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Abstract: Electrical load forecasting study is required in electric power systems for different applica-
tions with respect to the specific time horizon, such as optimal operations, grid stability, Demand Side
Management (DSM) and long-term strategic planning. In this context, machine learning and data
analytics models represent a valuable tool to cope with the intrinsic complexity and especially design
future demand-side advanced services. The main novelty in this paper is that the combination of a
Recurrent Neural Network (RNN) and Principal Component Analysis (PCA) techniques is proposed
to improve the forecasting capability of the hourly load on an electric power substation. A historical
dataset of measured loads related to a 33/11 kV MV substation is considered in India as a case study,
in order to properly validate the designed method. Based on the presented numerical results, the
proposed approach proved itself to accurately predict loads with a reduced dimensionality of input
data, thus minimizing the overall computational effort.

Keywords: load forecasting; recurrent neural network; self adaptive Adam optimizer; Principal
Component Analysis; Hourly Ahead Market

1. Introduction

Nowadays, the energy system is facing a radical revolution towards a green transition,
with increasing penetration of renewable energy sources (RES), migration to distributed sys-
tems, with new actors like prosumers, and storage integration, both utility scale and domestic,
which represent a key technology to decouple energy production and consumption [1].

In this regard, distributed sensor architectures, digital technology, data analytics
and computational tools would represent crucial enabling technologies for monitoring,
forecasting and maintenance purposes, to better manage the balance between power
demand and supply, and to improve embedding of distributed RES; additionally, for the
particular case of stand-alone hybrid systems, energy forecasting will particularly help
anticipating customers’ behavior, sizing the electrical infrastructure and improving overall
system reliability [2]. Therefore, forecasting capability brings helpful insights for security
of energy supply, supporting power companies in providing their end-users with advanced
demand-side services, and safe and stable systems.

Utility companies have several advantages with accurate load forecasting, such as
reduced operation and maintenance costs, optimized management of demand supply, in-
creased system reliability, effective long-term strategic planning for future investments [3,4].
Electrical load forecasting can be generally divided into four main categories based on
forecasting time, such as very short-term, short-term [5], medium-term and long-term load
forecasting [6]. Load forecasting with different applications with respect to the specific
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time horizon, such as optimal operations [7], grid stability [8], Demand Side Management
(DSM) [9] or long-term strategic planning [10].

On the other hand, with respect to short-term load forecasting, energy trading is
another important task for utilities to successfully increase revenues on the day-ahead
energy market models. Power wholesale markets have around the world many different
mechanisms and day-ahead or infra-day sessions, e.g., in India two categories exist based
on trading time, such as Hourly Ahead Market (HAM) and Day Ahead Market (DAM).
In HAM, one hour before the time of energy use, energy trading will be open. Similarly,
for DAM, one day before the time of energy use, energy can be traded [11].

A methodology was developed for short-Term load forecasting by combining Light
Gradient Boosting Machine (LGBM), eXtreme Gradient Boosting machine (XGB) and Multi-
Layer Perceptron (MLP) models in [12]. In this hybrid model both XGB-LGBM combining
is used for meta-data generation. A multi-temporal-spatial-scale temporal convolutional
network was used in [13] to predict active power load. The multi-temporal-spatial-scale
technique is used to minimize noise in load data. A hybrid clustering-based deep learning
methodology was developed in [14] for short-term load forecasting. Clustering technique
was used to make different clusters of distribution transformers based on load profile.
Markov-chain mixture distribution model is developed in [15] to predict the load of resi-
dential customers by 30 min ahead. A study was done for load forecasting using various
machine learning models like SVM, Random Forest and LSTM [16] both individually and
with a fusion prediction approach. Short-Term load forecasting was done using convolu-
tional neural networks (CNN) and sequence models like LSTM and GRU in [17]. CNN
was used for feature extraction and sequence models are used for load forecasting. A CNN
and Deep Residual Network based machine learning model was developed in [18] for
short-Term load forecasting. Various regression models along with correlation concept for
dimensionality reduction were used for load forecasting in [19]. LSTM and factor analysis
based deep learning model was developed in [20] for load foresting within a smart cities
environment. Artificial neural network based machine learning models were developed
both for photovoltaic power forecasting [21], and load forecasting on MV distribution
networks [22]. Most of the papers on probabilistic renewable generation forecasting lit-
erature over the last ten years or so have focused on different variants of statistical and
machine learning approaches: in [23] a comparison of non-parametric approaches to this
probabilistic forecasting problem has been performed. All these methodologies in litera-
ture contributed significantly to face short-term electric power load forecasting problems.
In order to improve the forecasting accuracy and also to build a light weight model for
active power load forecasting applied to a 33/11 kV substation, a new approach was devel-
oped in this paper by using recurrent neural networks for load forecasting and Principal
Component Analysis for dimensional reduction.

