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Abstract: Because of the non-linearity inherent in energy commodity prices, traditional mono-scale
smoothing methodologies cannot accommodate their unique properties. From this viewpoint, we
propose an extended mode decomposition method useful for the time-frequency analysis, which
can adapt to various non-stationarity signals relevant for enhancing forecasting performance in the
era of big data. To this extent, we employ variants of mode decomposition-based extreme learning
machines namely: (i) Complete Ensemble Empirical Mode Decomposition with Adaptive Noise-
based ELM Model (CEEMDAN-ELM), (ii) Ensemble Empirical Mode Decomposition-based ELM
Model (EEMD-ELM) and (iii) Empirical Mode Decomposition Based ELM Model (EMD-ELM), which
cut-across soft computing and artificial intelligence to analyze multi-commodity time series data by
decomposing them into seven independent intrinsic modes and one residual with varying frequencies
that depict some interesting characterization of price volatility. Our findings show that in terms of the
model-specific forecast accuracy measures different dynamics in the two scenarios namely the (non)
COVID periods. However, the introduction of a benchmark, namely the autoregressive integrated
moving average model (ARIMA) reveals a slight change in the earlier dynamics, where ARIMA
outperform our proposed models in the Japan gas and the US gas markets. To check the superiority
of our models, we apply the model-confidence set (MCS) and the Kolmogorov-Smirnov Predictive
Ability test (KSPA) with more preference for the former in a multi-commodity framework, which
reveals that in the pre-COVID era, CEEMDAN-ELM shows persistence and superiority in accurately
forecasting Crude oil, Japan gas, and US gas. Nonetheless, this paradigm changed during the COVID-
era, where CEEMDAN-ELM favored Japan gas, US gas, and coal market with different rankings via
the Model confidence set evaluation methods. Overall, our numerical experiment indicates that all
decomposition-based extreme learning machines are superior to the benchmark model.

Keywords: energy commodity price analysis; ensemble empirical mode decomposition; forecasting;
intrinsic mode function

1. Introduction

The efficient functioning of markets for natural gas, coal, and crude oil among others
is quite relevant for the rational allocation of scarce resources and for the effective and
timely attainment of environmental targets such as climate change mitigation, and of the
goal toward achieving a net-zero carbon economy. The current soaring prices of energy
can be related to different factors. For instance, this includes the rebound of demand
after the lock-downs—specifically, an era where a vaccine is found, and a lot of people
have been vaccinated. In addition to the aforementioned, there was a drop in renewable
electricity penetration from a lack of wind in Europe during larger parts of the year
2021 (https://www.wsj.com/articles/soaring-energy-prices-only-the-beginning-climate-
change-net-zero-renewable-wind-electricity-11641417084 (accessed on 24 February 2022).
However, energy market prices keep on fluctuating from time to time, which makes the
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market unpredictable most of the time and hence, requires various sophisticated prediction
models for both short-term forecast and long-term forecast.

One characterization of the energy market is its fluctuation. This remains a fact in
that while prices are on the excessively high side, the market continues to be hugely
unpredictable, and it becomes increasingly a difficult task for anyone to provide a view
on the trajectory of the prices in the long term. Nevertheless, these predictions are quite
relevant for various market players including consumers and prosumers. In this paper,
we focus on the log-price changes of commodity prices under consideration. For example,
most historical data do reflect the complexity of volatility characterizations of energy
market prices namely: (i) non-linearity, (ii) uncertainty, and (iii) dynamics, thus making the
forecasting of these prices a daunting task. This normally influences and causes significantly
high uncertainties that may finally cause significant turmoil, which affects the returns of
related investors. In effect, it disrupts and negatively influences the steady development of
our social economy, which describes the current state of the world because of COVID-19
and the tension in Ukraine. Specifically, this tension has sent global crude oil prices to
record highs, with the Brent price surging above US$105/bbl on 24 February 2022 for
the first time since summer 2014, and the US West Texas Intermediate (WTI) exceeding
US$100/bbl (https://www.enerdata.net/publications/daily-energy-news/us-plans-oil-
release-after-ukraine-related-surge-global-crude-oil-prices (accessed on 26 February 2022).
As mentioned by [1], the price volatility of energy assets such as natural gas, crude oil,
and coal among others do influence electricity prices, which altogether directly have
significant economic impacts on different sectors of the economy. This, therefore, provides
a natural platform to account for accurate price changes and volatility forecasts. In other
words, accurate energy price volatility and changes in price predictions are very valuable for
the reliable and stable operational security of energy systems. To this extent, it is worthwhile
analyzing all these four commodities because of the significant role they play in the energy
system starting from their industrial consumption as well as individual consumers.

On the other hand, in this dispensation of big data, correctly harnessing data, and thus,
providing accurate forecasts can aid better and fact-based decision-making. This dispen-
sation has seen very fast and unpredictable changes, where several people are connected
to each other through mobile devices and the Internet of things (IoT)/and Internet of
Everything (IoE), and as such most of the product that surrounds us is becoming more
complex day by day. This cannot be achieved by traditional models and hence the need
for cutting-edge research methods such as artificial intelligence and soft computing either
stand-alone or in combination with traditional models can provide an improved mod-
eling framework relevant for decision making. In this light, we employ a combination
of models namely the Complementary Ensemble Empirical Mode Decomposition with
Adaptive Noise-based ELM Model (CEEMDAN-ELM), the Ensemble Empirical Mode
Decomposition Based ELM Model (EEMD-ELM), and the Empirical Mode Decomposition
Based ELM Model (EMD-ELM) to investigate multi-commodity prices in terms of their
forecasting performances. Notably, the original empirical mode decomposition model
(EMD) pioneered by [2] provides a self-adaptive decomposition approach, which enhances
the forecast accuracy of non-linear and non-stationary time series data. As indicated by
these authors, their main conceptual innovations lie in the introduction of the intrinsic
mode functions which depend on the local properties of the signal and contribute positively
to the instantaneous frequencies, thereby eliminating other representations for non-linearity
and non-stationary via spurious harmonics. Meanwhile, this approach has seen several
extensions in the works of [3–5] among many others. Some recent papers that use combined
forecast include ([6] Section 2.6); who highlight the fact that given several forecasts of sim-
ilar events, then, the forecast combination is set forth to estimate the combined weights
of each forecast such that the accuracy of the combination of forecasts outperforms the
forecast accuracy of the individual forecasts. From this viewpoint, this paper utilizes the
univariate forecast as the benchmark and the combined forecast to examine the energy
commodity prices.

