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Abstract: The impact of climate change on soil temperatures at Kuujjuaq, Quebec in northern Canada
is assessed. First, long-term historical soil temperature records (1967–1995) are statistically analyzed
to provide a climatological baseline for soils at 5 to 150 cm depths. Next, the nature of the relationship
between atmospheric variables and soil temperature are determined using a statistical downscaling
model (SDSM) and National Centers for Environmental Prediction (NCEP), a climatological data set.
SDSM was found to replicate historic soil temperatures well and used to project soil temperatures
for the remainder of the century using climate model output Canadian Second Generation Earth
System Model (CanESM2). Three Representative Concentration Pathway scenarios (RCP 2.6, 4.5
and 8.5) were used from the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment
Report (AR5). This study found that the soil temperature at this location may warm at 0.9 to 1.2 ◦C
per decade at various depths. Annual soil temperatures at all depths are projected to rise to above
0 ◦C for the 1997–2026 period for all climate scenarios. The melting soil poses a hazard to the airport
infrastructure and will require adaptation measures.

Keywords: time series analysis; climate projection; statistical downscaling; climate change impacts;
critical infrastructure vulnerability; Northern Canada; subarctic

1. Introduction

The Arctic experiences one of the fastest-warming climates on Earth [1]. In Canada,
many indigenous peoples live in remote Northern communities without year-round road
access. These communities rely heavily on air transportation to fly in goods, produce and
passengers. Most soil temperature measurement stations in Canada, especially in the north,
showed a warming trend [2]. Subsurface warming could damage airport infrastructures
such as runways, control towers, terminal buildings and fuel tanks, especially for airports
underlain by permafrost. Kuujjuaq, formerly known as Fort Chimo, in northern Quebec
was chosen as the study area because it has long-term soil temperature data (1967–1995)
and it was located on the airport property. Kuujjuaq lacks road access to other communities
but is a major transfer hub to other communities in the region, highlighting the importance
of air service at this airport. It is also an entry-exit point for cruise ship passengers heading
to the Northwest Passage [3]. The permafrost extent at Kuujjuaq has been identified as
discontinuous during the study period [4] and this suggests that the airport infrastructure
may be vulnerable to melting permafrost [5]. In addition to these pragmatic concerns,
Oelke and Zhang [6] describe soil temperature measurements as an important and sensitive
climate indicator because this variable reflects the integrated impact of climate processes
such as surface air temperature, snowfall, evaporation rate and soil moisture variation [7].
Soil temperature was identified as one of the key drivers for the vegetation phenology and
productivity in the Arctic tundra biome [8].
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An overall warming trend in air temperature had been observed in this region [9].
However, there is a general lack of subsurface temperature measurements in Canada’s
north, resulting in observation data gaps for analysis [10,11]. Therefore, subsurface temper-
ature analysis has relied on related proxy variables. For example, one study used Stefan’s
equation and mean air temperature to estimate subsurface temperatures and permafrost
conditions through freezing degree-days in the present and future emission scenarios in
northern Canada [12]. Stefan’s equation was used in many studies as it required little site-
specific information and few parameters input into the equation, but it was ill-equipped to
handle multi-layered soil without additional adaptation [13]. A different study coupled wa-
ter and heat transport into a dynamic global vegetation model to project soil temperatures
in the circumpolar region [14]. Another study used the relationship between mean annual
air temperature and the existence of permafrost to map the extent of permafrost in Iceland
and Nordic countries [15]. Gough and Leung [16] examined permafrost in the Hudson
Bay region using a frost number analysis that linked surface air temperature to permafrost
conditions and concluded soil moisture played a critical role in determining thermal thresh-
olds. The coupling of air and soil temperatures appeared to be rather site-specific within
Canada [17].

One study did use soil temperature records to directly measure the observed soil
temperature changes, but it did not conduct future soil temperature projections [2]. This
study showed that most soil temperature measuring sites in Canada were located in
southern regions. They were often measured at Agriculture and Agri-Food Canada and
Reference Climatological Stations (RCS). A soil temperature projection study was conducted
in three sites in southern Quebec [18]. Using the Intergovernmental Panel on Climate
Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 scenario, Houle et al. [18]
projected that the soil would warm by 1.1 ◦C to 1.9 ◦C by 2050 and 1.9 ◦C to 3.3 ◦C by
2080 depending on the soil depth. In their study, higher temperature increases were
observed in summer and there was no clear spatial trend among the three sites. While such
borehole measuring sites do exist in more northern regions of Canada, their measuring
durations were often too short to perform climatological analysis. From Environment and
Climate Change Canada’s climate archives, Kuujjuaq was the only site with long-term soil
temperature records near the Hudson Bay region suitable for climate analysis. Baker Lake,
Nunavut and Schefferville, Newfoundland and Labrador were the other two sites in the
region with soil temperature measurements. They had short observation records at 16 years
and 3 years respectively. Other long-term soil measuring locations were further south in
the Quebec region, further west at Fort Smith in Northwest Territories or in the far north at
Clyde River and Resolute in Nunavut.

For this study, the research objectives for this work are to explore the temporal trends
of soil temperatures in the Kuujjuaq historical record and to assess the impact of cli-
mate change on soil temperatures over the next century. Specifically, the following goals
are addressed:

(1) To assess temporal trends of the historical soil temperature record of Kuujjuaq, Quebec
and their relationship to concurrent air temperature;

(2) Deploy a novel approach by using statistical downscaling to develop a robust rela-
tionship between soil temperatures and a range of atmospheric variables;

(3) Using the relationships developed to project soil temperatures at Kuujjuaq from 1997
to 2086.

2. Materials and Methods
2.1. Site Characteristics

Kuujjuaq, Quebec (Figure 1) is located at the western shore of the Koksoak River,
which flows north and empties into Ungava Bay. The airport is located southwest of
the community. There was no vegetation on top of the soil temperature measuring site
when the earth thermistors were installed (Figure 2). Adjacent to the soil temperature site
were other weather instruments such as an anemometer and a Stevenson screen, and two-
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storey buildings such as the radio office and hydrogen building for radiosonde launches.
According to the Figure 2 photos, there were shrubs and stunted trees growing around
the weather station. During the installation of the earth thermistors at this site, a weather
station inspection report on 9 October 1966 stated that “at five feet deep, solid rock was
hit and ten-foot level could not be reached, therefore no data will be available for the
300 cm level” [19]. From a weather station inspection report in May 1972, the inspector
described the surrounding areas as being characterized by gneiss rocks and the subsurface
soil was frozen in permafrost with an active layer thawed at the surface [20]. The report
also mentioned that the site was surrounded by lichen woodland forest with tamarack,
black spruce, willow and showy mountain ash trees. Vegetation transitioned into tundra
about 30 km north of the station.

Forecasting 2022, 4 FOR PEER REVIEW  3 
 

2. Materials and Methods 
2.1. Site Characteristics 

Kuujjuaq, Quebec (Figure 1) is located at the western shore of the Koksoak River, 
which flows north and empties into Ungava Bay. The airport is located southwest of the 
community. There was no vegetation on top of the soil temperature measuring site when 
the earth thermistors were installed (Figure 2). Adjacent to the soil temperature site were 
other weather instruments such as an anemometer and a Stevenson screen, and two-sto-
rey buildings such as the radio office and hydrogen building for radiosonde launches. 
According to the Figure 2 photos, there were shrubs and stunted trees growing around 
the weather station. During the installation of the earth thermistors at this site, a weather 
station inspection report on 9 October 1966 stated that “(a)t five feet deep, solid rock was 
hit and ten-foot level could not be reached, therefore no data will be available for the 300 
cm level” [19]. From a weather station inspection report in May 1972, the inspector de-
scribed the surrounding areas as being characterized by gneiss rocks and the subsurface 
soil was frozen in permafrost with an active layer thawed at the surface [20]. The report 
also mentioned that the site was surrounded by lichen woodland forest with tamarack, 
black spruce, willow and showy mountain ash trees. Vegetation transitioned into tundra 
about 30 km north of the station. 