The novelty of the proposed approach consists in a hybrid approach combining the
heterogeneous input structure with PCA: in particular, the new approach considers the
temporal impact of the previous three hours data and three days at the same hour data,
and the previous three weeks at the same hour data, thus enabling the model to predict load
with good accuracy by properly capturing temporal resolution diversity (e.g., the weekends
load pattern); additionally, PCA is able to extract the most essential features from the given
nine input information, thus compacting the input layer and reducing computational load,
maintaining the same overall accuracy. The combination of RNN and PCA is used for
the first time in short-term load forecasting problem. RNN models were trained using
self adaptive Adam optimizer as shown in [24]. Complete literature summary on short-
term load forecasting domain with various machine learning approaches is presented in
Table 1. All these methodologies provides valuable contribution towards short-term load
forecasting but have some limitations like model complexity, accuracy and weekly impact
not considered. In this paper, accuracy in load prediction is improved by tuning the RNN
model parameters, model complexity reduced by using Principle Component Analysis and
weekly impact considered by using features like P(h− 168), P(h− 336) and P(h− 504).
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Table 1. Literature summary.

Reference Year Contribution Disadvantage

[12] 2021 novel stacking ensemble-based algorithm Model complexity
[13] 2021 multi-temporal-spatial-scale technique Missing Weekly impact
[14] 2021 k-Medoid based algorithm Model complexity
[15] 2021 Markov-chain mixture distribution model Accuracy
[16] 2021 Fusion forecasting approach Accuracy
[17] 2021 Bi-directional GRU and LSTM Model complexity
[18] 2021 Deep Residual Network with convolution layer Model complexity
[19] 2021 Regression Models Accuracy
[20] 2021 LSTM and Factor Analysis Accuracy
[22] 2020 ANN Accuracy

2. Methodology
2.1. Dimensionality Reduction Using Principal Component Analysis (PCA)

Principal Component Analysis (PCA) uses the extraction features approach to com-
press the original dataset to a lower subspace feature, with the aim of maintaining most
of the relevant information. Detailed procedure for most relevant feature extraction using
PCA is drawn from [25].

2.2. Recurrent Neural Network (RNN)

The Recurrent Neural Network (RNN) is a network where the activation status of
each hidden neuron for the previous input is used to calculate the activation status of
the hidden neuron for the current input [26]. The main and most important feature of
RNN is the Hidden state, which recalls some information about previous samples. This
work produced four distinct models of RNN i.e., RNN-HAM-Model1 (RHM-1), RNN-
HAM-Model2 (RHM-2), RNN-DAM-Model1 (RDM-1) and RNN-DAM-Model2 (RDM-2)
to forecast power for effective energy trading in Hourly Ahead Market(HAM) and Day
Ahead Market (DAM).

In this study, RHM-1 is designed to predict the load based on the last three hours of
load, load at the same time for the last three days and loading at the same time but for the
last three weeks. The architecture for the proposed RNN model is shown in Figure 1.

Figure 1. The considered architecture.
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The PCA algorithm is applied to the input features of the load dataset to find the
principal components. It has been observed from the CEVR that six principal components
cover almost 90% of the load dataset variance. Thus, the 9 input features i.e., P(h− 1),
P(h− 2), P(h− 3), P(h− 24), P(h− 48), P(h− 72), P(h− 168), P(h− 336) and P(h− 504)
in each dataset sample are replaced by the corresponding six principal components. These
six principal components were used to train the RHM-2. RHM-2 was therefore designed
with six input neurons and one output neuron. The architecture of the proposed RNN
model is the same as shown in Figure 1, where the number of inputs (Ni) is reduced to 6 by
the PCA.

RDM-1 is designed to predict the load based on load at the time of forecasting for the
last three days and load at forecast time but for the last three weeks. The architecture for
the proposed RNN model is the same as shown in Figure 1, where only six input features
are considered, i.e., P(h− 24), P(h− 48), P(h− 72), P(h− 168), P(h− 336) and P(h− 504),
thus Ni = 6.

The PCA algorithm is applied to the input features of the load dataset to find the
principal components. Load dataset consists in total of 6 input features i.e., P(h − 24),
P(h− 48), P(h− 72), P(h− 168), P(h− 336) and P(h− 504), and one output feature P(h). It
has been observed from CEVR that four principal components cover almost 90% of the load
dataset variance. Thus, six input features, i.e., P(h− 24), P(h− 48), P(h− 72), P(h− 168),
P(h − 336) and P(h − 504) for each dataset sample, are converted into four principal
components. These four principal components were used to train the RDM-2. RDM-2 was
therefore designed with four input neurons and one output neuron. The architecture of the
proposed RNN model is the same as shown in Figure 1, where the Ni is finally reduced
to 4 by the PCA. Table 2 resumes all this information about the analyzed RNN models,
with respect to the considered architecture.

Table 2. Summary of the RNN models.

Parameters RHM-1 RHM-2 RDM-1 RDM-2

Input neurons (Ni) 9 6 6 4
Output Neurons (No) 1 1 1 1
Hidden Neurons (Nh) 13 11 13 7
Hidden Layers 1 1 1 1
Hidden Layer activation Tanh Tanh Tanh Tanh
Output Layer activation Sigmoid Sigmoid Sigmoid Sigmoid
Weights & bias 313 210 274 92

Trained RNN model can predict P(h) based on input (X) features using Equations (1)
and (2). Performance of the all these RNN models have been observed in terms of error
metrics like Mean Square Error (MSE), Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) [27] as shown in Equations (3)–(5), respectively.

a < t >= tanh(WaxX + Waaa < t− 1 > +ba) (1)

P(h) = sigmoid(Wyaa < t > +by) (2)

MSE =
1
n

n

∑
i=1

(Ytrue
i −Ypred

i )2 (3)

MAE =
∑n

i=1 |Ytrue
i −Ypred

i |
n

(4)

RMSE =

√
1
n

n

∑
i=1

(Ytrue
i −Ypred

i )2 (5)

The complete work done in this paper is presented in Figure 2.
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Figure 2. Proposed work flow diagram.