https://www.enerdata.net/publications/daily-energy-news/us-plans-oil-release-after-ukraine-related-surge-global-crude-oil-prices
https://www.enerdata.net/publications/daily-energy-news/us-plans-oil-release-after-ukraine-related-surge-global-crude-oil-prices
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On the other hand, as mentioned by ([6] Section 3.4), when there is an extensive
expert dispersion in the panel of forecasts being combined, it is likely that some individ-
ual ones might appear to be outliers. In this case, a single expert forecast might suffice
instead of relying on the whole sample of forecasts. In effect, Ref. [7] argued that com-
bining a small crowd might be powerful in practice, creating some form of diversity.
In addition, Ref. [6] (Section 3.4.6) pointed out that collaborative forecasting in the energy
sector, which reflects the combination of geographically distributed time-series data, is
capable of delivering significant improvements in the forecasting accuracy of each re-
newable energy power plant. This shares similitude with our modeling approach, which
utilizes different modeling frameworks to examine energy commodities and exploit their
forecasting performances, thereby delivering significant enhancement in forecast accuracy.
Also, the quest to accurately forecast energy commodities seems to always pose a chal-
lenge for several reasons. For example, Ref. [8] suggested that crude oil price evolution
is inherently not predictable. Nonetheless, this perception is changing, given various
promising forecast models, which our approach seeks to contribute to and thus provide
new insights. Motivated by the aforementioned issues, a hybrid model that combines
various decomposition models with extreme learning machines is proposed for forecasting
energy commodities. Apart from the combined models, we select a univariate forecasting
model as our benchmark, specifically, in a similar framework of [9], the autoregressive
integrated moving average model (ARIMA) is utilized to forecast the price return series of
energy commodities.

The main contribution and motivation for this study is to propose variants of ensemble
empirical mode decomposition-based extreme learning machine approach for energy
commodity price forecasting and compare its predictive ability among the competing
variant forecasting techniques. From a broad perspective and to the best of our knowledge,
there is no paper, that utilizes our proposed hybrid model in the forecasting of multi-
commodity energy prices, and therefore, this paper provides a benchmark, which could
be applied in other related markets. In view of the competitive advantages and benefits
of econometric models in combination with soft-computing methods in depicting and
capturing the non-linearity, and dynamic features, our proposed method is suitable for
multi-commodity price forecasting. For robustness check, we consider two scenarios
namely (i) before the COVID-19 period and (ii) during the COVID-19 outbreak, to provide
a clear-cut and meaningful insight into the adaptability of the modeling framework in
(non)-stressful times. Furthermore, the introduction of a univariate benchmark model
showcases the fact that the decomposition-based extreme machine learning outperforms
the benchmark model, which explains the ability of the combined forecasting models to
capture various dynamics such as non-stationarity, non-linearity among others as compared
to other univariate benchmark model based on their predictive accuracy abilities via the
Model confidence set and the Kolmogorov-Smirnov Predictive Accuracy (KSPA) test. Our
results indicate that while both models are suitable and serve the same purpose of detecting
the superiority of the models, the MCS is to be more preferred to the KPSA test due to
its pairwise test limitations. Our approach, present a unique case of multi-commodity
modeling to help identify better modeling performance and highlight the fact that there is
no one-size-fits-all situation. All in all, the decomposition-based extreme learning machines
are superior to the benchmark model, which, therefore, provide a promising tool in this
era of big data that has the potential to aid better data-driven decision making and hence,
relevant for practitioners in the commodity markets, which could be employed in other
commodity markets.

The subsequent sections are organized as follows. Section 2 presents an overview of
the literature. Section 3 describes the formulation process of the proposed variants of the
EMD-based extreme learning machine in detail. Section 4 provides a preliminary analysis
of the data set utilized. To demonstrate and verify our findings, four main energy price
series, specifically, coal, natural gas (from Japan and US), and crude oil price series are
used to test the efficiency and effectiveness of the proposed modeling framework, and the
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corresponding findings are detailed in Section 5. Finally, we provide some concluding
remarks in Section 6.

2. Literature Review

The history of forecasting transcends various decades because of its usefulness and the
inherent economic benefits. This paper explores decomposition-based forecasting models
to examine their effectiveness and superiority in predicting commodity prices. Generally,
the decomposition-based models in the various strands of literature appear to have three
structures or stages as pointed out by [10], which concur with the structure depicted in
Figure 1, is in line with our approach. The functioning of this method rests in the de-
composition of time series into several sub-series, which are used for further processing.
For example, Ref. [11] utilized an empirical mode decomposition (EMD) in combination
with a neural network ensemble learning paradigm to predict world crude oil spot price.
For instance, they highlight the fact that their findings reveal the attractiveness of the
proposed EMD-based neural network ensemble learning framework. To enhance the pre-
diction of PV power generation, Ref. [12] employed two methodologies namely: (i) online
sequential extreme learning machine (OS-ELM), and (ii) EMD-ELM forecasting methods
are used for short, medium, and long-term forecasting of PV generation. According to their
simulation results, the OS-ELM forecasting approach presents a better-generalized perfor-
mance and higher forecast accuracy than the combination of EMD and ELM forecasting
methodologies, which they pointed out can aid the regulation of the generation of grid
energy management.

In addition, it provides a platform to schedule the power generation coupled with
supporting the integrated power control necessary for safety purposes and optimal per-
formance of power systems. Ref. [13] provide wavelet decomposed ensemble technique
that underlies heterogeneous market hypothesis. This assumes the non-stationary dynam-
ics of the underlying market structure. Their results show superior performance from
two perspectives; that is, at both level and directional predictive accuracy. On the other
hand, Ref. [14] uses a novel compressed sensing-based learning technique via integrating
compressed sensing coupled with de-noising (CSD) and certain artificial intelligence (AI)
approaches, which reduces the level of noise that pollutes the data, and further, enhances
the prediction performance of the AI model. Furthermore, Ref. [15] employs an ensemble
learning paradigm coupling complementary ensemble empirical mode decomposition
(CEEMD) and extended extreme learning machine (EELM), which they argue is an im-
provement under the effective “decomposition and ensemble” approach. As explained,
this is true, especially for non-linear, complex, and irregular data. According to them, their
method provides a promising forecasting technique for complicated time series data with
high volatility in addition to various irregularities inherent in it. Ref. [16] estimate how
efficient clean energy markets are by proposing a multi-scale complexity analysis method,
which they explain can capture a comprehensive complexity framework relevant for both
overall dynamics and hidden features (in different time scales) and identify the leading
factors that contribute to their complexity.