 
Figure 1. Site location: Kuujjuaq, Quebec (58°05′42′’ N, 68°25′20′’ W). 

  

Figure 1. Site location: Kuujjuaq, Quebec (58◦05′42” N, 68◦25′20” W).

2.2. Data Collection

Soil temperature records at Kuujjuaq were obtained from Environment and Climate
Change Canada’s Climate Data Online (CDO; https://climate.weather.gc.ca/) (accessed
on 25 May 2021). Daily data were available from January 1967 to August 1995 at 5, 10,
20, 50, 100 and 150 cm depths. According to an Environment Canada’s undated weather
station report, the soil measurement program ceased at this location in September 1995
when the weather station service was contracted out. It was believed that this decision
was made as part of the “program review” by the federal government in 1994 to 1995
to lower the expenditure of each department in an attempt to balance the budget [21].
Soil temperatures were measured by Northern Electric Type 14B potted thermistor probes
buried at those depths and had a corrected accuracy of 0.1 ◦C [22]. While soil temperatures
were recorded twice daily, this study only used the morning (8:00 a.m. local time) soil
temperature measurements due to less missing data in the record [2] and because afternoon
(4:00 p.m. local time) measurements were not taken at 50, 100 and 150 cm depths [23].

Surface air temperature at 2 m from the same time period was also obtained from CDO.
The daily mean air temperature was derived from the average of highest and low hourly
temperatures of each day, from 06:01 Universal Time Coordinated (UTC) to 06:00 UTC the
next day. Hourly and daily air temperatures continue to be available to the present day.

https://climate.weather.gc.ca/
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Figure 2. Photographs taken during the installation of earth thermistors by Environment Canada’s
staff at Kuujjuaq (formerly known as Fort Chimo) on 14 October 1966 [19]. The pictures depict (a) the
surrounding environment and the buildings of the weather station; (b) the location and ground
conditions where the soil temperature instruments were installed.
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2.3. Historical Data Analysis

To address the first research goal, historical soil temperature trends were averaged
into annual and winter time series for all six levels. Winter was defined as spanning from
November to April and summer as May to October given the northern location of this site.
Trend analysis was done with the Mann–Kendall test [24,25] and the rates of changes were
determined by the Theil–Sen slope estimators [26,27]. Any significant p-values influenced
by autocorrelated data were adjusted by modifying the variance of the data (Hamed and
Rao, 1998). In this modified Mann–Kendall test, a correction factor was calculated to
determine the effective number of observations to account for the effects of autocorrelation
on the significance level. The variance in a time series dataset with negative autocorrelation
was reduced while variance in positive autocorrelation was increased [28]. Finally, the soil
temperatures are correlated as a time series to the locally collected air temperature using a
Pearson correlation analysis (r) [29].

2.4. Statistical Downscaling

To address the second research goal, the Statistical Downscaling Model—Decision
Centric version 5.2 (SDSM) software, a tool created by Wilby et al. [30] for modelling surface
weather conditions such as temperature and precipitation was used. The software provided
tools to determine which atmospheric variables from National Centers for Environmental
Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis were
best correlated to a predictand. The first step in the use of SDSM was to determine if the
observed data (soil temperatures at various depths) can be accurately reproduced by a
combination of atmospheric variables taken from the NCEP/NCAR reanalysis gridded
data [31]. NCEP/NCAR reanalysis data uses surface, satellite and other data to generate
a representative value for the average air temperature change within the locations of the
grid based on past data. Since Kuujjuaq airport has the longest observed dataset of all
airports in its vicinity, NCEP/NCAR reanalysis data are strongly linked to Kuujjuaq’s
historical air temperature records. Kuujjuaq’s soil temperature data was split into two
halves. The first half (1967 to 1980) was used for calibration and the second half (1981 to
1995) was used for verification. The calibration process involves selecting soil temperature
at each depth in Kuujjuaq and compared with the NCEP/NCAR reanalysis variables to
determine how well those variables were linked to soil temperature with r correlation [29].
The top four variables with the highest r correlation were chosen as the components of
the model for the validation process. The weather generator in the SDSM software creates
the soil temperature model by using the selected four variables for the verification period.
In the verification stage, the model’s soil temperature was compared with the observed
soil temperature in the same period. Once the verification was satisfactory, the selected
variables and the full period of historical soil temperature data (1967 to 1995) were used in
the software’s weather generator component to project future conditions in conjunction
with climate model output.

The modelling efficiency formula (MEF; Equation (1)) evaluates the performance of
the SDSM model output of daily soil temperature data based on selected variables and
compare that to the observed average [32]. MEF generates a value between −1 and +1. A
positive MEF value closer to +1 indicates that the modelled values were a close match with
the observed values. A value of zero indicates that the model’s predicted value was no
better than the observed average value. A negative value indicates the observed average
value was better than the model’s individual predicted values. Other common model
evaluation methods: root mean square error (RMSE; Equation (2)) and mean absolute error
(MAE; Equation (3)). A lower RMSE and MAE value would indicate a more accurate model
because the predicted values were closed to the observed values (and vice versa). This
validation exercise is repeated for all depths.

MEF =
∑n

i=1
(
Oi −O

)2 −∑n
i=1(Pi −Oi)

2

∑n
i=1
(
Oi −O

)2 (1)
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RMSE =

√
∑n

i=1(Pi −Oi)
2

n
(2)

MAE =
∑n

i=1|Pi −Oi|
n

(3)

where n = number of observations; Oi = observed value; O = mean of observed values;
Pi = predicted value

2.5. Climate Projections

The climate projections were generated using the relationships between soil temper-
atures and atmospheric variables in the previous section. However, the model would be
projecting air temperature and not soil temperature in the SDSM software. Therefore, it is
necessary to establish the relationship between soil temperature and atmospheric variables
from the previous section and use that relationship to evaluate how future soil temperature
will change due to warmer air temperature.

The climate model chosen to provide the atmospheric variables was the second-
generation Canadian Earth System Model (CanESM2) from Climate Model Intercomparison
Project Phase 5 (CMIP5). CanESM2 is a model developed by Environment and Climate
Change Canada’s Canadian Centre or Climate Modelling and Analysis (CCCma) for IPCC
Fifth Assessment Report (AR5). It has a horizontal longitude resolution of 2.8125◦ and
latitude resolution of roughly 2.8125◦. It captures the observed temperature variability in
the 20th century in the Arctic environment reasonably well [33]. In addition, CanESM2 uses
the Canadian Land Surface Scheme (CLASS) as its land-surface model, which contains soil
temperature input [34], and the CanESM2 model output includes soil temperature as one of
the variables [35]. The regional climate model driven by CanESM2, the Canadian Regional
Climate Model (CanRCM4), did not have soil temperature as one of its output variables.
According to Chylek et al.’s assessment [33], the CanESM2 model is also an improvement
over the previous models developed by CCCma because older models overestimated the
Arctic warming rate by two to three times. Furthermore, it was shown that a smaller subset
of global climate models (GCMs) were generally adequate to reproduce the mean and
spread of air temperature and precipitation compared to larger ensemble models in the
Hudson Bay region [36]. It should be noted that CanESM5, the successor to CanESM2, was a
CMIP6 model published in 2019 [37]. In CanESM5, CLASS along with Canadian Terrestrial
Ecosystem Model (CTEM) formed the land component of CanESM5. The only improvement
added to CLASS-CTEM since CanESM2 was the introduction of dynamic wetlands and
their methane emissions. Furthermore, the methane emission was strictly diagnostic. As
shown in Figure 2, the study location was not a wetland. Therefore, CanESM2 was not
expected to have a substantial difference in soil temperature prediction as in CanESM5.