3. Result Analysis

Data was captured from [28] to train and test the models. This load data consists
of a total of 2184 samples (91 days × 24 h) and these data are rearranged into a 1680,
i.e., (2184− (3(W)× 7(D)× 24(h)))× 10 matrix. The first nine columns represent nine
input features, whereas the 10th column represents target output (load). Statistical features
of the load dataset that have been used to train the RNN model is presented in Table 3.
The frequency distribution of output load data values is represented in terms of histogram
plot as shown in Figure 3,

Figure 3. Histogram plot for output feature P(h).

Table 3. Load data statistics.

Statistical Parameters Output P(h)

Count 1680.00
Mean 5904.52
Std. 1077.75
Min 3377.92
25% 5138.90
50% 5795.62
75% 6618.66
Max 8841.67

Number of training samples 1512
Number of testing samples 168
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3.1. Load Forecasting for HAM-(RHM-1)

The train and test datasets for “RHM-1” comprise a total of 1680 observations. Out of
1680 load data samples, 1512 were chosen for training and 168 for validation. For several
hidden neurons the performance of the model in terms of performance metrics was ob-
served during both training and testing, as shown in Table 4. Table 4 indicates that models
performance in terms of training and test accuracy grows to 13 hidden neurons. If the
number of occluded neurons exceeds 13 it is excessively fit and leads in further test errors.
At this point, the “RHM-1” is deemed an optimum model, with 13 hidden neurons.

Table 4. Impact of hidden neurons on the performance of the model “RHM-1”.

Nodes
Training Testing Trainable

MSE RMSE MAE Param

21 0.0104 0.124 0.093 673
18 0.0103 0.120 0.088 523
15 0.0102 0.115 0.081 391
13 0.0101 0.115 0.08 313
11 0.0102 0.117 0.083 243
10 0.0104 0.117 0.083 211

In addition, the number of hidden layers in the RNN model was raised to boost
the model’s performance (RHM-1). The performance of the model with different levels
was measured using the performance metrics as illustrated in Table 5. Each hidden layer
consists of 13 neurons. It was seen from Table 5 that the model performs well with only
one hidden layer. The test error values rise for the same loss of training if the number of
hidden layers is more than one. This indicates that if the number of hidden layers is greater
than one, then the model gets overfit. Furthermore, as the number of hidden layers rises,
the number of training parameters increases the needed memory and processing time.

Table 5. Impact of hidden layers on the performance of the model “RHM-1”.

No. of Hidden Training Testing Trainable

Layers Nodes MSE RMSE MAE Parameters

1 13 0.01 0.115 0.08 313
2 13 0.01 0.124 0.094 664
3 13 0.01 0.131 0.1 1015

The suggested model, i.e., RNN-HAM-Mode11, has been trained 10 fold in the same
data set and is judged to be the ideal load prediction model in real time when the best values
for training and validation errors were given. The performance of the suggested ’RHM-1’
model is observed in stochastic environment and shown in Table 6. For all error matrices
that reflect the sturdy behavior of the “RHM-1” architecture, the standard deviation is
noted to be virtually null.
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Table 6. Statistical performance of the model (RHM-1).

Statistical Parameters
Training Testing

MSE RMSE MAE

count 10 10 10
mean 0.0103 0.1168 0.0831

std 0.000125 0.001751 0.003725
min 0.0101 0.115 0.079
25% 0.0103 0.11525 0.08
50% 0.0103 0.1165 0.082
75% 0.010375 0.11775 0.08575
max 0.0105 0.12 0.09

3.2. Load Forecasting for HAM-(RHM-2)

The PCA algorithm is applied to the input features of the load dataset to find the prin-
cipal components. The total variance in the dataset covered by each principal component
and the cumulative variance covered are shown in Figure 4. It shows that six principal
components cover almost 90% of the variance in the load dataset. Outcome of PCA that
feeda as input to RNN for first 10 datasamples are presented in Table 7.

Table 7. Pricipal components for first 10 load data samples used for HAM.

PC-1 PC-2 PC-3 PC-4 PC-5 PC-6

1.15773 −0.03658 −0.15948 0.080498 −0.03406 −0.09375
1.206716 0.022011 −0.06865 0.10224 0.020807 −0.02302
1.317927 0.087764 −0.15442 0.286619 0.173571 0.137578
1.474023 0.247519 −0.14054 0.327771 0.017663 0.282082
1.585102 0.250539 −0.10991 0.301018 0.04917 0.098137
1.528944 0.003412 −0.09801 0.148669 −0.02632 0.071544
1.675344 −0.22242 −0.34602 0.148969 −0.08434 0.103249
1.571563 −0.28011 −0.51846 0.037141 −0.23163 0.15251
1.335613 −0.03608 −0.48765 0.030066 −0.05095 0.214678
1.035098 0.156347 −0.3284 0.417524 −0.17399 0.139219

Figure 4. Variance in the load dataset (for HAM) covered by principal components.