Furthermore, Ref. [17] uses daily data for spot and future prices to examine the
frequency-dependent asymmetric relationship that exists between futures and spot markets
of crude oil, gold, and natural gas (GON). Moreover, Ref. [18] employs deep learning for
extracting high-level abstract features from a large amount of raw data without relying on
prior knowledge, which they argue, is potentially attractive in forecasting financial time
series. On the one hand, Ref. [19] present a hybrid forecasting model that combines (i) ran-
dom forest (RF), (ii) improved grey ideal value approximation (IGIVA), (iii) complementary
ensemble empirical mode decomposition (CEEMD), (iv) the particle swarm optimization
algorithm based on dynamic inertia factor (DIFPSO), and (v) back-propagation neural
network (BPNN) for the mitigation of solar curtailment caused by large-scale development
of photovoltaic (PV) power generation for accurate forecasting of PV power production.
Recently, Ref. [20] utilize an adaptive hybrid ensemble learning paradigm integrating com-



Forecasting 2022, 4 542

plementary ensemble empirical mode decomposition (CEEMD), autoregressive integrated
moving average (ARIMA), and sparse Bayesian learning (SBL) for accurate prediction
of crude oil prices. Ref. [21] put forward a new de-noising method that combines the
Ensemble Empirical mode decomposition (EEMD), which in comparison with the discrete
wavelet transform (DWT) threshold. This, therefore, reveal that the EEMD technique can
provide a powerful tool for de-noising seismic signals.

Due to the uncertain characteristics of wind, Ref. [22] recommends a hybrid fore-
casting model for forecasting wind power to improve the performance of the prediction.
In particular, they proposed an improved long short-term memory network-enhanced
forget-gate network (LSTM-EFG) model, whose appropriate parameters are optimized
using the cuckoo search optimization algorithm (CSO), to forecast the sub-series data that
is extracted using ensemble empirical mode decomposition (EEMD). Overall, their experi-
ment shows that the proposed forecasting model overcomes the limitations of traditional
forecasting models and efficiently improves forecasting accuracy. Some related works
include [23] who perform accurate short-term wind speed prediction for early warning
and regulation of wind farms starting with the signal decomposition technique (ensemble
empirical mode decomposition) in combination with the binary-coded searching method
known as the genetic algorithm and the advanced recurrent neural network with the long
short-term memory unit.

Figure 1. Flowchart of the procedures used in the hybrid modeling framework.

In effect, Ref. [24] uses the energy consumption data forecasting model combined
with the EEMD-ARMA prediction model to make predictions of the non-linear and non-
stationary characteristics of industrial energy consumption data. Ref. [25] develop an
effective technique for land surface albedo prediction from Moderate-Resolution Imaging
Spectroradiometer (MODIS) time series albedo data (MCD43A3), which utilizes the ensem-
ble empirical mode decomposition (EEMD) method to decompose the MODIS historical
time series albedo data into several intrinsic mode functions (IMFs) and one residual series.
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As a follow-up, a non-linear autoregressive neural network (NARnet) method is used
to forecast each IMF component and residue, which provides an overall better forecast.
Ref. [10] provide forecasting approaches and are detailed review of decomposition-based
wind forecasting methods to explore their effectiveness. In consequence, they indicate
the following classification: (i) wavelet, (ii) empirical mode decomposition, (iii) seasonal
adjust methods, (iv) variation mode decomposition, (v) intrinsic time-scale decomposition,
and (vi) Bernaola Galvan algorithm among many others. In this article, we contribute
to the literature in view of the fact that we employ different decomposition hybrid mod-
els with extensions to extreme learning machines and exploit their accuracy in a multi-
commodity framework.

3. Methodology

This section presents the overall process, which underpins the variants of the EMD-
based extreme learning machine paradigm. In the first place, the EMD technique and
extreme learning machine forecasting approach are concisely reviewed and the variants of
the EMD-ELM methodology is proposed.

3.1. Empirical Mode Decomposition (EMD) Approach

The empirical mode decomposition (EMD) approach can be defined as an adaptive
time series decomposition method that uses the Hilbert-Huang transform (HHT) for analyz-
ing the non-linear and stationary time series data. The functioning of the EMD rests in the
decomposition of a time series into a sum of oscillatory functions called the intrinsic mode
functions (IMFs). Note that every IMF has a varying amplitude and frequency modulation
for the time series data. The necessary requirement for the EMD includes:

• The number of extrema (sum of maxima and minima) and the number of zero crossings
should be equal to or differ from each other at most by one.

• The average value of the envelopes detected by the local maxima and the minima
should be equal to one at every point.

In other words, for a given price, yt, the steps of EMD can be illustrated as follows:

• Compute all the local maximum and minimum points of yt
• Join all the local maximum and minimum points with a spline function, which culmi-

nate into the upper envelope, yup
t and the lower envelope ylow

t , respectively.
• Calculate point-by-point envelope mean µ(t) from the lower and upper envelopes

such that we have

µ(t) =
yup

t + ylow
t

2
(1)

• Subtract the mean from the input data series, St(t) = yt − µt(t)
• Check whether St(t) satisfies IMFs’ conditions or not. If the condition is satisfied, then,

it is the first IMF. Else, repeat the procedure k times until S(1k) is the first IMF which
is represented by ct(1). In this way, the first residual rt(1) becomes:

rt(1) = yt − ct(1) (2)

Utilizing another input data in place of yt in a sifting process in line with [2], the above
steps are repeated for the remaining n− 1 IMFs, that is, (ct(2), ct(3) · · · , ct(n)) such that

yt =
n

∑
i=1

ct(i) + rt (3)

It is obvious that one can achieve decomposition of the data series into two major
components namely: (i) n-empirical mode functions, and (ii) a residual. However, the con-
stituents of the IMF in each frequency band are different. In effect, they change with
variation of the time series x(t). On the other hand, rn(t) depicts the central tendency of
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data series x(t). Overall, the EMD technique has several competitive advantages in that it
provides a platform for easy implementation and can be easily understood. On the other
hand, the fluctuation within the time series is instantly and adaptively chosen from the
time series, which is resilient to non-linear and non-stationary time series decomposition.
Admittedly, the IMFs’ residual components are characteristic of the time series under con-
sideration. Despite all these advantages, one main drawback is the mode mixing problem,
which, according to [26,27], may impact the implication and physical meaning of IMFs,
which led to the development of the Ensemble EMD (EEMD) method by [28] as discussed
in the subsequent sections.

3.2. The Ensemble Empirical Mode Decomposition (EEMD) Model Approach

As already mentioned, the Ensemble Empirical mode decomposition (EEMD) devel-
oped by [28] tends to overcome the major weakness of the EMD, which is the mode mixing
issue. The algorithm for the EEMD is detailed as follows:

1. Generate the number of the ensemble (M ) and the amplitude of the added Gaussian
white noises, with i = 1.

2. Add a white noise series with the given amplitude to energy price series X (t)
as follows:

Xi(t) = X (t) + ni(t) (4)

where ni(t) represents the i-th added white noise series, and Xi(t) depicts the noise-
added energy price series of the i-th trial.

3. The energy price series is decomposed, that is Xi(t) is decomposed into k IMFs
cik(j = 1, 2, . . . , k) using the EMD method, where cik is the k-th IMF of the i-th trial
and j is the number of IMFs.

4. Suppose i < M then go to Step (2) with i = i + 1, and repeat Steps (2) and (3) again
with different white noise series.

