)/m and g2(x) = f2(x)/m are
the Radon–Nikodym derivatives of ν1 and ν2 with respect to Lebesgue measure. Further,
let G1(x) =

∫ x
0 g1(u)du and G2(x) =

∫ x
0 g2(u)du be the corresponding cdf’s.

It suffices to show that G2(x) ≤ G1(x), ∀x ∈ [0, K2], with strict inequality at some x,
because then∫ K1

0
h dν1 −

∫ K2

0
h dν2 =

∫ K1

0

∫ x

0
h′(u)du dG1(x)−

∫ K2

0

∫ x

0
h′(u)du dG2(x)

=
∫ K1

0
h′(x)(1− G1(x))dx−

∫ K2

0
h′(x)(1− G2(x))dx

=
∫ K2

0
h′(x)(G2(x)− G1(x))dx < 0, (A4)

and (A3) follows immediately. In the above, the first equality follows by writing

h(x) = h(0) +
∫ x

0
h′(u)du, (A5)

and the second by reversing the order of integration. The latter computation is valid by
Tonelli’s theorem since h′ is non-negative.

We know that G1(0) = G2(0) = 0 and G2(x) ≤ G1(x) = 1 for x ∈ [K1, K2]. For 0 <
z < w < K1 we have from (A2) that

log
g1(w)

g1(z)
=
∫ w

z

∂

∂x
log f1(x)dx ≤

∫ w

z

∂

∂x
log f2(x)dx = log

g2(w)

g2(z)
, (A6)

and thereby g1(w)/g1(z) ≤ g2(w)/g2(z), or, equivalently, g2(z)/g1(z) ≤ g2(w)/g1(w).
Hence, r(x) = g2(x)/g1(x) is monotonically increasing on (0, K1). Define the sets

A = {x | x ∈ (0, K1), r(x) < 1}, (A7)

B = {x | x ∈ (0, K1), r(x) = 1}, (A8)

C = {x | x ∈ (0, K1), r(x) > 1}, (A9)

that collectively cover (0, K1). Since∫ K1

0
g1(x)dx =

∫ K2

0
g2(x)dx >

∫ K1

0
g2(x)dx =

∫ K1

0
r(x)g1(x)dx, (A10)

A cannot be empty. Due to the monotonicity of r, C cannot be empty without B being
empty. If both B and C are empty or if only C is empty, we have that

G2(x) =
∫ x

0
r(u)g1(u)du <

∫ x

0
g1(u)du = G1(x), (A11)

for all x ∈ (0, K1). If C is non-empty, suppose for contradiction that there exists an
x ∈ C for which G2(x) ≥ G1(x). Then, due to the monotonicity of r, we would have
G2(K1) ≥ G1(K1), but this contradicts (A10). Thus, we conclude that G2(x) < G1(x) for all
x ∈ (0, K1).
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Appendix A.2. Proof of Theorem 1

For ease of reference, we recall the central definitions and assumptions used in
Theorem 1. Let µ : [0, ω] × R → (0, ∞) be a twice continuously differentiable function
satisfying

lim
t→−∞

µ(x, t) = ∞, and lim
t→∞

µ(x, t) = 0. (A12)

Let µ f (x, t) = µ(x, t) and µm(x, t) = µ(x, t)c(x) denote female and male mortality, respec-
tively. Let θ(t) = e f (0, t)− em(0, t) denote the sex gap. Note that θ is twice continuously
differentiable. The proof of Theorem 1 relies on Lemma A1 and the following two lemmas.

Lemma A2. Assume c(x) > 1 for all x. The sex gap, θ, attains its global maximum on R.
In particular, θ has at least one stationary point.

Proof. We first note that θ(t) > 0 for all t ∈ R with limits

lim
t→−∞

θ(t) = lim
t→∞

θ(t) = 0 (A13)

This follows from (A12) and the assumption µ f (x, t) < µm(x, t) for all x and t. Choose
an arbitrary real number t0 ∈ R. Because the limit of θ in either end of the real line is
zero, there exist numbers −∞ < tl < t0 < tu < ∞ such that θ(t) ≤ θ(t0) for t ≤ tl ,
and θ(t) ≤ θ(t0) for t ≥ tu. Since θ is continuous it attains a maximal value at, say, tm on
the compact interval [tl , tu], cf. Rudin [42] Theorem 4.16. This is also the global maximum
by construction since t0 ∈ [tl , tu]. Hence, since θ is continuously differentiable, it follows
that θ̇(tm) = 0.