The suggested “RNN-HAM-Model2” has been trained and tested with different num-
ber of hidden neurons to detect the optimal “RNN-HAM-Model2”. The model is observed
in terms of performance measures in the form of Table 8 throughout both the training and



Forecasting 2022, 4 156

testing. The performance of the model has been growing up to 11 hidden neurons with
regard to training and test accuracy, the Table 8 was found. So the optimum model is at
this point in “RHM-2” with 11 hidden neurons.

Table 8. Impact of hidden neurons on the performance of the model “RHM-2”.

Hidden Nodes
Training Testing

Trainable Parameters
MSE RMSE MAE

9 0.0111 0.122 0.089 154
10 0.0114 0.119 0.086 181
11 0.0110 0.117 0.084 210
12 0.0111 0.121 0.088 241
13 0.0110 0.121 0.089 274

The number of layers covered by this model (RHM-2), which was meant to predict
loading one hour sooner, has also been increased. Each layer is comprised of 11 neurons
and performance measurement metrics as shown in Table 9 of a model with different layers
were observed. In Table 9, good test performance was found with only one hidden layer.
If the number of layers concealed is more than one, then the numbers for the test error rise,
then it is overfit if the number of layers hidden is higher than the one.

Table 9. Impact of hidden layers on the performance of the model “RHM-2”.

No. of Hidden Training Testing
Trainable Parameters

Layers Nodes MSE RMSE MAE

1 11 0.0110 0.117 0.084 210
2 11 0.0112 0.119 0.086 463
3 11 0.0113 0.12 0.088 716
4 11 0.0113 0.2 0.087 969

The model, i.e., RNN-HAM-Model 2, is trained ten times in an identical data set and
is regarded to be the ideal model for real-time load prediction for training and validation
errors. Table 10 presents the performance of the suggested model, that is, ‘RHM-2’ inside
stochastic environments, and it is shown that for all error matrices, which indicate strong
performance of the RHM-2 architecture, a standard deviation of practically zero is present.

Table 10. Observations of performance of the RHM-2 in stochastic environment.

Statistical Parameters
Training Testing

MSE RMSE MAE

Count 10 10 10
mean 0.0112 0.1194 0.0861

std 0.0001 0.0014 0.0018
min 0.0110 0.1170 0.0840
25% 0.0112 0.1190 0.0850
50% 0.0112 0.1190 0.0860
75% 0.0113 0.1208 0.0868
max 0.0115 0.1210 0.0890

In Table 11, An original model, i.e., the RHM-1, is compared with the compressed
model, i.e., RHM-2. The RHM-2 is tiny with 210 parameters in relation to the 313 RHM-1.
Due to the little dimensional compression of the model, RHM-2 losses compared to RHM-1
are somewhat greater. Although the workout parameters of “RHM-2” were compressed in
32.91%, losses of MSE, RMSE and MAE correspondingly rose by 4.5%, 1.7% and 5%.
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Table 11. Comparison between RNN models for HAM.

Model Trainable
Parameters

Testing

RMSE MAE

RHM-1 313 0.115 0.080
RHM-2 210 0.117 0.084

% of absolute change 32.91 1.7 5

3.3. Load Forecasting for DAM-(RDM-1)

The suggested model is conditioned and assessed using different numbers of hidden
neurons in order to identify the best RDM-1. In terms of the performance metrics provided
in Table 12, the model performance during training and testing is noted. The outputs
of a model have been seen in Table 12 as regards training and test accuracy increases
up to 13 hidden neurons. RDM-1 is deemed an optimum model at this moment with
13 hidden neurons.

Table 12. Impact of hidden neurons on the performance of the model “RDM-1”.

Hidden
Nodes

Training Testing Trainable
ParametersMSE RMSE MAE

18 0.0155 0.1510 0.1140 469
15 0.0155 0.1500 0.1100 346
13 0.0155 0.1420 0.1030 274
12 0.0155 0.1460 0.1090 241
11 0.0155 0.1480 0.1100 210

In order to enhance performance (RDM-1), the numbers of hidden layers in the RNN
models are increased. There are 13 neurons per hidden layer, the performance of which is
demonstrated in Table 13 is illustrated by performance metrics for the model with different
layers. The model with only one hidden layer has been noticeable in Table 13 for a positive
test performance.

Table 13. Impact of hidden layers on the performance of the model “RDM-1”.

No. of Hidden Training Testing Trainable
ParametersLayers Nodes MSE RMSE MAE

1 13 0.0155 0.142 0.103 274
2 13 0.0154 0.148 0.108 625
3 13 0.0156 0.148 0.109 976

The model recommended, i.e., RDM-1 was trained on the same dataset 10 times and
is regarded the best way to forecast loads in real time in terms of training and validation
errors. Statistical analyses of the training behaviour, shown in Table 14, indicate that the
standard deviation in the RDM-1 Architecture is practically zero for all error matrices
described as robust behaviour.
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Table 14. Statistical training performance of model RDM-1.