The calculation for the rate of change in the future is divided into two parts. In the first
part, the soil temperature at each depth was assumed to change at the same linear rate in the
future as in the historic trend. In the latter part, additional changes were calculated by using
the Localizer Tool to determine the future projections for the change in air temperature
at 2 m in different IPCC AR5’s Representative Concentration Pathway (RCP) scenarios
over the three projection periods (1997–2026, 2027–2056 and 2057–2086) under CanESM2
model within the GCM grid [38]. Change in air temperature was calculated by determining
the difference between the historic and projected future mean air temperature. The air
temperature change was converted into a percentage and this percentage was applied
to soil temperature. Changes in the future soil temperatures were assumed to be the
same as in the historical period for the same depth. The relationships established in the
previous section were applied to climate model data (replacing the NCEP data used in the
calibration process) for three 30-year time periods, ending in years 2026, 2056 and 2086.
This is a common approach for modelling future temperatures and a standard for SDSM
projection studies.
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Each of the future soil temperature depths was projected using three RCP scenarios
(RCP 2.6, RCP 4.5 and RCP 8.5). Created for IPCC AR5, RCPs are greenhouse gas con-
centration trajectories that allow climate projections without assumptions on population
growth or economic development [39]. This allows for a wide range of government poli-
cies, decision pathways and fossil fuel usage. RCP superseded previous climate change
projection scenarios that were based on IPCC’s SRES, in which SRES had specific scenarios
for population growth, economic development and fossil fuel usage.

RCP 2.6 scenario represents a greenhouse gas emission mitigation scenario, with emis-
sions peaking in 2020 and declining rapidly afterward [39]. RCP 4.5 scenario represents
greenhouse gas emissions peaking at around 2040 and then decline while RCP 8.5 scenario
represents continuous rising global greenhouse gas emissions in the 21st century. The
model output by the software generated 30 years of future daily soil temperatures for
20 simulations at each of the six depths (5, 10, 20, 50, 100 and 150 cm). Each simulation is
a synthetic, stochastic model to generate a plausible local climate scenario based on the
observed data and climate predictor variables specified by the user [30]. Individual simula-
tions were given equal weighting and the soil temperatures for each day for each level were
averaged across the 20 simulations to derive an averaged daily soil temperature for each
depth. Then, thirty years of averaged daily soil temperature values were averaged to create
a single representative value for that 30-year projection period. The steps were repeated for
winter projections by using data from November to April, where the air temperature was
below 0 ◦C during these months [40–42], within the annual projection dataset.

Assumptions

A number of assumptions were made in the process of generating future soil tempera-
tures. It was assumed that the predictor variables with the strongest correlation with the
historical daily soil temperature would also be strongly correlated in the future. Moreover,
while the selected predictor variables would be strongly correlated for the entire study
period, other predictor variables could be better correlated in winter or particular months.
Aside from assuming the historical warming rate would form as the baseline trend, the
changes to air temperature under the three RCP scenarios were assumed to have the same
percentage of effects on the soil at each depth. The variability of the soil temperature at
each depth in the future was assumed to be identical to the historical level. Snow depth in
winter and any vegetation such as grass and shrubs growing on top of the soil were ignored
even though both factors influenced the radiative forcing by reducing the incoming solar
radiation that reached the surface of the soil. Snow depth in the future was also assumed
to be held constant even though the depth was decreasing during the historical period at
this location [40–42]. The r correlation would not consider the thermal lag, particularly at
deeper depths. The temperature in deeper soils had less magnitude and was more distant
from the fluctuations in air temperature. Moisture level, soil type, organic matter contents
and distribution within the soil were assumed to remain constant in the future even though
these variables could change over time. The study also speculated that the instrument
remained accurate and that regular maintenance on the instrument was performed without
disturbance to the soil.

3. Results
3.1. Historical Analysis

The statistical analyses for the period of 1967 to 1995 for the six soil temperature depths
are reported in Table 1. The analyses include average annual and average temperatures,
variability and temporal trends. The temporal trends were done using the Mann–Kendall
test. Theil–Sen slope estimators determined the magnitudes of the rates of changes. The
significance, p-values, was corrected for autocorrelation as appropriate. As noted above
“winter” was defined as November through April. Table 2 reports a similar analysis for the
concurrent air temperatures at 2 m measured at the same location.
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Table 1. Historic average soil temperature and the rate of change over time for soil temperature at
depths from 5 to 150 cm from 1967 to 1995. Bolded numbers indicate trends that are significant at
p-values less than 0.10 (ˆ), 0.05 (*) and 0.01 (**).

Soil Depth
Mean (◦C) Trend (◦C/Decade)

Annual Winter Annual Winter

5 cm −2.1 −11.1 +1.2 * +1.9 *
10 cm −2.4 −10.8 +1.1 * +1.7 ˆ
20 cm −1.9 −9.9 +1.3 ** +1.4 ˆ
50 cm −1.4 −7.9 +1.0 * +1.2

100 cm −1.6 −6.2 +0.9 ˆ +0.8
150 cm −1.9 −4.2 +1.1 ** +1.0

Table 2. Pearson r correlation (r) between air temperature at 2 m and soil temperatures.

Soil Depth
r Coefficient (Daily) r Coefficient (Monthly Average)

Annual Winter Annual Winter

5 cm 0.845 0.453 0.955 0.746
10 cm 0.847 0.452 0.951 0.733
20 cm 0.848 0.450 0.946 0.722
50 cm 0.819 0.391 0.906 0.597

100 cm 0.721 0.268 0.797 0.407
150 cm 0.455 0.087 0.514 0.147

Mean annual soil temperature at 5 cm was−2.1 ◦C and the temperature was becoming
slightly warmer with increasing depth to 50 cm (Table 1). Below this depth, soil temperature
became colder. For winter, the soil temperature closest to the surface was the coldest and
became warmer with depth. All soil depths, except 100 cm, were warming significantly at
p < 0.05 on an annual scale and 100 cm depth warmed at a lower significance level, p < 0.10.
However, only 5 cm was warming significantly at p < 0.05 in winter. Both 10 cm and 20 cm
warmed at a significance level of p < 0.10. Surface soil at 5 cm is warming at about 1.2 ◦C
per decade annually. In winter, the warming rate was faster, at about 1.9 ◦C per decade at
the same level. At all of the depths other than 100 cm and 150 cm, winter’s warming rate
was larger than the annual rate.

The results of the r correlation between coincident air and soil temperatures are
presented in Table 2. The relationship is strongest for the upper soil levels and for annually-
averaged data as expected. The transfer energy into and out of the soil is determined by
soil type and moisture content. This leads to the muting of the surface forcing and thermal
lags. Hence the lowest correlations occur for the daily winter date at the 150 cm depth.
However, the upper 50 cm correlates well with the surface forcing and this bodes well for
the SDSM modelling in the next section.