5. Calculate the ensemble mean ck(t) of N trials for each IMF of the decomposition as
the final result as follows:

ck(t) =
1

N

N

∑
i=1

cik(t), i = 1, 2, · · · , N ; k = 1, 2, · · · , K. (5)

where ck(t)(k = 1, 2, · · · , K) is the k-th IMF component based on the EEMD method.
Overall, the i-th IMFs denoted ct(i) and the final residual rt can be deduced as:

ct(i) =
1

N

N

∑
j=1

ct(ij) and rt =
1

N

N

∑
j=1

rt(j) (6)

and therefore, we have the following:

yt =
N

∑
j=1

cj(i) + rt (7)

3.3. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Method

This section presents the complementary Ensemble Empirical Mode Decomposition (It
is worth noting that the “complete” and “complementary” in relation to mode decomposi-
tion have been used interchangeably) in the framework of [29]. One main characterization
of the ensemble empirical mode decomposition (EEMD) is that it relies on averaging
the modes obtained by EMD, which is then applied to several realizations of Gaussian
white noise coupled with the original signal. The decomposition was deduced, as a result,
overcoming the EMD mode mixing problem. However, according to [29], there is an
introduction of new mixing problems. As such, Ref. [29] proposed the CEEMD, which
has the competitive and computational advantage over the EEMD by requiring less than
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half the sifting iterations that EEMD does. In addition, the original signal can be exactly
reconstructed with the summation of the modes. On the other hand, the CEEMD tends
to recover some of the properties of EMD such as completeness and a fully data-driven
number of modes [29]. We detail the procedure for the CEEMD as follows: Suppose we
denote IMFk as the decomposition modes, then our unique first residual is computed as:

rn
1 = xn − IMFn

1 (8)

where IMFk is obtained in a similar way as in EEMD. Next, we compute the first EMD
mode over an ensemble of rn

1 in addition to the different realizations of a given noise to
obtain the IMF2. Repeat this procedure until a stopping time is attained. Suppose that the
signal generating operator is denoted by E(), which produces the j-th mode obtained by
EMD. Given that ωi is Gaussian white noise with N (0, 1). Suppose that xn is our targeted
data, then the procedure for the CEEMD can be detailed as follows:

1. Decompose using N EMD realizations: xn + ξ0ωi
n to obtain their first modes

and calculate

IMFn
1 =

1
N

N

∑
i=1

IMFn
1 (9)

2. During the first stage (k = 1) compute the first residual as in xn + ξ0ωi
n

3. Decompose the realizations xn + ξ1Eωi
n ∀i = 1, · · · , N until the first mode is reached

and define the second mode:

IMFn
2 =

1
N

N

∑
i=1

E(r1|n) + ξ1E
(

ωi
n

)
(10)

4. for k = 2, · · · , K , compute the k-th residual:

rk
n = rn

k−1 − IMFn
k (11)

5. Decompose the realizations rk
n = rn

k−1 − IMFn
k until their first EMD mode and define

the k + 1-th mode as follows:

IMFn
(k+1) =

1
N

N

∑
i=1

E
(

rn
k + ξkE

(
ωi

n

))
(12)

6. we proceed to step 4 for the next k.

Notably, steps 4 and 6 are conducted until the residual is exhausted and no more
feasible for further decomposition activities in that we cannot obtain at least two extrema.
From the foregoing, the final residual conforms to:

R = xn −
N

∑
k=1

IMFk, (13)

where K is the total number of modes. In this sense the given signal

xn =
N

∑
k=1

IMFk + Rn (14)

Overall, Equation (14) completes the decomposition and details an exact reconstruction
of the original data.
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3.4. The Extreme Learning Machines Method

This subsequent section provides an overview of the extreme learning machines
method, which is an extensively, effective, and useful algorithm in terms of both classifi-
cation and regression analysis. For instance, Ref. [30] highlighted its good generalization
capabilities and its fast speed operational performance. Furthermore, ELM provides some
desirable advantages such that in addition to the extremely fast learning speed, it also
offers less human intervention, and it is highly computationally scalable. All of these
make it more preferred to other machine learning algorithms [30]. For instance, in the
framework of [31], ELM provides a forward-looking approach for training single hidden
layer feed-forward networks. This makes it achieve the effects of extreme learning within a
short time span. Besides, the hidden layer parameters require no iterative tuning. More-
over, the computation of the weights of output can simply be achieved by least-square
optimization [31,32]. Overall, ELM depicts a single hidden layer feed-forward network
(SLFN). Figure 2 presents an overview of an SLFN, which shows various features such as
the input layer and the output layer among others.

Figure 2. A graphical display of single layer feed-forward network.

Suppose that M is an arbitrary distinct sample such that (xi, ti) ∈ (Rd ×Rm). Let xi
be the extracted feature vector. Furthermore, let ti be the target output. In terms of the
SLFNs, the mathematical formulation of the model with L hidden nodes is given as:

L

∑
i=1

βigi
(

xj
)
=

L

∑
i=1

βiQ
(
aj, bj, xj

)
= t̂j, such that j = (1, · · · , N ) (15)

where t̂j is the output of the SLFNs. In other words, Q(ai, bi, xj) is the hidden layer feature
mapping. As mentioned by [33], the hidden layer parameters (ai, bi) can be randomly
generated such that ELM tend to approximate the expected targets, which can be deduced
as follows:

‖Z β̂− t‖ = min
β
‖Z β− t‖. (16)

where

Z =


Q(a1, b1, x1) · · · Q(aL, bL, xL)

... · · ·
...

...
. . .

...
Qa1, b1, XN · · · Q(aL, bL, XN)


N ×L

β =


βT

l
...
...

βT
L


L×m

T =


tT
l
...
...

tT
L


L×M

With the above representation, the least square framework is useful for solving
the above optimization problem such that the output weight β can be obtained via the
following equation:

β̂ = Z ∗T (17)
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where Z ∗ is the Moore-Penrose generalization of the inverse of matrix Z . The procedure
for the implementation of the ELM is given as follows:

1. First, we generate hidden nodes parameters in a random manner such that (ai, bj)
and i = 1· · · , L , where L is the parameter of ELM and represent the number of
hidden nodes.

2. Next, we compute the hidden layer mapped feature matrix Z as illustrated above.
3. Finally, we compute the weight of the output via the least square optimization method

ω : β̂ = Z ∗T.

3.5. The Hybrid Modelling Framework

In this section, we present the different empirical mode decomposition time se-
ries, which give rise to Empirical based-extreme learning models. Because some of the
IMFs generated in EMD and EEMD become non-useful and therefore degrade the per-
formance of these algorithms. In effect, to reduce the computation efficiency of these
techniques, Ref. [29] proposed the CEEMDAN, which ameliorates this issue by generat-
ing fewer IMFs and hence, reducing the computational cost. Combining the CEEMDAN
with ELM results in the complementary Ensemble Empirical Mode Decomposition with
Adaptive Noise based Extreme Learning Machine model (CEEMDAN-ELM) For further
details see [28,32]. On the one hand, as already mentioned the Ensemble Empirical Mode
Decomposition (EEMD) method can significantly reduce the chance of mode mixing and
therefore depict a substantial improvement over the original EMD. A further improvement
is obtained by combining the Ensemble Empirical Mode Decomposition-based Extreme
Learning Machine model, which results in EEMD-ELM. Finally, using the EMD, the origi-
nal time series is decomposed into several independent intrinsic mode functions (IMFs)
and one residual component as already mentioned. Applying extreme learning machines,
which is a feed-forward neural network, one can forecast the IMFs and residual components
individually [32].