Statistical
Parameter

Training Testing

MSE RMSE MAE

Count 10 10 10
mean 0.0155 0.1475 0.1089

std 0.0001 0.0040 0.0041
min 0.0154 0.1420 0.1030
25% 0.0154 0.1440 0.1065
50% 0.0155 0.1475 0.1090
75% 0.0156 0.1498 0.1100
max 0.0157 0.1540 0.1160

3.4. Load Forecasting for DAM-(RDM-2)

The PCA algorithm is applied to the input features of the load dataset to find the
principal components. Load dataset consists of a total of 6 input features, i.e., P(h− 24),
P(h− 48), P(h− 72), P(h− 168), P(h− 336) and P(h− 504), and one output P(h). The total
variance in the dataset covered by each principal component and the cumulative variance
covered are shown in Figure 5. Figure 5 shows that four principal components cover almost
90% of the variance in the load dataset. Thus, six input features, i.e., P(h− 24), P(h− 48),
P(h− 72), P(h− 168), P(h− 336) and P(h− 504) for each dataset sample, are translated
into four principal components. These four principal components were used to train the
RDM-2. RDM-2 was therefore equipped with four input neurons and one output neuron.

Figure 5. Variance in the load dataset (for DAM) covered by principal components.

In order to find the optimal “RDM-2” in terms of the number of hidden neurons,
the proposed “RDM-2” is equipped and evaluated with different numbers of hidden
neurons. The performance of the model during both training and testing is observed in
terms of performance metrics as shown in Table 15. From Table 15, it has been observed
that the performance of the model has increased to 7 hidden neurons in terms of training
and test accuracy. At this point, therefore, RDM-2 with 7 hidden neurons is considered to
be an optimal model.
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Table 15. Impact of hidden neurons on the performance of the model “RDM-2”.

Hidden Nodes
Training Testing

Trainable Param
MSE RMSE MAE

5 0.0165 0.145 0.107 56
6 0.0164 0.144 0.107 73
7 0.0165 0.143 0.106 92
9 0.0167 0.145 0.107 136
11 0.0164 0.146 0.109 188

In addition, there have been higher numbers of hidden layers to improve the model’s
efficiency (RDM-2) for load prediction. Each hidden layer has 7 neurons and performance
metrics as given in Table 15 demonstrate the output of the model with different layers.
From Table 16, good test performance with just one hidden layer has been noticed. If the
number is more than one, the values for the test error are increased, the model becomes
over-fit if the number of hidden layers is higher than one.

Table 16. Impact of hidden layers on the performance of the model “RDM-2”.

No. of Hidden Training Testing
Trainable Parameters

Layers Nodes MSE RMSE MAE

1 7 0.0165 0.143 0.106 92
2 7 0.0165 0.144 0.108 197
3 7 0.0166 0.150 0.114 302

The recommended model, i.e., RDM-2, is trained ten times on the same data set and
is deemed an ideal model for forecasting the load in real time when it has given the best
values in relation to training and validation errors. In Table 17 the statistical analysis of the
suggested model workouts reveals that the standard deviation is practically Nil for all the
error matrices defining resilient behaviour in the RDM-2 architecture.

Table 17. Statistical analysis of RDM-2 architecture.

Statistical Parameters
Training Testing

MSE RMSE MAE

count 10 10 10
mean 0.0165 0.1465 0.1092

std 0.0002 0.0021 0.0029
min 0.0163 0.1430 0.1050
25% 0.0164 0.1448 0.1065
50% 0.0165 0.1470 0.1095
75% 0.0166 0.1480 0.1115
max 0.0168 0.1490 0.1130

In Table 18, the comparison is shown to the original model, namely the RDM-1, and the
compressed model. In comparison with the RDM-1 with 274 parameters the size of RDM-2
is modest with 92 parameters. The model RDM-2 exhibited somewhat higher test losses
than the model RDM-1, due to the distortion of the model with the lower dimensionality.
Although the training size of “RDM-2” has been reduced by 66.42%, losses, i.e, MSE, RMSE
and MAE correspondingly have risen by 2.5%, 0.7% and 1.9%.
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Table 18. Comparison between RNN models for Day Ahead Markets (DAM).

Model Trainable Parameters
Testing

RMSE MAE

RDM-1 274 0.142 0.103
RDM-2 92 5 0.143 0.105

% of absolute change 66.42 0.7 1.9

3.5. Comparative Result Analysis

The performance of the proposed RNN model was verified by comparing with ANN
models [22,29,30], Regression models [19] and LSTM model [20] as presented in Table 19.
It can be observed that the RNN model was able to predict the load with good accu-
racy. The performance of the model was compared statistically with models proposed
in [22,29,30] and statistical metrics presented in Table 20, showing that the proposed RNN
model is statistically robust with zero standard deviation.

Table 19. Validation of models in testing environment.

Model
MSE RMSE

Training Testing Training Testing

ANN Model [29] 0.29 1.59 0.54 1.26
ANN Model [30] 0.23 0.44 0.48 0.66
ANN Model [22] 0.2 0.32 0.45 0.57
SLR Model [19] 0.0973 0.0163 0.312 0.128
PR Model [19] 0.0171 0.0158 0.131 0.126
MLR Model [19] 0.0723 0.0119 0.269 0.109
LSTM-HAM-Model1 [20] 0.0109 0.013 0.104 0.114
LSTM-HAM-Model2 [20] 0.0125 0.0146 0.112 0.121
LSTM-DAM-Model1 [20] 0.0156 0.02 0.125 0.141
LSTM-DAM-Model2 [20] 0.0166 0.02 0.129 0.1414
RHM-1 0.0101 0.0132 0.1 0.115
RHM-2 0.011 0.0138 0.105 0.117
RDM-1 0.0154 0.02 0.124 0.141
RDM-2 0.0163 0.0205 0.128 0.143

Table 20. Validation in probabilistic environment.