3.2. Statistical Downscaling

Using SDSM, historical soil temperature data (1967–1995) was statistically modelled
using a suite of variables taken from the NCEP data set. The simulations included those
created using three, four and six NCEP variables and four CanESM2 variables to test the
effects in varying the number of variables used as well as comparing the performance
between NCEP and CanESM2. The top four atmospheric variables for all soil depths are
surface-specific humidity, mean air temperature at 2 m, 500 hPa geopotential height and
specific humidity at 850 hPa. The linkage to the 2 m atmospheric temperature (Table 3) is
expected given the results of the previous section. In most cases, the CanESM2 variables
had a stronger correlation with the soil temperature than NCEP’s corresponding variables.
While NCEP’s specific humidity at 850 hPa had a stronger correlation with soil temperature
than CanESM2’s corresponding variable, the difference in correlation between the two
models was very small and less than the correlation differences in other variables where
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CanESM2 had a stronger correlation. The strength of the relationship between the variables
and soil temperature decreases as soil depth increases. Figure 3 shows the results of
various SDSM simulations compared to observations for the 5 cm depth. The reproduction
of observed temperatures by the SDSM modelling is particularly good for the summer
months but the models consistently underrepresent by a few degrees Celsius for the winter
months (Figure 3a) suggesting that surface processes such as snow cover and phase change
within the soil may not be captured by the model. The monthly variance pattern was
also reproduced, but the greatest difference was found in March (Figure 3b). Differences
between the number of variables used in the NCEP model or between the NCEP and
CanESM2 models were barely distinguishable as seen in Figure 3. It was noted by Hassan
and Harun (2012) that there was no standard rule for selecting which predictor variables to
use and the process itself was described as difficult and tricky. Since CanESM2’s predictor
variables were shown to be better correlated to soil temperature than NCEP’s in most cases
and at most depths, CanESM2 model was chosen to repeat statistical downscale modelling
at other depths.
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Table 3. r correlation between the four selected variables and observed soil temperature, with bolded
numbers indicating the model variable having a stronger correlation on the soil temperature than the
other model.

Soil
Depth

r Correlation

Surface Specific Humidity Mean 2 m
Air Temperature

500 hPa
Geopotential Height

Specific Humidity
at 850 hPa

NCEP CanESM2 NCEP CanESM2 NCEP CanESM2 NCEP CanESM2

5 cm 0.825 0.828 0.825 0.821 0.696 0.756 0.700 0.699
10 cm 0.826 0.832 0.828 0.830 0.693 0.752 0.700 0.697
20 cm 0.812 0.824 0.806 0.825 0.673 0.732 0.689 0.687
50 cm 0.817 0.833 0.811 0.831 0.658 0.711 0.694 0.682

100 cm 0.728 0.758 0.722 0.763 0.557 0.601 0.618 0.599
150 cm 0.466 0.504 0.462 0.525 0.314 0.337 0.390 0.365

Comparisons between observed and CanESM2 modelled soil temperature at 10 to
150 cm depths were shown in Figures 4–8. At 10 cm, observed temperatures were higher
than modelled in all the months and the difference between observed and modelled were
greatest in winter. The model produced a similar variance in temperature as the observed
from April to October. Over-estimating the coldness of soil temperature in the CanESM2
model was also found in all of the months at 20 to 150 cm depths, with winter having
the greatest overestimation while summer had the least. In general, the variability of the
modelled output was similar to the observed data’s variability, which is an indication that
the model’s variability was able to reproduce the historical variability. The variance in the
historical data is mainly attributed to natural variability of the temperature in the soil. The
variances of observed 5, 100 and 150 cm were greater than the modelled in winter but 5 cm
had less variance in the observed than the modelled in summer. The variance of modelled
150 cm temperature approached 0 ◦C2 from June to November but the observed was much
higher in July and August. The variances of observed 10 to 50 cm were generally higher in
the modelled data than the observed in most of the months.

The fidelity of the modelling to observations was measured using Equations (1)–(3) and
the results were reported in Table 4. The performance of the modelling is consistent through
to 100 cm and decreases below 100 cm. As all MEF values were above 0, the individual
modelled values across all depths were a close match with the observed values and were
better than using the observed average value as a representative for their respective depths.
Both RMSE and MAE values decreased as depth increased. Since a lower RMSE and MAE
value indicates a more accurate model, the model produced better-predicted values as the
depth increased.

Table 4. Modelling efficiency (MEF), root mean square error (RMSE) and mean absolute error (MAE)
calculation for the CanESM2 model output.

Modelled Depth MEF Value
(−1 to +1) RMSE MAE

5 cm 0.83 4.590301 3.471129
10 cm 0.83 4.185074 3.088709
20 cm 0.84 3.778079 2.731346
50 cm 0.85 3.160122 2.140639

100 cm 0.81 2.825081 1.797228
150 cm 0.66 2.702048 1.673864
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Figure 4. Comparison between the observed monthly 10 cm soil temperature and the predicted val-
ues from the CanESM2 and NCEP models for: (a) mean; (b) variance. 

Figure 4. Comparison between the observed monthly 10 cm soil temperature and the predicted
values from the CanESM2 and NCEP models for: (a) mean; (b) variance.
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Figure 5. Comparison between the observed monthly 20 cm soil temperature and the predicted val-
ues from the CanESM2 and NCEP models for: (a) mean; (b) variance. 

  

Figure 5. Comparison between the observed monthly 20 cm soil temperature and the predicted
values from the CanESM2 and NCEP models for: (a) mean; (b) variance.
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Figure 6. Comparison between the observed monthly 50 cm soil temperature and the predicted val-
ues from the CanESM2 and NCEP models for: (a) mean; (b) variance. 

  

Figure 6. Comparison between the observed monthly 50 cm soil temperature and the predicted
values from the CanESM2 and NCEP models for: (a) mean; (b) variance.
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Figure 7. Comparison between the observed monthly 100 cm soil temperature and the predicted 
values from the CanESM2 and NCEP models for: (a) mean; (b) variance. 

  

Figure 7. Comparison between the observed monthly 100 cm soil temperature and the predicted
values from the CanESM2 and NCEP models for: (a) mean; (b) variance.
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Figure 8. Comparison between the observed monthly 150 cm soil temperature and the predicted 
values from the CanESM2 and NCEP models for: (a) mean; (b) variance. 
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Figure 8. Comparison between the observed monthly 150 cm soil temperature and the predicted
values from the CanESM2 and NCEP models for: (a) mean; (b) variance.

3.3. Projections
3.3.1. Annual

Future climate projections were conducted at the various depths sampled, first on all
12 months (Figure 9) followed by just winter months (Figure 10). In the projections that
used all 12 months, soil temperature exceeded 0 ◦C in the first projection period (1997 to
2026) in each of the CanESM2 model’s RCPs at all depths. During this period, there were
few temperature differences between the three RCP trajectories. By the second projection
period (2027 to 2056), the projected RCP 8.5 soil temperature increased the greatest and
deviated from RCP 2.6 and RCP 4.5 projections. RCP 4.5 projected a slightly warmer soil
temperature than RCP 2.6. In the third projection period (2057 to 2086), the warming of
RCP 8.5 increased at a greater rate than between the first and second projection periods.
The warming rate for RCP 4.5 stayed approximately the same and RCP 2.6 slowed down.
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Figure 9. Cont.
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Figure 9. Annual soil temperature projections from 1997 to 2086 for depths at: (a) 5 cm; (b) 10 cm;
(c) 20 cm; (d) 50 cm; (e) 100 cm; (f) 150 cm.
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Figure 10. Winter soil temperature projections from 1997 to 2086 for depths at: (a) 5 cm; (b) 10 cm; 
(c) 20 cm; (d) 50 cm; (e) 100 cm; (f) 150 cm. 

Figure 10. Winter soil temperature projections from 1997 to 2086 for depths at: (a) 5 cm; (b) 10 cm;
(c) 20 cm; (d) 50 cm; (e) 100 cm; (f) 150 cm.
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3.3.2. Winter

In winter months, projections consistent with the local definition of winter, November
to April were considered. Winter projections (Figure 10) showed the same patterns as
annual projections. Winter soil temperatures were projected to remain below 0 ◦C at all
depths in each scenario with the exception of RCP 8.5 at 150 cm by the third projection
period (2057 to 2086). The warming rate for the RCP 8.5 scenario in winter appeared to be
at a linear rate while RCP 2.6 and RCP 4.5 scenarios warmed at a slower rate than RCP 8.5
across the three projection periods.