In essence, the forecast outcomes of all IMFs including residual are aggregated to
formulate an ensemble output for the original time series, which gives rise to Empirical
Mode Decomposition-based Extreme Learning Machine model (EMD-ELM). Figure 1
presents the step-by-step procedure involved in the hybrid modeling framework, which
is a summary of all the steps for the various stages of the analysis. This is divided into
three major steps with the final step comprising the combination of the different modeling
techniques coupled with the extreme learning machines to produce a combined forecast.

3.6. The Evaluation Criteria for Forecasting Performance

This section presents the forecasting performance methods employed in this study. In a
similar framework of [34], we utilized model-specific statistical loss functions, i.e., Mean
Square Error-type (MSE-type), Mean Absolute Error-type (The “type” representation sim-
ply implies that these loss functions are computed based on the different models under
consideration) (MAE-type), MAPE-type, etc., to evaluate the out-of-sample forecasting
performance of the energy commodities. All these functions can be generally formulated as
given below:

MAPE =
1

T −N

T

∑
t=N +1

|ĥi − ht|
ĥi

× 100% (18)

MAE =
1

T −N

T

∑
t=N +1

|ĥi − ht|
n

(19)

RMSE =

√√√√ T

∑
t=N +1

(
ĥi − ht

n

)2

(20)

where ĥi denote the forecast value and ht is the actual value at time t.
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4. Data Description

This subsequent section provides an overview of the data utilized in this paper. We
consider monthly data of energy commodity time series, which include crude oil, natural
gas, and coal starting from January 2005 to September 2021, and therefore accommodate
various crisis periods including the outbreak of COVID-19. The data is freely available and
can be obtained from the world bank database at the website (https://www.worldbank.org/
en/research/commodity-markets, accessed on 5 January 2022). The descriptive statistics
and the corresponding time evolution of the energy series are reported in Table 1 and
Figure 3, respectively. On the other hand, Figure 4 presents the corresponding return
dynamics. Our sample encompasses different energy assets with varying levels of risk
and return. In addition, it entails different utilities in an energy portfolio of mixed assets,
which is relevant for various investors in the marketplace. Due to the non-stationarity of
the data based on ERS ([35]) in relation to the unit-root test, we compute the differences in
logarithms of the series, see Table 2 for an overview and further details. The descriptive
statistics of the return series (Table 1) reveal that coal exhibits the highest price variations,
which is not surprising; and can be explained by the severe adverse effect of the COVID-19
on energy prices [36] and the increasing goal of attaining a net-zero carbon economy. Our
exploratory data analysis framework shows that the series significantly exhibit abnormal
distributions in line with [37]. On the other hand, the series are not stationary at 1%
significance level. Noteworthy, the series and the squared series exhibit pronounced
autocorrelation as explained by [38]. This, therefore, represent the fact that the mean and
the variance are time-varying.

Jan 2005 Jan 2007 Jan 2009 Jan 2011 Jan 2013 Jan 2015 Jan 2017 Jan 2019 Jan 2021

0

1

2

3

4

5 Crude

JGAS

UGAS

Coal

Figure 3. Time plot of energy commodity series of coal, gas and crude oil between years (2005–2021).

Table 1. Descriptive statistics of energy assets: crude oil, gas (US gas and Japan Gas) and coal.

Energy Code Mean SD Min Max Skew Kurtosis

Crude oil CRD 0.2636 10.1290 −50.4742 36.7201 −1.2688 5.0712
Japan gas JGA 0.4696 6.1088 −22.4218 25.0053 −0.7262 2.7630
US gas UGA −0.0929 14.4156 −67.6120 63.7232 0.0408 3.6945
Coal COL 0.6265 8.0579 −32.8504 36.3734 0.3296 3.0500

Table 3 present the unconditional correlation matrix based on the return price series
over the full sample period considered in this study. The JGAS index exhibit a negative
correlation with crude oil assets, whereas crude oil and coal show the strongest positive
correlation, which perhaps might have some real-world implications.

https://www.worldbank.org/en/research/commodity-markets
https://www.worldbank.org/en/research/commodity-markets
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Figure 4. A graphical display of the scaled return series of energy asset return price series.

Table 2. Statistical tests.

Crude JGAS UGAS Coal

JB 108.697 *** 111.685 *** 447.204 *** 440.158 ***
(0.000) (0.000) (0.000) (0.000)

ERS −5.854 *** −4.829 *** −7.196 *** −3.527 ***
(0.000) (0.000) (0.000) (0.001)

Q1.20. 53.709 *** 62.392 *** 14.701 42.609 ***
(0.000) (0.000) (0.135) (0.000)

Q2.20. 80.412 *** 23.502 *** 75.723 *** 64.959 ***
(0.000) (0.004) (0.000) (0.000)

It is worth noting that the values in parenthesis represent the p-value and the *** denote significance level at 1%;
and the statistical tests reported in Table 2 are namely: Skewness: test; Kurtosis: test; JB: normality test; ERS: unit-
root test; and Q1(20) and Q2(20): weighted portmanteau test. Source: Processing based on author’s calculations.
Notably, a similar analysis is carried out about different asset classes with crude oil inclusive in [39].

Table 3. Correlation table of energy assets.

Commodity Code Crude JGAS UGAS Coal

Crude oil Crude 1 −0.081 0.209 0.407
Japan gas JGAS −0.081 1 0.138 0.154

US gas UGAS 0.209 0.138 1 0.140
Coal Coal 0.407 0.154 0.140 1

Suppose Pi,t denote the monthly price of asset i on trading day t, then the monthly
returns, denoted Rm

i,t, are computed as the logarithmic difference between successive
monthly prices, where m- superscript stands for month.

Rm
i,t = 100× log

([
Pi,t

Pi,t−1

])
= 100× (log Pi,t − log Pi,t−1) (21)

5. Experiment

In this section, we employ our modeling framework to examine the accuracy of fore-
casts based on the different proposed models and to evaluate their forecasting performance.
In view of this, we examine the Complementary Ensemble Empirical Mode Decomposition
with Adaptive Noise-based ELM Model (CEEMDAN-ELM), Ensemble Empirical Mode
Decomposition Based ELM Model (EEMD-ELM), and the Empirical Mode Decomposition
Based ELM Model (EMD-ELM) based on the data under consideration. For robustness
check, we utilized the Autoregressive Integrated Moving Average model (ARIMA) as
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a benchmark. The accuracy of the forecasting estimation is deduced based on various
forecast measures such as the Mean Absolute Error (MAE-type), the Root Mean Square
Error (RMSE-type), and the Mean percentage Error (MAPE-type), which are detailed in
Tables 4 and 5.