Parameter [29] [30] [22] RHM-1 RHM-2 RDM-1 RDM-2

Mean 0.2975 0.2500 0.2250 0.0135 0.0143 0.0215 0.0215
SD 0.0200 0.0100 0.0100 0.0002 0.0003 0.0010 0.0006

Min 0.2800 0.2400 0.2000 0.0132 0.0138 0.0200 0.0205
25% 0.2800 0.2475 0.2175 0.0133 0.0141 0.0208 0.0209
50% 0.2950 0.2500 0.2200 0.0135 0.0143 0.0217 0.0216
75% 0.3050 0.2525 0.2350 0.0136 0.0145 0.0221 0.0218
Max 0.3300 0.2600 0.2500 0.0139 0.0147 0.0232 0.0223

The comparison with real load on 30 November 2018 of the loads forecast is shown
in Figure 6 utilising several suggested RNN models for hourly and day ahead markets.
The expected load of RHM-1 and RHM-2 is closer to real load than RDM-1 and RDM-2,
since the former model forecast loads an hour earlier and one day in advance.

In Table 21, the total training time for various RNN systems with varying batch sizes
is reported. As clearly shown, if we refer to batch size 32 (last row) the number of back-
propagation is significantly reduced with respect to batch size 1, thus resulting in a lower
computational effort as wanted by the authors’ initial design.
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Figure 6. Actual load vs. predicted load.

Table 21. Training computation time (s).

Batch Size RHM-1 RHM-2 RDM-1 RDM-2 No. of Back Propagations

1 624 1167 820 1182 151,200
8 131 148 106 153 18,900
16 74 82 50 85 9500
32 24 24 33 47 4800

In order to show the advantages of using a non-linear approach, the performance
of the proposed RNN model was verified by comparing with commonly used linear
models like Auto Regression (AR) [31], Moving Average (MA) [32], Auto-regressive Moving
Average (ARMA) [33], Auto-regressive Integrated Moving Average (ARIMA) [34] and
Simple Exponential Smoothing (SES) [35], as presented in Table 22. It can be observed that
the RNN model was able to perform better than traditional linear methods in terms of both
RMSE and MAE values of predicted load. Although some concerns have been reported in
literature with respect to using MAE as an accuracy indicator [36], we preferred to show
both RMSE and MAE error metrics for the sake of comparison with results in previously
cited references.

Table 22. Validation of models in testing environment by comparing with classical models.

Model
Testing

RMSE MAE

AR [31] 0.183 0.151
MA [32] 0.194 0.168
ARMA [33] 0.171 0.141
ARIMA [34] 0.175 0.135
SES [35] 0.149 0.124
RHM-1 0.115 0.079
RHM-2 0.117 0.084
RDM-1 0.142 0.103
RDM-2 0.143 0.105

4. Conclusions

An accurate short-term projection of the electric load allows utilities to efficiently sell
their electricity and manage the system on more steady, trustworthy expected information.

In order to ensure that utilities can efficiently trade in energy, the authors proposed
different RNN models, notably RHM-1 and RDM-1 for predicting the load accurately.
Lightweight models, i.e., RHM-2 and RDM-2, present reduced input features by means
of PCA. These light weight models predicted the load with nearly the almost near accu-



Forecasting 2022, 4 162

racy as the original ones but reducing the complexity of the model a lot comparing to
original models.

In this paper, real time load data were obtained from a 33/11 kV substation near the
Kakatiya University in Warangal (India) for training and testing different RNN models in
a practical case study. In order to identify outliers and also to observe the skewedness of
data, suitable preprocessing techniques were employed.

The suggested RNN models were verified in terms of error measures by correlating
them to those reported in the literature. Randomness in forecast using suggested RNN
models is noticed and compared to current models.

Future works could additional take into account external factors and habits, e.g., cli-
mate, weather conditions and particular human behavioral patterns.
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Abbreviations
The following abbreviations are used in this manuscript:

P(h) Load at hth hour
P(h− 1) Load at one hour before from the time of prediction
P(h− 2) Load at two hours before from the time of prediction
P(h− 3) Load at three hours before from time of prediction
P(h− 24) Load at one day before from the time of prediction
P(h− 48) Load at two days before from the time of prediction
P(h− 72) Load at three days before from time of prediction
P(h− 168) Load at one week before from the time of prediction
P(h− 336) Load at two weeks before from the time of prediction
P(h− 504) Load at three weeks before from time of prediction
MSE Mean Square Error
MAE Mean Absolute Error
RMSE Root Mean Square Error
a< t > Hidden neuron current activation state
a< t− 1 > Hidden neuron previous activation state
ba Bias parameter for hidden layer
by Bias parameter for output layer
Wax Weight matrix between input and hidden layer
Wya Weight matrix between output and hidden layer
DAM Day ahead market

https://platoon-project.eu/
https://data.mendeley.com/datasets/ycfwwyyx7d/2
https://data.mendeley.com/datasets/ycfwwyyx7d/2
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HAM Hourly Ahead Market
RHM-1 Recurrent Neural Network Model for hourly ahead market
RHM-2 Light weight recurrent neural network Model for hourly ahead market
RDM-1 Recurrent Neural Network Model for day ahead market
RDM-2 Light weight recurrent neural network Model for day ahead market
Ytrue