Lemma A3. Assume c(x) > 1 for all x. If stationary points of θ are local maxima, that is, if

∀t ∈ R : θ̇(t) = 0⇒ θ̈(t) < 0, (A14)

then θ is strongly unimodal on R.

Proof. Assume (A14) holds. We start by showing that θ can have at most one stationary
point, or equivalently, that θ̇ can have at most one root. Assume for contradiction that θ̇
has at least two roots a, b ∈ R with a < b. By (A14), θ̈(a) < 0 and therefore there exists
ε > 0 such that θ̇ is strictly negative on (a, a + ε]. Let c = inf{t > a : θ̇(t) ≥ 0} be the first
time θ̇ passes zero after a. The set defining c is disjoint with (a, a + ε] and it is non-empty
because it contains b, by assumption. In particular, c 6= a. By continuity, θ̇(c) = 0, because if
θ̇(c) > 0 there would exist a + ε < t < c with θ̇(t) = 0 contradicting the definition of c, see
e.g., Rudin [42] Theorem 5.12. For the same reason, θ̇(t) < 0 for all t ∈ (a, c). Now, since θ
is twice differentiable at c, the limit

lim
t→c−

θ̇(t)− θ̇(c)
t− c

= lim
t→c−

θ̇(t)
t− c

(A15)

exists and equals θ̈(c); however, since θ̇(t) < 0 in an interval to the left of c, we find θ̈(c) ≥ 0
contradicting (A14). We conclude that θ can have at most one stationary point.

By Lemma A2 we know that θ attains its unique maximum at some tm ∈ R, and as just
shown this is the only stationary point. Consequently, θ̇(t) > 0 for all t < tm, and θ̇(t) < 0
for all t > tm, and we conclude the θ is strongly unimodal.

Theorem 1. Assume − ∂
∂t log µ(x, t) = ρ(t) > 0 for all x, i.e., the rates of improvement is the

same for all ages and strictly positive at all times. If c(x) > 1 for all x, and

∂

∂x
log

(
µm(I−1

m (x, t), t)
µ f (I−1

f (x, t), t)

)
≤ 0, (A16)
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for all t ∈ R, and all x where the argument is defined, then θ is strictly unimodal on R.

Proof. By Lemma A3 it suffices to prove condition (A14). The first and second derivatives
of θ are given by

θ̇(t) = ρ(t)
∫ ω

0

[
I f (x, t)e−I f (x,t) − Im(x, t)e−Im(x,t)

]
dx, (A17)

θ̈(t) = ρ̇(t)
∫ ω

0

[
I f (x, t)e−I f (x,t) − Im(x, t)e−Im(x,t)

]
dx

+ ρ2(t)
∫ ω

0

[
(I2

f (x, t)− I f (x, t))e−I f (x,t) − (I2
m(x, t)− Im(x, t))e−Im(x,t)

]
dx. (A18)

Fix a t ∈ R for which θ̇(t) = 0. We then obtain from (A17) that θ̈(t) reduces to

θ̈(t) = ρ2(t)
∫ ω

0

[
I2

f (x, t)e−I f (x,t) − I2
m(x, t)e−Im(x,t)

]
dx. (A19)

Thus, to establish (A14) it suffices to establish that the integral in (A19) is negative.
The proof relies on an invocation of Lemma A1. To bring θ̇(t) and θ̈(t) on a form

more suitable for this purpose, we introduce, with slight abuse of notation, the variable
transform z = I(x, t) and write

θ̇(t) = ρ(t)
[∫ I f (ω,t)

0
f f (z, t)dz−

∫ Im(ω,t)

0
fm(z, t)dz

]
, (A20)

θ̈(t) = ρ2(t)
[∫ I f (ω,t)

0
z f f (z, t)dz−

∫ Im(ω,t)

0
z fm(z, t)dz

]
, (A21)

where fg(z, t) = ze−z/µg(I−1
g (z, t), t), for g ∈ { f , m}, is the (transformed) integrand of the

integrals in (A17). We note that I is invertible by the inverse function theorem, see e.g.,
Rudin [42] Theorem 9.24.