4. Discussion
4.1. Historical Trends and Model Fitting

In this study, the long-term trends of soil temperature at Kuujjuaq were assessed by
using an in-situ measurement record. Between 1967 and 1995, annual soil temperature
warmed by 0.87 to 1.32 ◦C per decade and winter soil temperature warmed by 0.84 to
1.85 ◦C per decade (Table 1). Soil at 5, 10, 20, 50 and 150 cm depths showed significant
warming with p < 0.05 and 100 cm depth showed a statistical significance at p < 0.10.
The soil temperature was strongly positively correlated with air temperature (Table 2).
The difference in the correlation between air temperature and soil temperature at various
depths were mainly attributed to the thermal capacity of soil that acted as a buffer against
radiative forcing from the surface. As the depth increased, the buffer capacity was higher.
In addition, time lag was also responsible for different response time to the surface warming
or cooling. Interestingly, a study conducted similar soil temperature analysis at Kuujjuaq
for a shorter time period (from 1967 to 1989) and found that the increase in soil temperature
at all depths did not appear to be associated with the increase in air temperature [43]. That
study suggested that environmental conditions other than air temperature were responsible
for the increase in mean soil temperature. However, the study also mentioned that short
time series analysis might not capture the variability and significant trends and inferences
drawn from the results should be treated with caution. An additional six years of soil
temperature records in daily and monthly average scales as well as linkage with the GCMs
during the model validation process strengthened the validity of this study’s claims that
there was a strong correlation between soil and air temperatures at all depths. The Pearson
correlation coefficients between air and soil temperatures at Kuujjuaq were also similar to
other discontinuous permafrost regions in the Arctic [6].

The number of variables beyond four and the use of NCEP vs. CanESM2 did not
substantially improve the model accuracy, however, CanESM2 was better correlated to soil
temperature than NCEP in most cases (Table 3). It was not unsurprising to see CanESM2
perform better than NCEP since a comparison between CMIP5, CMIP6 and NCEP models
in Canada revealed that NCEP overestimated the number of freeze-thaw cycles at the
study location in the historical period [44]. While surface air temperature’s correlation
with soil temperature at 5 cm was established without using model data as illustrated in
Table 2, other variables with high correlation in Table 3 could be explained by local weather.
Surface-specific humidity is linked to the short term of past weather. If the surface humidity
is high, then the soil is likely to be moist and caused by recent precipitation events (rain
or snow). Precipitation events are almost always accompanied by clouds which lower the
solar radiation reaching the surface and reduce the surface heating. Moreover, some of
the energy is used as latent heat of evaporation. Drier soils at the surface allow greater
temperature increase even with the same amount of energy. Specific humidity at 850 hPa
is also linked to clouds and cloud cover is directly linked to a reduction in solar radiation
heating on both the air and soil close to the surface. The strong correlation between soil
temperature and 500 hPa geopotential height appeared to be counterintuitive at first, since
500 hPa geopotential height is linked to large-scale mid-troposphere circulation [45] and
distant from the surface. Upon closer examination, the synoptic-scale circulation patterns
occurring at 500 hPa geopotential height are responsible for air mass and frontal movements
which in turn affects mesoscale phenomenon such as high-pressure systems, squall lines
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and convective storms. They are all associated with the variation in solar radiation, cloud
cover, precipitation, snow cover and air temperature at the surface [43]. Therefore, all of
the top four variables are related to surface heating.

The model performed reasonably well as demonstrated by positive MEF values across
all depths (Table 4). While MEF decreased somewhat at 150 cm depth, the RMSE and MAE
decreased as the soil layer got deeper. This suggested that the model error was getting
smaller when the depth increased and likely due to lower temperature variations in deeper
soils. The model performed particularly well from April to November in all soil depths
(Figures 3a, 4a, 5a, 6a, 7a and 8a). The historical air temperature warming at Kuujjuaq
is consistent with temperature warming trends in the Hudson Bay Region [9]. Leung
and Gough [9] and this study showed that the largest temperature warming occurred
during winter.

Compared with Tam et al.’s study [12], this study provides a more accurate baseline
and future temperature for soil because this study used in-situ measurements rather than
using air temperature and Stefan’s equation to determine the ice thickness level. Stefan’s
equation requires the thermal conductivity of the soil as an input, which would require
a site visit to obtain a soil sample for lab analysis, while this study does not require this
variable. Coupling the air and soil temperature also ensured that the relationship between
the two variables was directly measured rather than indirectly linked by calculating frost
factor from Stefan’s equation to determine the permafrost conditions, which could not
generate an actual soil temperature value.

4.2. Projections

Under projected warming (Figure 9), the annual soil temperature would be above
0 ◦C in the first projection period (1997–2026). In the second projection period (2027–2056),
the warming rate will be similar for RCP 2.6 and RCP 4.5 scenarios while RCP 8.5 would
have the greatest warming rate. The warming rate for RCP 8.5 in the third projection
period (2057–2086) is further enhanced while RCP 4.5’s warming rate will be progressing
at approximately the same rate as between the first and second projection periods. RCP
2.6 scenario’s warming rate slows down in the third projection period, which is largely
explained by a reduction in global greenhouse gas emissions after 2020 [39]. A combination
of reduction in fossil fuel consumption, government policy implementations to drastically
reduce greenhouse gas emissions, improved efficiencies in existing technologies (e.g.,
automobiles and heating) and new technologies (e.g., carbon capture and storage) would
lead to reduced radiative forcing in the atmosphere and cause lesser warming starting
from second projection period. Winter projection trends in different RCP scenarios were
similar to the annual’s corresponding RCP trends (Figure 9). For RCP 4.5 and RCP 8.5
scenarios, Phillips et al. [46] suggested that the slowdown in the warming rate across
different scenarios may be explained by soil drying. They found that under RCP 4.5 and
RCP 8.5, 15 CMIP5 models showed soil temperature warming at a rate of 10% less than air
temperature. They also hypothesized that soil drying leads to reduced thermal conductivity
and heat capacity in the soil. However, after soil was dried, there would be more warming
from sensible heat than latent heat as evaporation decreased.

At the 20 cm depth, the Zhang et al. [47] simulations suggested that the soil warming
rate was 0.8 ◦C on a national level yet their model output indicated that the soil actually
got cooler (−0.6 ◦C) at Kuujjuaq during the 20th century. The cooling in this area was
cited as an exception to the general warming but shallow layers of soil had increased by
up to 2 ◦C since the mid-1990s [48]. Unfortunately, this study site measurements stopped
in 1995 and could not offer evidence to support this claim. This study did find that the
20 cm soil increased significantly (p < 0.01) at 1.3 ◦C per decade during the study period
(Table 1). The strong correlation between air and soil temperatures close to the surface was
not unexpected since the radiative forcing from the surface contributes to the warming of
those soils. Deeper soils are less likely to receive surface energy by heat transfer. Another
interesting observation was that the winter soil temperatures at 5 and 10 cm were warming
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faster than the annual trend. This showed that the magnitude of warming was greater
from winter (November to April) than in summer (May to October) at Kuujjuaq even
though about 23 cm of snow cover was present during the winter period and that the snow
cover reduced the heat conduction transferred from air to soil. There are two possible
explanations to explain this observation. The presence of soil layers could result in a delay
in the heat transfer process, leading to a thermal lag. Another possibility was the latent
heat effect in the soil that slowed the rising of soil temperature due to phase change, known
as the zero-curtain effect [49]. This effect is most commonly observed during late fall/early
winter and late winter/early spring in cold climates [50].