Table 4. Forecasting measures based on MAE, MAPE and RMSE for pre-COVID-19 era. We indicate
the minimum forecast error estimates in bold. The minimums are deduced with and without the
benchmark, hence this distinction is necessary in order to observe the minimum when comparing
the models.

Models Forecast Error Measures Crude-Forecast Error JGAS-Forecast Error UGAS-Forecast Error Coal-Forecast Error

CEEMDAN-ELM CEEMDAN-ELM-MAE 0.096 0.082 0.172 0.067
CEEMDAN-ELM-MAPE 1.019 0.545 −0.515 −6.314
CEEMDAN-ELM-RMSE 0.125 0.107 0.288 0.076

EEMD-ELM EEMD-ELM-MAE 0.134 0.079 0.237 0.063

EEMD-ELM-MAPE 0.155 0.491 −0.294 −2.827
EEMD-ELM-RMSE 0.184 0.103 0.327 0.081

EMD-ELM EMD-ELM-MAE 0.049 0.131 0.285 0.077
EMD-ELM-MAPE −1.094 1.239 2.452 −12.789
EMD-ELM-RMSE 0.066 0.185 0.359 0.092

ARIMA ARIMA-MAE 0.103 0.066 0.066 0.062
ARIMA-MAPE 153.769 196.325 196.325 595.974
ARIMA-RMSE 0.172 0.096 0.096 0.077

Table 5. Forecasting performance based on MAE, MAPE, and RMSE during COVID-19 outbreak.

Models Forecast Error Measures Crude-Forecast Error JGAS-Forecast Error UGAS-Forecast Error Coal-Forecast Error

CEEMDAN-ELM CEEMDAN-ELM-MAE 0.170 0.146 0.279 0.066
CEEMDAN-ELM-MAPE −0.487 1.485 −1.144 −10.554
CEEMDAN-ELM-RMSE 0.185 0.158 0.344 0.085

EEMD-ELM EEMD-ELM-MAE 0.138 0.098 0.287 0.063
EEMD-ELM-MAPE −0.407 1.078 0.113 −4.173
EEMD-ELM-RMSE 0.158 0.119 0.327 0.085

EMD-ELM EMD-ELM-MAE 0.152 0.251 0.246 -
EMD-ELM-MAPE −0.545 2.904 −0.704 -
EMD-ELM-RMSE 0.166 0.297 0.300 -

ARIMA-MAE 0.122 0.080 0.180 0.070
ARIMA-MAPE 139.372 217.657 213.537 691.603
ARIMA-RMSE 0.206 0.114 0.298 0.087

Noteworthy is that we started in January 2020 because the rumors about COVID-19 started as early as November
2019. The lowest forecast error estimates are indicated in bold, however, this is done with and without the
benchmark, hence, one should consider the decomposition-based models separately and the benchmark to see the
different minimum deduced.

Forecasting Results

As earlier mentioned, the performance of the EEMD is worsened by some of the
IMFs. However, this situation is overcome by the CEEMDAN-ELM, which results in fewer
IMFs. Considering this, employing the CEEMDAN-ELM, we conduct various forecasting
activities that result in a combination of forecast values of all individual IMFs. An example
of this IMFs decomposition for UGAS and JGAS based on CEEMDAN-ELM in the pre-
COVID era and stressful paradigm are reported in Figures 5–8. Figures 5 and 6 forms a
complete set, however, it has been split for clarity of display. A similar situation applies to
Figures 7 and 8.
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Figure 5. Part A: Parts of the IMFs for US gas prices.

Figure 6. Part B: The remaining IMFs and residuals for US gas prices.
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Figure 7. Part A: Part of the IMFs for Japan gas prices.

Figure 8. Part B: The remainder of the IMFs and residuals for Japan gas prices.
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On the other hand, the EEMD seeks to reduce the change of mode mixing, which is
an improvement on EMD as already discussed. Hence, extending this to extreme learning
machines does lead to an improved forecasting performance. From this viewpoint, of
forecasting the generated IMFs, we deduce the combination of forecast values for all
individual IMFs, which are reported in Tables 4 and 5. In consequence, we employ the
EMD-based ELM in a similar framework, which entails decomposing the original series
followed by the application of ELM to forecast the individual IMFs generated and finally
deducing the combined forecast. In effect, the accuracy of these forecasts is derived based
on the individual model-specific framework, that is, for the EMD-ELM, we have the
Mean Absolute Error (MAE) for EMD-ELM model (MAE-EMD-ELM), the Mean Absolute
Percentage Error (MAPE) for EMD-ELM model (MAPE-EMD-ELM), and Root Mean Square
Error (RMSE) for EMD-ELM model (RMSE-EMD-ELM).

From the lenses of the sifting process, we obtain 7 IMFs in addition to one residual
for all the energy price series. It is worth noting that all the IMFs deduced ranges from
the highest frequency to the lowest frequency. The residuals show a varying movement
toward the long-term average. Using our research methodology, the forecast experiment
conducted using the energy commodity time series data exhibit varying dynamics. After the
decomposition, as illustrated, for example in Figures 9–12 (Figure 9 is a continuation of
Figure 10 and similarly Figure 11 is again continuation of Figure 12. We split the diagrams
for clarity of the graphical display, which depicts the IMFs and the residuals produced),
the ELM coupled with the iterated strategy is used to forecast the extracted IMFs and the
remaining components. In consequence, the prediction outcome of a 12-month horizon is
considered for all the energy commodity series among the decomposition-based extreme
learning machines in relation to the benchmark model. For each scenario, we separate the
data into two parts, which are the training and the test data set. Specifically, for the first
scenario, which depicts the pre-COVID period, we consider January 2005 to December 2018
as in-sample data and January 2019 to December 2019 as the out-of-sample data. Shifting
the aforementioned dataset over 12 months leads to the second scenario, which has January
2005 to December 2019 as the in-sample data, and January 2020 to December 2020 as the
out of sample data with the specific purpose of comparing normal times, indicative of the
non-COVID period and the COVID-period itself.

Figure 9. Panel A: Part of the IMFs for Japan gas prices in normal times.
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Figure 10. Panel B: The remaining IMFs for Japan gas prices in normal times.

Figure 11. Panel A: Part of the IMFs for Japan gas prices in stressful periods.
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Figure 12. Panel B: The subsequent parts of the IMFs and residuals for Japan gas prices in stress-
ful periods.