i Actual load from ith sample
Ypred

i Predicted load with ith sample

References
1. Ahmad, T.; Chen, H. A review on machine learning forecasting growth trends and their real-time applications in different energy

systems. Sustain. Cities Soc. 2020, 54, 102010. [CrossRef]
2. Akhavan-Hejazi, H.; Mohsenian-Rad, H. Power systems big data analytics: An assessment of paradigm shift barriers and

prospects. Energy Rep. 2018, 4, 91–100. [CrossRef]
3. Almeshaiei, E.; Soltan, H. A methodology for electric power load forecasting. Alex. Eng. J. 2011, 50, 137–144. [CrossRef]
4. Khodayar, M.E.; Wu, H. Demand forecasting in the Smart Grid paradigm: Features and challenges. Electr. J. 2015, 28, 51–62.

[CrossRef]
5. Mansoor, M.; Grimaccia, F.; Leva, S.; Mussetta, M. Comparison of echo state network and feed-forward neural networks in

electrical load forecasting for demand response programs. Math. Comput. Simul. 2021, 184, 282–293. [CrossRef]
6. Su, P.; Tian, X.; Wang, Y.; Deng, S.; Zhao, J.; An, Q.; Wang, Y. Recent trends in load forecasting technology for the operation

optimization of distributed energy system. Energies 2017, 10, 1303. [CrossRef]
7. Zheng, X.; Ran, X.; Cai, M. Short-term load forecasting of power system based on neural network intelligent algorithm. IEEE

Access 2020. [CrossRef]
8. Vasudevan, S. One-Step-Ahead Load Forecasting for Smart Grid Applications. Ph.D. Thesis, The Ohio State University, Columbus,

OH, USA, 2011.
9. Neusser, L.; Canha, L.N. Real-time load forecasting for demand side management with only a few days of history available. In

Proceedings of the 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, 13–17 May
2013; pp. 911–914.

10. Singh, A.K.; Khatoon, S.; Muazzam, M.; Chaturvedi, D.K. Load forecasting techniques and methodologies: A review. In
Proceedings of the 2012 2nd International Conference on Power, Control and Embedded Systems, Allahabad, India, 17–19
December 2012; pp. 1–10.

11. Ahmad, F.; Alam, M.S. Assessment of power exchange based electricity market in India. Energy Strategy Rev. 2019, 23, 163–177.
[CrossRef]

12. Massaoudi, M.; Refaat, S.S.; Chihi, I.; Trabelsi, M.; Oueslati, F.S.; Abu-Rub, H. A novel stacked generalization ensemble-based
hybrid LGBM-XGB-MLP model for Short-Term Load Forecasting. Energy 2021, 214, 118874. [CrossRef]

13. Yin, L.; Xie, J. Multi-temporal-spatial-scale temporal convolution network for short-term load forecasting of power systems. Appl.
Energy 2021, 283, 116328. [CrossRef]

14. Syed, D.; Abu-Rub, H.; Ghrayeb, A.; Refaat, S.S.; Houchati, M.; Bouhali, O.; Bañales, S. Deep learning-based short-term load
forecasting approach in smart grid with clustering and consumption pattern recognition. IEEE Access 2021, 9, 54992–55008.
[CrossRef]

15. Munkhammar, J.; van der Meer, D.; Widén, J. Very short term load forecasting of residential electricity consumption using the
Markov-chain mixture distribution (MCM) model. Appl. Energy 2021, 282, 116180. [CrossRef]

16. Guo, W.; Che, L.; Shahidehpour, M.; Wan, X. Machine-Learning based methods in short-term load forecasting. Electr. J. 2021,
34, 106884. [CrossRef]

17. Eskandari, H.; Imani, M.; Moghaddam, M.P. Convolutional and recurrent neural network based model for short-term load
forecasting. Electr. Power Syst. Res. 2021, 195, 107173. [CrossRef]

18. Sheng, Z.; Wang, H.; Chen, G.; Zhou, B.; Sun, J. Convolutional residual network to short-term load forecasting. Appl. Intell. 2021,
51, 2485–2499. [CrossRef]

19. Veeramsetty, V.; Mohnot, A.; Singal, G.; Salkuti, S.R. Short Term Active Power Load Prediction on A 33/11 kV Substation Using
Regression Models. Energies 2021, 14, 2981. [CrossRef]

20. Veeramsetty, V.; Chandra, D.R.; Salkuti, S.R. Short-term electric power load forecasting using factor analysis and long short-term
memory for smart cities. Int. J. Circuit Theory Appl. 2021, 49, 1678–1703. [CrossRef]

21. Grimaccia, F.; Mussetta, M.; Zich, R. Neuro-fuzzy predictive model for PV energy production based on weather forecast. In
Proceedings of the 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), Taipei, Taiwan, 27–30 June 2011;
pp. 2454–2457. [CrossRef]

22. Veeramsetty, V.; Deshmukh, R. Electric power load forecasting on a 33/11 kV substation using artificial neural networks. SN
Appl. Sci. 2020, 2, 855. [CrossRef]