This study’s projections also provided more information on permafrost degradation
rate than Tam et al. [12]. Tam et al. determined the future permafrost conditions based on
the relationship of air temperature and frozen ground based on Stefan’s equation. This
study coupled the air temperature with soil temperature with atmospheric variables for
projections. Instead of outputting a ratio that determines the coverage of the permafrost,
this study provided a projection for the actual soil temperature.

The observed difference between soil temperature and air temperature in Canada
varies greatly and is highly location-dependent, with some sites showing the increase in air
temperature was less than that of soil temperature while others showed greater warming
in soil temperature than air temperature [47]. At Kuujjuaq, Zhang et al. [47] found that
the difference between the changes in soil temperature was greater than air temperature
by 0.1 to 0.2 ◦C between the 1901–1910 and the 1986–1995 periods. Other variables that
affect the relationship between air and soil temperatures include thermal conductivity and
the type of soil at the site. Wen et al. (2003) studied the accuracy of remote sensing at the
Tibetan Plateau by comparing the results from the microwave remote sensing algorithm
with the actual soil temperature measurements from 4 to 200 cm in those sites. They found
the average difference between estimated and actual soil temperature was around 0.5 ◦C.
Gómez et al. [51] used a regional climate model and remote sensing on soil temperature up
to a 150 cm depth to simulate extreme heat events in Valencia, Spain. Given that some of the
soil observation sites in Canada began recording data as early as 1958 [2], it is believed that
these records can be joined with remote sensing data to create a longer observation period.
This is especially important since many soil observation sites in Canada, particularly north
of 60◦, were too short to be used to create reliable climate analysis. Satellite data is not
available in earlier years, making in-situ data collection the only source for those years. The
measurements taken from the ground can be used to extend a location’s soil temperature
regime backwards. Due to the soil observation program shutting down by 1995 at Kuujjuaq
and by the early 2000s across most stations in Canada, remote sensing can extend the
availability of soil temperature data to create longer records and allow more accurate
projections based on additional soil temperature data.

Houle et al.’s study [18] in southern Quebec achieved a correlation coefficient of ≥0.96
with the observed mean monthly temperature in their model output. This study’s CanESM2
model achieved similar performance, as it produced a correlation coefficient of 0.95 to
0.96 between monthly mean modelled and observed temperature at the 5 to 20 cm depth
(Table 2). Several notable differences between Houle et al. [18] and the current study were
identified. While both of the studies were conducted in Quebec, one major difference is
the distance between the sites involved. This study site was over 1000 km north of their
northernmost site. Another major difference was the lack of incorporating snow data
into this study’s model. Lack of snow parameter in this model introduced inaccuracy
due to the difference between air and soil temperatures because of the insulating effect
of snow cover [52]. According to the climate normals at Kuujjuaq, the 30-year average
snow depth between 1971–2000 was 19 cm [41]. and it dropped to 17 cm in the 1981–2010
normals period [42]. This contrasted with a relatively stable snow depth at the closest
30-year normal station, Hemon, Quebec in Houle et al. [18]’s study. In both the 1971–2000
and 1981–2010 normals periods, the average snow depth at Hemon were 21 cm [41,42].
Jean [43] also agreed that increasing soil temperature was associated with a decrease in



Forecasting 2022, 4 117

average maximum snow depth at Kuujjuaq. The higher variability of snow depth in this
study posed challenges due to the absence of snow parameterization in the model. This
study’s model accuracy would continue to improve as the snow depth at this location was
decreasing. The lack of trees and organic layer at the Kuujjuaq weather station (Figure 2)
may have also unintentionally improved the model performance as it did not account for
this variable. This was explained by Zhang et al. [52] as they found that the response of air
temperature warming on soil temperature was quicker at climate stations which had low
vegetation, such as Kuujjuaq, than at densely forested locations. The zero-curtain effect
is not captured by this model as the SDSM program did not factor in the phase change of
water in the soil during the overall warming nor the freeze-up process at the beginning of
each winter.

4.3. Uncertainties
4.3.1. Observation Uncertainties

One of the major uncertainties around soil temperature projections in northern Canada
was the scarce number of soil temperature monitoring sites. Most of the soil monitoring
sites were located in southern parts of Canada [2] and the existence of those sites was
primarily for agriculture purposes. Currently, soil temperature continues to be measured at
many of these agriculture sites on an hourly scale. The current data has finer resolution than
the historical data used in this study, where morning soil temperature was considered to be
more complete than the afternoon temperature and the morning temperature was used as
a representative of the temperature for the entire day [2]. This presents an uncertainty over
the recorded temperature at the site. The current measuring instrument is believed to be
more accurate than the older versions. The current temperature probe, Campbell Scientific
CSI 109-L has a tolerance of ±0.1 ◦C at 25 ◦C and the accuracy drops as temperature
deviates away from 25 ◦C. This instrument reports the temperature up to one-hundredth
of the decimal place. The older Northern Electric Type 14B thermistors that were used in
this study had an accuracy of ± 0.1 ◦C with unknown temperature range for accuracy and
the thermistors reported the values up to one-tenth of the decimal place. Unfortunately, the
accuracy of soil data dropped when an installation of instruments in December 1978 [53]
resulted in the recorded value to be rounded to the nearest 0.5 ◦C at all depths until the
end of the study period in 1995. However, Jean [43] noted that there were no significant
changes in observation or site methods for soil measurements at Kuujjuaq. It was unclear
what caused a decrease in the observation accuracy and resolution.

Repairs to the thermistors would disturb the soil as the process involved digging
the soil to retrieve the instrument from the ground and infill the soil after repairs were
completed. Digging into the ground in northern sites also posed a challenge as it was
common to encounter permafrost or bedrock before reaching the desired depth. Bedrock
prevented Kuujjuaq from having soil temperature measurements at 300 cm [19]. Vegetation
growth on top of the soil reduced the solar radiation from reaching the ground. Vegetation
also reduced the evaporation rate by convection as it slowed the wind speed at the top
surface of the soil. Majorowicz and Minea [54] suggested that the heat flow at Kuujjuaq
was between 44 to 49 mW/m2. However, the site conditions were likely compacted soil or
gravel as the instrument was in the vicinity of the airport. Nonetheless, it was believed that
the thermal diffusivity at Kuujjuaq was much higher than forested locations with moss or
leaf litter as the organic layers in the forest were better insulators.

Soil moisture was not one of the variables measured at this site, but it was directly
related to soil temperature and evaporation [55]. The coupled relationship between soil
moisture and temperature would allow monitoring indirectly from satellite and extend the
data availability beyond 1995. A dataset with a longer study period would improve the
validation process and more robust in the accuracy of future projections. Since Kuujjuaq
has an operational surface weather station up to present, soil moisture level can be derived
via projected precipitation data [56]. However, as Beltrami and Kellman [17] pointed out,
the coupling between air and soil temperature in Canada was site-specific. Having direct
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soil temperature measurements on site would always be superior to drawing inferences
from models through soil moisture and temperature coupling [55] or Stefan’s equation to
calculate the frost factor [12].