Moreover, using the different accuracy forecast measures, it is obvious that CEEMDAN-
ELM is best suitable for forecasting UGAS in the pre-crisis periods based on model-specific
forecasting measures, which can be inferred from Table 4 with the combined forecast final
values for all the IMFs reported in Panel A of Figure 13. However, this is not the case
during the COVID-19 outbreak. The CEEMDAN-ELM provides the best forecast for Coal
instead in this period. On the other hand, the EEMD-ELM provides an accurate forecast
for JGAS in the pre-COVID-19 era whereas the crude oil is the best forecast using the
EMD-ELM based on all the three forecasts accuracy measures. One interesting observation
is that coal, crude oil, and JGAS strives with EEMD-ELM and appears to be useful for
forecasting purposes during the crisis period. Unlike the normal era, which is the period
before the COVID-19, coal could not survive the test for EMD-ELM during the stressful
periods, which is in our case; the COVID-19 dispensation. All in all, it is evident that
EEMD-ELM exhibit some degree of resilience in providing an accurate forecast in both
paradigms. The plot of the actual series and the forecast series also reveals the dynamics
of the predictions of the different modeling frameworks See Figures 13 and 14 for an
overview. Figures 13 and 14 display the forecast of the various models. In effect, a complete
overview of the two eras shows that the models utilized are capable of capturing various
dynamics in the data. On the whole, we consider a 12-month forecast horizon for the
two scenarios under consideration. The scenarios described above are observed based
solely on the decomposition-based extreme learning machine models. However, the above
dynamics changed with the introduction of a benchmark model; namely the autoregressive
integrated moving average model (ARIMA). The complete model framework is depicted in
ARIMA (p, d, q), where p is the order of the autoregressive part, d, represents the number
of differencing required to make the time series stationary, and q depicts the order of the
moving average part.

In particular, we employ the autoregressive integrated moving average, which is a
commonly used technique to fit most time series data and for forecasting purposes. After all
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the necessary checks and balances in terms of the autocorrelation function (ACF) and the
partial autocorrelation function (PACF), the series shows that AR (1) is appropriate to use
on the energy commodity time series data because the ACF tail off and the PACF cuts in
the first lag. As such, we apply the ARIMA (1,1,0) to model the energy commodity price
changes, whose forecasts could be observed in the different panels of Figures 13 and 14.
Surprisingly, comparing the benchmark model with the decomposition-based extreme
learning machine models based on model-specific forecast error measures (i.e. minimum
values of ARIMA-MAE and ARIMA-RMSE) shows that the ARIMA model outperforms
the other models in favor of the JGAS and the UGAS markets in both two scenarios, which
the before COVID-19 and during COVID-19 periods.

Furthermore, to check the superiority of our modeling framework, this paper utilizes
the model confidence set (MCS) pioneered by [40] to select a set of superior models in
the scenarios under consideration (A package in R to evaluate the MCS has been written
by [40]). A MCS is a representation of the construction of a set of models such that it selects
only the best models with a given level of confidence. The MCS accommodates various
limitations of the data, in which case, if the data is not informative, it yields an MCS with
many models. Otherwise, if it is informative enough, it yields an MCS with only a few
models. It is worth noting that the MCS method does not assume that a particular model is
the true model and therefore can be applied without loss of generalization. We, therefore,
apply the MCS to our models including the benchmark model. One characterization of
the MCS is that a model is discarded only if it is found to be significantly inferior to
another model. A competitive advantage of the MCS in comparison with other selection
procedures is that the MCS acknowledges the limits to the information contained in the
data. In effect, the MCS procedure yields a set of models that summarizes key sample
information. The differences in the forecasting performances of all these approaches have
been compared and tested by means of the MCS. The details of the outcome of the MCS
evaluation is reported for the two scenarios in Tables 6 and 7 respectively. Some important
results emerge. Based on each commodity, we have rankings that depict the model that
performs best. For example, in 2019, CEEMDAN-ELM favors crude oil, JGAS, and UGAS
only, whilst the MCS captures UGAS and Coal for EEMD-ELM. These dynamics, however,
changed in 2020 with EMD-ELM featuring in the MCS for all the commodities, except Coal,
which resulted in CEEMDAN-ELM after the MCS evaluation. One unique observation
based on the MCS is that all the decomposition-based extreme learning machine framework
is captured by the MCS in favor of UGAS. Nonetheless, it is worth noting that the ARIMA
is completely absent from the MCS, which already shows that the decomposition-based
extreme learning machines outperform the ARIMA modeling framework. In this case,
the decomposition-based extreme learning machine models appear to be the more superior
models. The inferiority of the benchmark is due to the fact that it cannot capture the
non-linearity (see Figure 15 for a reference) as compared to the other three models, which
are the CEEMDAN-ELM, EEMD-ELM, and the EMD-ELM models that exhibit various non-
linear dynamics. This is evident in the pre-COVID-19 era as well as during the COVID-19
dispensation.
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Figure 13. Actual price return series versus price return forecast of (CEEMDAN-ELM, EEMD-ELM,
EMD-ELM) hybrid models in 2019. Notably, the abscissa denotes the time in months and the ordinate
depicts the forecast errors. (top) Panel A: Actual price return series versus price return forecast of
crude oil, gas, and coal in 2019 based on CEEMDAN-ELM. It with noting that the abscissa denotes
the time in months and the ordinate depicts the forecast errors. (middle) Panel B: Actual price return
series versus price forecast of crude oil, gas, and coal in 2019 based on EEMD-ELM. Also, here,
the abscissa denotes the time in months and the ordinate depicts the forecast errors. (bottom) Panel
C: Price forecast of crude oil, gas, and coal in 2020 based on EMD-ELM. The x-axis represents time
measured in years whilst the y-axis represents the forecast errors.
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Figure 14. Actual price return series versus price return forecast of (CEEMDAN-ELM, EEMD-ELM,
EMD-ELM) hybrid models in 2020. (top) Panel A: Actual price return series versus CEEMDAN-ELM-
based price forecast of crude oil, gas, and coal in 2018. (middle) Panel B: Actual price return series
versus EEMD-ELM-based price return forecast of crude oil, gas, and coal in 2019. (bottom) Panel C:
Actual price return series versus EMD-ELM-based price return forecast of crude oil, gas, and coal
in 2020.
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Table 6. Model confidence set: Resulting superiority set of models in 2019.

Energy Assets Model Ranking

Crude CEEMDAN–ELM 1.000

JGAS CEEMDAN–ELM 1.000

UGAS CEEMDAN–ELM 1.000
EEMD–ELM 2.000

Coal EEMD–ELM 1.000

Table 7. Model confidence set: Resulting superiority set of models in 2020.