23. Hong, T.; Pinson, P.; Fan, S.; Zareipour, H.; Troccoli, A.; Hyndman, R.J. Probabilistic energy forecasting: Global Energy Forecasting
Competition 2014 and beyond. Int. J. Forecast. 2016, 32, 896–913. [CrossRef]

http://doi.org/10.1016/j.scs.2019.102010
http://dx.doi.org/10.1016/j.egyr.2017.11.002
http://dx.doi.org/10.1016/j.aej.2011.01.015
http://dx.doi.org/10.1016/j.tej.2015.06.001
http://dx.doi.org/10.1016/j.matcom.2020.07.011
http://dx.doi.org/10.3390/en10091303
http://dx.doi.org/10.1109/ACCESS.2020.3021064
http://dx.doi.org/10.1016/j.esr.2018.12.012
http://dx.doi.org/10.1016/j.energy.2020.118874
http://dx.doi.org/10.1016/j.apenergy.2020.116328
http://dx.doi.org/10.1109/ACCESS.2021.3071654
http://dx.doi.org/10.1016/j.apenergy.2020.116180
http://dx.doi.org/10.1016/j.tej.2020.106884
http://dx.doi.org/10.1016/j.epsr.2021.107173
http://dx.doi.org/10.1007/s10489-020-01932-9
http://dx.doi.org/10.3390/en14112981
http://dx.doi.org/10.1002/cta.2928
http://dx.doi.org/10.1109/FUZZY.2011.6007687
http://dx.doi.org/10.1007/s42452-020-2601-y
http://dx.doi.org/10.1016/j.ijforecast.2016.02.001


Forecasting 2022, 4 164

24. Veeramsetty, V.; Reddy, K.R.; Santhosh, M.; Mohnot, A.; Singal, G. Short-term electric power load forecasting using random forest
and gated recurrent unit. Electr. Eng. 2021, 1–23. [CrossRef]

25. Abdi, H.; Williams, L.J. Principal Component Analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [CrossRef]
26. Mandic, D.P.; Chambers, J. Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability; John Wiley &

Sons, Inc.: Hoboken, NJ, USA, 2001.
27. Karri, C.; Durgam, R.; Raghuram, K. Electricity Price Forecasting in Deregulated Power Markets using Wavelet-ANFIS-KHA. In

Proceedings of the 2018 International Conference on Computing, Power and Communication Technologies (GUCON), Greater
Noida, India, 28–29 September 2018; pp. 982–987.

28. Veeramsetty, V. Active Power Load Dataset. 2020. Available online: https://data.mendeley.com/datasets/ycfwwyyx7d/2
(accessed on 13 December 2021 ).

29. Shaloudegi, K.; Madinehi, N.; Hosseinian, S.; Abyaneh, H.A. A novel policy for locational marginal price calculation in
distribution systems based on loss reduction allocation using game theory. IEEE Trans. Power Syst. 2012, 27, 811–820. [CrossRef]

30. Veeramsetty, V.; Chintham, V.; Vinod Kumar, D. Proportional nucleolus game theory–based locational marginal price computation
for loss and emission reduction in a radial distribution system. Int. Trans. Electr. Energy Syst. 2018, 28, e2573. [CrossRef]

31. Hannan, E.J.; Kavalieris, L. Regression, autoregression models. J. Time Ser. Anal. 1986, 7, 27–49. [CrossRef]
32. Johnston, F.; Boyland, J.; Meadows, M.; Shale, E. Some properties of a simple moving average when applied to forecasting a time

series. J. Oper. Res. Soc. 1999, 50, 1267–1271. [CrossRef]
33. Chen, J.F.; Wang, W.M.; Huang, C.M. Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for

short-term load forecasting. Electr. Power Syst. Res. 1995, 34, 187–196. [CrossRef]
34. Contreras, J.; Espinola, R.; Nogales, F.J.; Conejo, A.J. ARIMA models to predict next-day electricity prices. IEEE Trans. Power Syst.

2003, 18, 1014–1020. [CrossRef]
35. Haben, S.; Giasemidis, G.; Ziel, F.; Arora, S. Short term load forecasting and the effect of temperature at the low voltage level. Int.

J. Forecast. 2019, 35, 1469–1484. [CrossRef]
36. Gneiting, T. Making and Evaluating Point Forecasts. J. Am. Stat. Assoc. 2011, 106, 746–762. [CrossRef]

http://dx.doi.org/10.1007/s00202-021-01376-5
http://dx.doi.org/10.1002/wics.101
https://data.mendeley.com/datasets/ycfwwyyx7d/2
http://dx.doi.org/10.1109/TPWRS.2011.2175254
http://dx.doi.org/10.1002/etep.2573
http://dx.doi.org/10.1111/j.1467-9892.1986.tb00484.x
http://dx.doi.org/10.1057/palgrave.jors.2600823
http://dx.doi.org/10.1016/0378-7796(95)00977-1
http://dx.doi.org/10.1109/TPWRS.2002.804943
http://dx.doi.org/10.1016/j.ijforecast.2018.10.007
http://dx.doi.org/10.1198/jasa.2011.r10138

	Introduction
	Methodology
	Dimensionality Reduction Using Principal Component Analysis (PCA)
	Recurrent Neural Network (RNN)

	Result Analysis
	Load Forecasting for HAM-(RHM-1)
	Load Forecasting for HAM-(RHM-2)
	Load Forecasting for DAM-(RDM-1)
	Load Forecasting for DAM-(RDM-2)
	Comparative Result Analysis

	Conclusions
	References