4.3.2. Modelling and Projections Uncertainties

The CanESM2 model was an improved model over older generations of Canadian
GCMs. Chylek et al. [33] found that CanESM2 was more in agreement with observed
air temperatures in the Arctic from 1900 to 1970 but it overestimated the warming after
1970. This raised a question on whether the warm bias would persist into the future.
CanESM2 model incorporates the Canadian Land Surface Scheme (CLASS) which uses
three depth layers at 0–10 cm, 10–35 cm and 35–410 cm [34]. Slater and Lawrence [57]
described the third CLASS layer which was subjected to large temperature fluctuations
because this layer has a shallow upper bound while the lower bound has low latent heat
sink due to bedrock. This could explain some of the issues seen in winter where there
was a cold bias for the model at 5 cm and a warm bias for depths at 10 cm and deeper.
However, deficiencies in the land-surface model were not limited to CanESM2. As an
example, HadGEM2 and GFDL’s land models minimized the insulating effects of snow
and caused cold bias in the soil [58,59]. On top of that, CanESM5 improved the radiative
transfer for albedos with bare soil and snow in CanESM2 [37]. As shown in Figure 3,
the CanESM2 model accurately predicted soil temperatures compared to the observed
values when the monthly soil temperatures were greater than 0 ◦C (May to October). While
improving snow albedo would generally improve the model accuracy, it had little effect
on soil temperature since snow is a strong insulator and high snowfall amount at the
study site [40–42] buffered some of the temperature variations in the soil [60]. On the
other hand, Yokohata et al. [61] improved a component used in MIROC model to consider
the heat capacity and thermal conductivity of frozen soil, organic layer near the surface
and availability of unfrozen water with ground temperature below 0 ◦C. They found that
MIROC model previously overestimated permafrost reduction area by about 15%. This
demonstrated that both hot and cold biases could stem from a variety of reasons in different
models but ultimately affected the projection of soil temperatures which would impact the
forecast of permafrost distribution.

Under the present-day conditions, not using snow depth in the SDSM process in-
troduced uncertainty into the projections. As the snow depth diminishes in the future,
the uncertainties related to snow depth will decrease over time and can result in greater
temperature fluctuations in deeper soil. The SDSM approach also failed to reproduce the
general effects of zero-curtain effects or thermal lag in the deeper soil in both the historical
and future time periods since the method was designed for climate projections on surface
weather and not for soil. All of the SDSM predictors were above-surface variables, which
introduced additional uncertainties for projecting below-surface parameters. Air tempera-
ture and surface precipitation were not prone to zero-curtain effects or thermal lag but soil
temperature would often be affected by both factors. The zero-curtain effect is especially
problematic to measure at this site due to the coarse resolution of the measuring instrument,
especially after December 1978, as described in the previous section. A mathematical model
may be required to account for zero-curtain effects on soil temperature. It should be noted
that the CLASS-STEM modelling framework was recently transitioned to Canadian Land
Surface Scheme including Biogeochemical Cycles (CLASSIC) model to improve usability
and future model development [62].

There was a major difference between this study and some of the permafrost studies
published in the 1990s in this region. In Wang and Allard [63] and Allard et al. [64],
these studies used Kuujjuaq and Iqaluit’s air temperature records to analyze permafrost
distributions and soil temperatures at Salluit, Kangiqsujuaq and Quaqtaq which are located
northwest of Kuujjuaq. Both studies suggested a recent cooling of air and soil temperatures
in this area. Wang and Allard [63] observed a cooling rate in air temperature at 0.02 ◦C per
year over a 40-year period from 1947 to 1988 in Kuujjuaq. Allard et al. [64] found that the
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soil was cooling at 0.05 ◦C per year at the three sites and the cooling trend was observed
at first 5 to 7 m of soil at Salluit. Using the observed air and soil cooling trends as the
premise, Wang and Allard [63] modelled the future soil temperatures to 2044 at Salluit
and found that the active layer thickness would decrease due to the continuing cooling
trends at the surface. The observed trends in Wang and Allard [63] and Allard et al. [64]
contrast greatly with more recent research in the same area such as this study, Boucher and
Guimond [5] and Doré et al. [65]. This study found significant warming at the top 1.5 m
of the soil (Table 1). Contrary to Wang and Allard [63] and Allard et al. [64], more recent
studies by Fortier et al. [66], Boucher and Guimond [5] and Doré et al. [65] documented
photographic evidence of permafrost degradation that was causing damage to the service
road and drainage systems at the airports. Unlike Wang and Allard [63] which suggested
surface cooling in the future, this study found that warming would continue in the future
at all the depths (Figures 9 and 10). Wang and Allard [63]’s results also contrasted with the
CanESM2’s GCM output for soil temperature [35]. Therefore, Wang and Allard [63] and
Allard et al. [64] drew different conclusions in their studies based on the trends in the time
period that they studied and newer research appeared to have invalidated their findings.

The CanESM2, without SDSM, produced historical soil temperature at this site poorly.
Using January 1967’s monthly mean soil temperature as an example, the observed tempera-
ture was −23.4 ◦C at 5 cm and −22.3 ◦C at 10 cm. Without SDSM, CanESM2’s historical
soil temperature at first depth layer (0–10 cm) within Kuujjuaq’s gridded cell was −7.9 ◦C
while the downscaled 20-ensemble mean was −15.2 ◦C for 5 cm and 10 cm was −14.8 ◦C.
The results demonstrated that SDSM vastly improved the historical CanESM2 estimation
of soil temperature at this location. Further analysis showed that sometimes CanESM2
gridded data were slightly more accurate than SDSM in the summer. In August 1995, the
monthly observed mean soil temperature was 12.0 ◦C at 5 cm and 11.2 ◦C at 10 cm. The
gridded data estimated the temperature to be 11.9 ◦C between 0 and 10 cm while SDSM’s
20-ensemble mean was 10.8 ◦C at 5 cm and 10.0 ◦C at 10 cm. However, in the 2 months
prior (June 1995), the observed soil was 10.3 ◦C at 5 cm and 8.3 ◦C at 10 cm while the SDSM
modelled 8.5 ◦C at 5 cm and 6.9 ◦C at 10 cm. Both of the SDSM modelled values were better
than gridded data’s temperature, which was 0.9 ◦C.

With the expected warming in the region, organic matter and vegetation such as moss
would alter the surface layers of the thermal conductivity and hydraulic properties of the
soil and this needed to be captured by models [67]. The decomposition rate of organic
matter in soil was projected to increase in the future, partly caused by the increase in
soil temperature [68]. However, most Earth system models perform poorly in permafrost
regions due to the lack of permafrost carbon dynamics in the current models [68]. Weather
station inspection report in 1972 confirmed coniferous trees were growing in the surround-
ing area of Kuujjuaq [20], indicating that the site was favourable for grass and shrubs to
grow at the surface of the soil where the measurement took place. However, existing site
management practice dictated active trimming of grass and removal of shrubs growing
on top of the measuring site [23]. As the temperature warms at Kuujjuaq and the climate
allows more vegetation to grow in the surrounding areas, this raised a question whether
the soil temperature records located on a barren surface will be truly representative of
the surrounding areas with trees and shrubs. In addition, Burke et al. [67] highlighted
the importance of a model in capturing the feedback cycle of additional CO2 emission
through melting permafrost because the effects would also affect the salinity and humid-
ity of the soil, with the change in the latter variable strongly linked to changes in soil
temperature [55].

4.4. Implications
4.4.1. Implications to the Environment

As mentioned by Anderson et al. [7], there is an intricate relationship between soil,
water and the climate, which in turn affect the hydrological cycle, local ecology and wildlife.
With the projected warming of both air and soil temperatures in the area, this would lead to
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drier soil [46]. Lower soil moisture could cause the soil to be more susceptible to drought
conditions because the water, in liquid form, could evaporate more easily than ice [69].
Thawing of the permafrost would lead to higher decomposition rate [68] of existing organic
materials that were previously frozen in ice. The decomposition process would lead to
additional greenhouse gases being released into the atmosphere, further contributing to a
positive feedback cycle. Indirectly, the melting permafrost would lead to more methylmer-
cury being released into the aquatic ecosystem as the released carbon would provide
suitable conditions for microbes to convert inorganic mercury into methylmercury [70].
The bioaccumulation and magnification of methylmercury would present challenges for
aquatic animals and humans in the Arctic region. It is suggested that small changes in
the local environmental factors could lead to a substantial response in the permafrost [43].
Warmer soil temperature would lead to higher vegetation productivity in the Arctic tundra
environment [8].

