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Hydrological forecasting is of primary importance to better inform decision-making
on flood management, drought mitigation, water system operations, water resources
planning, and hydropower generation, among others. Typical hydrological forecasting
translates single deterministic or an ensemble of short, intermediate, and long lead-time
meteorological forecasts into estimates of hydrological variables of interest (e.g., streamflow,
river stage, snowmelt, etc.) via forecast models at the corresponding temporal scales. These
models range from process-based hydrological models to purely data-driven models.
The model predictive skill and uncertainty are normally verified by comparing archived
forecasts to field data or in a hindcasting mode. During forecasting, real-time in situ or
remote sensing measurements for forecast hydrological variables can be assimilated into
the forecast model to update model states or parameters for improved forecasts. Before
being disseminated for operational use, hydrological forecasts are often post-processed to
best reflect the perceptions of forecasters on the future state of those forecast variables.

Although there has been immense progress in forecasting systems, services, and
observational sensors to date, hydrological forecasting today faces convoluted challenges
induced by the increasing trend of extreme events, changing basin climate and hydrology,
and demands of a unified and versatile hydrological forecasting system operating at
local to continental scales. This Special Issue aimed to explore the latest methodological
advances and novel applications in hydrological forecasting that tackle one or more of
those challenges. The collection of papers published in this Special Issue covered a range of
topics on improving hydrological forecasting via new datasets and innovative approaches.
Each of these papers is summarized as follows.

Wu [1] proposed an approach using the bivariate meta-Gaussian distribution that
allows the explicit treatment of precipitation intermittency, as well as a wide choice of
parametric and non-parametric models for marginal distributions. Wu [1] presented the
new proof for an intermittency equation of the model, and studied how to tune the bivariate
meta-Gaussian distribution for an optimal fit. The two variables used are predicted single-
valued precipitation amounts and the corresponding observed precipitation amounts.
Numerical simulations are implemented with data from the Global Ensemble Forecast
System and four River Forecast Centers in the United States. The Mallows distance for the
entire joint distribution is used to tune the parameter of the meta-Gaussian distribution.
The optimization results were comparatively evaluated with results from using the sample
correlation coefficient and maximum likelihood estimate as parameter values. The results
suggested that tuning the dependence parameter has limited effects toward a better overall
model fit, and that the goodness-of-fit of the conditional distribution can be improved in
the case of optimizing the parameter for a targeted conditional distribution.

Bhuiyan et al. [2] explored the application of innovative machine-learning (ML)-based
error models in improving the quality of satellite-based precipitation products. Specifically,
the study applied two ML techniques including the Random Forecast (RF) and Neural
Network (NN) to correct errors in the Integrated Multi-satellite Retrievals for Global
Precipitation Measurement (IMERG) precipitation product. The proposed error models
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were exemplified in the Brahmaputra River Basin during a four-year period. The quantile–
quantile plot, along with a set of statistical metrics, were utilized to assess the performance
of the error models. The findings indicated that both RF-based and NN-based error models
lead to reduction in the random and systematic errors for all precipitation percentile ranges.
The error corrected IMERG precipitation products showed a slightly higher improvement
by the NN-based error model compared to the RF-based model. Overall, the NN-based
error model slightly outperformed the RF-based error model. The authors expected that
the ML-based error modeling algorithm is potentially applicable to ungauged areas or to
the global scale, as well as for other types of remote-sensing precipitation products.

Pokhrel et al. [3] presented a framework to assess future flood rates and risks. The
framework consists of a statistical analysis procedure, as well as a hydraulic modeling and
risk assessment procedure. The former first bias-corrects streamflow projections based
on the latest multi-model ensemble Coupled Model Inter-comparison Project Phase 6
(CMIP6) climate data. Future peak flows with 100-year and 500-year return periods are
subsequently determined. The latter employs the one-dimensional HEC-RAS model to
generate floodplain maps corresponding to 100-year and 500-year flood events. Next,
four hazard categories (low, moderate, high, and severe) are produced for each extreme
(100-year and 500-year) event. Different risk scores are also assigned to different land
use types for vulnerability assessment. Lastly, the risk-maps for both existing and future
extreme events are developed, and the risk assessment is conducted by comparing the
present risk to the projected risk in the future. The framework was applied to a 32-km
long reach of the Neuse River in North Carolina, United States. The results indicated an
increase in flood inundation area and thus higher flood hazards and risks in the future in
the study area. The authors claimed that the findings of the study have the potential to
inform policymakers in terms of preparing flood risk mitigation plans.

Lee et al. [4] developed a Mean Field Bias (MFB)-aware variational (VAR) assimilation
framework, or MVAR, to account for catchment-wide biases in distributed hydrologic
model states. MVAR corrects the MFB in model states first, and then updates the resulting
states at the grid box scale. MVAR was comparatively evaluated with the conventional
VAR based on results from assimilating streamflow into the distributed Sacramento Soil
Moisture Accounting model for the 2258 km2 headwater basin draining into the Elk River
near Tiff City, Missouri. Compared to the conventional VAR, MVAR reduced the mean
squared error of streamflow by 2–8% at the outlet, and by 1–10% at the interior location.
MVAR adjusts model states at remote cells from the outlet by larger margins than the VAR.

Giannaros et al. [5] introduced a novel WRF-Hydro-based fluvial flood forecasting
system for the Southeast Mediterranean (SEM) and presented modeling methodologies and
forecasting schemes used in the system. The initial prototype results derived under a pre-
operational mode were presented, and future developments and challenges were discussed.

In conclusion, this Special Issue presented the latest studies on methodological and
operational advances in hydrological forecasting.
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