Energy Asset Model Ranking

Crude EEMD–ELM_Crude 2.000
EMD–ELM 1.000

JGas CEEMDAN–ELM 1.000
EEMD–ELM 2.000

UGas CEEMDAN–ELM 2.000
EEMD–ELM 3.000
EMD–ELM 1.000

Coal CEEMDAN–ELM 1.000
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Figure 15. Actual price return series versus price return ARIMA-based forecast in 2019 and 2020.
(top) Panel A: Actual price return series versus ARIMA-based price return forecast of crude oil, gas,
and coal in 2019. (bottom) Panel B: Actual price return series versus ARIMA-based price return
forecast of crude oil, gas, and coal in 2020.
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An alternative to the MCS is the possibility of using a statistical test that distinguishes
between the predictive accuracy of two sets of forecasts. This is based on the principles
of the Kolmogorov-Smirnov (KS) test, which is referred to as the KS Predictive Accuracy
(KSPA) test. As indicated by [41], a small number of observations result in an accurate
KSPA test establishing a statistically significant difference between the forecasts. The KSPA
test comes along with another competitive advantage in that it can compare the empirical
cumulative distribution function of the errors from two forecasting models because of the
nature of these computations. On the other hand, it is non-parametric, which implies that it
makes no assumption based on the characterizations of the underlying errors. In a similar
viewpoint, since our forecast horizon is 12-months, employing the KSPA test resulted in a
statistically significant difference between the pairwise comparisons. However, in a multi-
commodity framework, these comparisons become a daunting task as pointed out by [41],
hence we propose that the MCS might be a suitable choice in this sense. Nonetheless,
with some extensions of the KSPA to a multivariate fashion, it might be an ideal choice
for these types of analysis. As an illustration, Figure 16 present a graphical display of the
cumulative distribution function of UGAS forecast errors, which shows various variation
among the different modeling framework. CEEMDAN-ELM followed by EEMD-ELM
represent better random variations in the sense that the smaller the error deviation the
better the forecast accuracy; a result which is not far from the relative accomplishment of the
MCS comparatively. Nonetheless, a slight variation could be observed in the US gas market
in 2020 as displayed in Figure 17. This is evident between EMD-ELM and EEMD-ELM as
well as between CEEMDAN-ELM and EEMD-ELM errors. However, the ARIMA errors
exhibit the largest variations in 2019 and 2020.

Figure 16. Empirical cumulative distribution function of US gas in 2019.

Figure 17. Empirical cumulative distribution function of US gas in 2020.
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6. Conclusions

This paper has successfully proposed and employed the extended empirical mode
decomposition useful for the time-frequency analysis method, which can adapt to various
non-stationarity signals and thus enhance forecasting performance in this era of the informa-
tion age, where there is the prevalence of huge volumes of data in the energy sector that are
hard to manage. In particular, variants of ensemble empirical mode decomposition-based
extreme learning machines namely: (i) Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise-based ELM Model, (ii) Ensemble Empirical Mode Decomposition-
based ELM Model (EEMD-ELM) and (iii) Empirical Mode Decomposition-based ELM
Model (EMD-ELM) have been utilized in the spirit of soft computing and artificial intelli-
gence to analyze multi-commodity time series via decomposition methods, which exhibit
relevant features for volatility forecasting.

In addition, the ARIMA model has been introduced as a benchmark in the two
scenarios, which has revealed that the decomposition-based extreme learning machine
outperforms the benchmark model, which explains the ability of the combined forecasting
models to capture various dynamics such as non-stationarity, non-linearity among others as
compared to other univariate benchmark model based on their predictive accuracy abilities.
To this extent, we perform robustness checks to test the superiority of the models by using
the Model confidence set and the Kolmogorov-Smirnov Predictive Accuracy (KSPA) test.
We find that while both models are suitable and serve the same purpose of detecting the
superiority of the models, the MCS is more preferred to the KPSA test due to its pairwise
test limitations. Nonetheless, a quick illustration shows that the results might not be quite
disparate from each other. Overall, our findings provide model-specific forecast accuracy
measures, which reveal that CEEMDAN-ELM, EEMD-ELM, and EMD-ELM provide the
best forecast for US gas, Japan gas, crude oil, respectively, before the outbreak of COVID-19.
Furthermore, we obtain mixed results during the COVID-19 outbreak. In consequence,
EEMD-ELM shows resilience in providing an accurate forecast for Japanese gas in both non-
stressful and stressful periods. The foregoing showcases the situation when the comparison
is based on the decomposition-based extreme learning machines only. On the other hand,
a slight change in dynamics is observed with the introduction of a benchmark, where the
ARIMA model outperforms the decomposition-based extreme learning machine models in
the case of the Japan gas and the US gas markets.

However, applying the Model confidence set in the pre-COVID era, CEEMDAN-ELM
shows persistence and superiority in accurately forecasting Crude oil, JGAS, and UGAS.
Nonetheless, this paradigm changed in the COVID-era, which saw CEEMDAN-ELM
favoring JGAS, UGAS, and coal with different rankings via the Model confidence set
evaluation methods. Overall, all decomposition-based extreme learning machines are
superior to the benchmark model. Our modeling framework provides promising tools in
this era of big data that have the potential to aid better and fact-based decision making
and hence, are relevant for policymakers and various actors in the commodity markets
and provide a platform for consideration in other commodity markets. This study is not
without limitations. One of the shortcomings of this study is that various underlying
factors influence prices and hence an extension to capture these underlying factors might
be a consideration for future research, specifically, in a multivariate fashion. Moreover,
this study is limited to point forecasting, hence, interval forecasting might be considered
for future research, which could be of great value to various practitioners in the energy
commodity market and beyond.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AR Autogression
ACF Autocorrelation function
PACF Partial Autocorrelation function
ARIMA Autoregressive Integrated moving average
BPNN Back-propagation neural network
CEEMDAN-ELM Complete Ensemble Empirical Mode

Decomposition with Adaptive Noise-based ELM Model
COVID-19 Coronavirus pandemic
CSO Cuckoo Search Optimization
CSD Compressed sensing coupled with de-noising
DIFPSO Particle Swarm Optimization-based on Dynamic Inertia Factor
DWT Discrete wavelet transform
EEMD-ELM Ensemble Empirical Mode Decomposition-based ELM Model
EMD-ELM Empirical Mode Decomposition-based ELM Model
ELM Extreme learning machine
EMD Empirical mode decomposition
GON Gold, crude oil and natural gas
HHT Hilbert-Huang transform
IGIVA Improved Grey Ideal Value Approximation
IMF Intrinsic mode function
IoT Internet of Things
IoE Internet of Everything
JGAS Japan Gas
LSTM-EFG Long Short-term Memory Network Enhanced Forget Network
MAE Mean-Absolute-Error
MAPE Mean-Absolute-Percentage-Error
MCS Model-confidence set
KSPA Kolmogorov-Smirnov Predictive Ability test
MODIS Moderate-Resolution Imaging Spectroradiometer
NARnet Nonlinear autoregressive neural network
WTI West Texas Intermediate
PV Photovoltaic
OS-ELM online extreme learning machines
RF Random forest
RMSE Root-Mean-Square-Error
SBL sparse Bayesian learning
SLFNs Single hidden layer forward networks
UGAS US Gas
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