4.4.2. Implications to Airports

Common impacts of degrading permafrost to airport infrastructure include disrup-
tion to the drainage system and the thaw settlement of the runways, taxiways and access
roads [5,71]. At the nearby Tasiujaq airport, a study was conducted to assess the effec-
tiveness of various methods that enhanced surface cooling or heat removal to lower the
impacts of permafrost degradation on the runway [65]. They found that snow removal and
heat drains with pipes installed at the shoulders of the runway were cost-effective measure-
ments to preserve the permafrost underneath the runway. However, rising air temperature
and diminishing snow depth at Kuujjuaq [40–42] may have unintended consequences of
increasing rare occurrences of frostquakes, which causes popping sounds and cracks on the
ground if the ground is saturated with water [72]. Warmer temperatures led to days with
temperature above 0◦C more often particularly in the fall and spring and thinner snow cover
lessen the moderating temperature effects on soil. Both factors were crucial for frostquake
because it required large temperature swings to occur. Active removal of snow cover in an
attempt to allow rapid subsurface cooling to preserve permafrost could lead to even greater
fluctuation in soil temperature and more prone to formation of frostquakes. However, it is
believed that enhanced surface cooling of the runway will more than offset the drawbacks
from cracks caused by frostquakes as permafrost would damage the airport infrastructure
on a wider scale. Another study conducted at Iqaluit Airport in Nunavut also stated that
surface snow cover as the greatest factor in the permafrost thaw and snow-covered edges
along the taxiways and access roads would be most vulnerable to thaw settlement [73].
One of those taxiways was moved after multiple repairs failed to rectify the permafrost
subsidence [74]. The Nunavik region (including Kuujjuaq and Tasiujaq) communities were
characterized as low to moderately susceptible to hazards posed by climate change [75].
Given that Kuujjuaq is relatively close to Tasiujaq, the challenges and mitigation solutions
to the runway integrity at Kuujjuaq are expected to be similar to Tasiujaq. Aside from
the deterioration of the permafrost, airports in this region had been facing additional risk
factors, such as higher wind speeds, that could further damage the infrastructure [76]. As a
result, aviation infrastructure at Kuujjuaq is expected to face higher maintenance cost and
more frequent inspections and repairs. On top of that, mitigation strategies will involve
additional costs. Climate change projections in five Canadian airports with permafrost
presence suggested that permafrost degradation affecting airport infrastructure could be
more widespread and posed transportation challenges in wider regions across northern
Canada [12,77]. This should not be a surprise for policymakers in the government, as they
had considered the load-bearing capacity of permafrost underneath the airport as early
as in the mid-1950s [78] and ground stability problems due to climate change in the late
1980s [79]. However, there was no comprehensive plan to investigate all northern airports
in Canada to assess this known vulnerability.

Infrastructure resilience and responsible sourcing of construction materials for the
climate change impacts on airports are two of the 17 Sustainable Development Goals (SDG)
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outlined by the United Nations [80,81]. Responding to these challenges is a slow and
challenging process due to the remoteness of these communities. For example, Iqaluit
Airport’s construction materials had to be carefully planned and ordered in advance to take
advantage of lower shipping costs from summer sealift over delivering them by air [74].
Kuujjuaq and many villages in Nunavik have sea access through Hudson Bay and Hudson
Strait, which makes them ideal candidates to ship supplies by summer sealift to address
climate change impacts and implement adaptation strategies as occurrences of fog and low
visibility decreased [82]. This reduces the communities’ reliance on shipping freights by air
and extends the shipping season in the summer.

4.5. Long-Term Monitoring Network

This research would not be possible without the existence of long-term soil temper-
ature stations in a cold environment. Climate research relies on long-term observation
records to accurately establish historical baselines on which the future projections are
based. The consequences of short-term government priorities such as budget cuts [21] on
environmental monitoring programs might not be felt until years or decades later. The
soil monitoring at Kuujjuaq might not appear to be useful at the time when the program
review determined it to be low impact or significance, but this research demonstrated its
usefulness in the present day when Arctic warming becomes a global concern. Historical
data in the Arctic are scarce, highlighting the usefulness of sites such as Kuujjuaq that
provided a baseline for comparison with recent data. Lack of long-term monitoring led
by the government cannot be offset by ad-hoc weather stations or boreholes records such
as those at Salluit, Kangiqsujuaq and Quaqtaq northwest of Kuujjuaq [64] due to agency
needs, political priorities at the time or university research projects as the sites are not in-
tended for long-term data collection in this region [43] and are primarily tied to the funding
cycle. Furthermore, the upkeep cost for in-situ soil sensing is expensive [7]. Even though
these ad-hoc stations tended to be maintained, the sensors were often not calibrated [83]
and thus the data quality from these stations was uncertain and questionable. Moreover,
government weather stations had the advantage of having longer time series and met the
standards set out by the World Meteorological Organization [43] which allow data to be
exchanged globally and used in the meteorological forecast, research and GCMs. Ad-hoc
weather stations could supplement but not replace the data collection done by government
weather stations. Therefore, consistent and stable funding to various monitoring networks
is needed for reliable atmospheric and geophysical data collection.

5. Conclusions

This study used in-situ, long-term soil temperature records at Kuujjuaq and found
significant warmings of 0.9 to 1.3 ◦C per decade on an annual scale and 0.8 to 1.9 ◦C in
winter at 5 to 150 cm depths. Soil at deeper depths had a lesser day-to-day variability and
warmed more slowly than the surface soils. SDSM modelled the mean and variance of
historical soil temperature data accurately, particularly from April to October and in soils
closer towards the surface. Surface specific humidity, mean 2 m air temperature, 500 hPa
geopotential height and specific humidity at 850 hPa showed the strongest correlation to
Kuujjuaq’s historical soil temperature. SDSM approach produced results that are close to
the observed data and are robust as shown by the very small model errors. By 2026, soil
temperature projections suggested that the annual mean will be above 0 ◦C in the three RCP
scenarios. Winter mean soil temperature from November to April would remain below 0 ◦C.
Soil temperatures would continue to rise by 2056 and 2086. The warming rate was linked
to the greenhouse gas emission levels. Implications of the warming include possible cracks
forming on the runway, damaging fuel tanks or compromising the structural integrity of
terminal buildings that support the operation of the airport due to the degrading permafrost
and freeze-thaw events each year.

Future directions of this study would involve improving the accuracy of winter
projections. This could be achieved by performing another model validation process
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exclusively for winter months (November to April) and identifying atmospheric variables
which were best correlated to soil temperature in winter or a specific month to remove
the winter bias in the model. Projections should also be attempted by using other climate
models or with an ensemble approach. Finally, the SDSM process should be applied at
another location with long-term soil temperature records to ensure that the method is
applicable elsewhere.

This study established a strong linkage between soil temperature and CanESM2 model
output through statistical downscaling. It also demonstrated that a novel usage of SDSM
software was applicable to future soil temperature projections. This approach showed
that using the SDSM approach on the CanESM2 model, the downscaled historical soil
temperature was more accurate than the CanESM2 output for historical soil temperature
at this location. The tool performs reasonably well in summer as well as in soil up to
100 cm deep. Through this study, it illustrated the importance of long-term government-
funded supplementary network data such as soil temperature to monitor climate change in
the north.
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