Now, since assumption (A2) of Lemma A1 is equivalent to assumption (18) of
Theorem 1, that is,

∂

∂z
log

(
f f (z, t)
fm(z, t)

)
=

∂

∂z
log

(
µm(I−1

m (z, t), t)
µ f (I−1

f (z, t), t)

)
≤ 0, (A22)

and since µm(x, t) > µ f (x, t) for all x implies that Im(ω, t) > I f (ω, t), we can invoke
Lemma A1 to obtain that∫ I f (ω,t)

0
z f f (z, t)dz <

∫ Im(ω,t)

0
z fm(z, t)dz. (A23)

It immediately follows that the integral in (A21), and thereby the integral in (A19), is
negative, and we are done.

Appendix B. Graduation of µ(x)

Suppose we have data on deaths, D(x), and exposures, E(x), for integer ages x ∈
{0, . . . , 110}. By smoothing the empirical death rates, m(x) = D(x)/E(x), we wish to obtain
an improved representation of the true underlying mortality curve, µ(x). An example of
the graduation procedure described below applied to data is shown in Figure A1.
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Figure A1. Empiric (dots) and graduated (line) death rates. The graduated mortality curve is
computed through (A27).

Appendix B.1. General Smoothing

Within the observed age range (0–110) we fit a cubic smoothing spline to the observed
death rates, i.e., we model m by an additive noise model m(x) = f (x) + ε(x) where ε(x) is
assumed iid with mean zero and the cubic smoothing spline estimate f̂ of f minimizes

∑
x∈X

[
m(x)− f̂ (x)

]2
+ λ

∫
f̂ ′′(u)2 du (A24)

where the smoothing parameter λ is fitted through cross-validation and

X = {0, 1, 10, 20, 30, 40, 50, 60, 70, 80, 110}

is the set of knots used. From f̂ , we can obtain smoothed estimates µ̂spline(x) = f̂ (x) for
general (non-integer) x.

Appendix B.2. Old-Age Smoothing

For the highest ages, we smooth the mortality curve by fitting a logistic function to the
observed death rates for ages 80 and above. That is, we fit the Kannisto model

logit µ(x; a, b) = a + b(x− 80), (A25)

with parameters a, b ∈ R, cf. Thatcher et al. [43]. The parameters are found by maximizing
a Poisson log-likelihood

log L(a, b) =
99

∑
x=80

[D(x) log µ(x; a, b)− E(x)µ(x; a, b)], (A26)

for data in the age-range 80–99. Substituting the maximum likelihood estimates â and b̂
into (A25) yields smoothed death rates µ̂logit(x) = µ(x; â, b̂).
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Appendix B.3. Mortality for the Combined Curve

We calculate smooth death rates for the entire age range by the weighted average

µ̂(x) = µ̂spline(x)(1− w(x)) + µ̂logit(x)w(x), (A27)

with weights w(x) = min(1, max((x− 80)/20, 0)) for x ∈ [0, 110].

Appendix C. Life Expectancy under Piecewise Constancy

Suppose that mortality is piecewise constant over squares of the form [x, x + 1)×
[t, t + 1) for integer ages x ∈ {0, . . . , 110} = X and calendar years t ∈ T , that is, suppose

µ(x + ∆x, t + ∆t) = µ(x, t), ∆x, ∆t ∈ [0, 1),

for all x ∈ X , t ∈ T . The assumption of piecewise constancy is convenient for many
calculations of life table related quantities. In particular, for any integer age of truncation,
ω ∈ {0, . . . , 111}, the (truncated) life expectancy can be evaluated analytically as:

e(x, t) =
∫ ω

x
e−
∫ y

x µ(z,t)dz dy

=
ω−1

∑
i=x

∫ i+1

i
e−
∫ y

x µ(z,t)dz dy

=
ω−1

∑
i=x

(∫ i+1

i
e−
∫ y

i µ(z,t)dz dy
)

e−
∫ i

x µ(z,t)dz

=
ω−1

∑
i=x

(∫ i+1

i
e−µ(i,t)(y−i) dy

)
e−∑i−1

j=x
∫ j+1

j µ(z,t)dz

=
ω−1

∑
i=x

[
− e−µ(i,t)(y−i)

µ(i, t)

]i+1

i

e−∑i−1
j=x µ(j,t)

=
ω−1

∑
i=x

1− e−µ(i,t)

µ(i, t)
e−∑i−1

j=x µ(j,t).

We use ω = 110 throughout the paper.
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