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Abstract: Weather-related power outages affect millions of utility customers every year. Predicting
storm outages with lead times of up to five days could help utilities to allocate crews and resources
and devise cost-effective restoration plans that meet the strict time and efficiency requirements
imposed by regulatory authorities. In this study, we construct a numerical experiment to evaluate
how weather parameter uncertainty, based on weather forecasts with one to five days of lead time,
propagates into outage prediction error. We apply a machine-learning-based outage prediction
model on storm-caused outage events that occurred between 2016 and 2019 in the northeastern
United States. The model predictions, fed by weather analysis and other environmental parameters
including land cover, tree canopy, vegetation characteristics, and utility infrastructure variables
exhibited a mean absolute percentage error of 38%, Nash–Sutcliffe efficiency of 0.54, and normalized
centered root mean square error of 68%. Our numerical experiment demonstrated that uncertainties
of precipitation and wind-gust variables play a significant role in the outage prediction uncertainty
while sustained wind and temperature parameters play a less important role. We showed that, while
the overall weather forecast uncertainty increases gradually with lead time, the corresponding outage
prediction uncertainty exhibited a lower dependence on lead times up to 3 days and a stepwise
increase in the four- and five-day lead times.

Keywords: forecast uncertainty; lead time; severe weather; machine learning; power outages

1. Introduction

Extreme weather is a serious problem for electric distribution utilities, damaging
power grid components and causing outages that can result in significant economic disrup-
tion and inconvenience for millions of customers [1,2]. Efficient prediction of the power
outages that may result from severe weather events is a key to help utility companies in
planning their allocations of crew and equipment for faster and more cost-efficient power
restoration [3–5]. The time window available to utility managers to restore power is short
once the power outages occur as regulatory and customer pressure for timely restoration
builds up. State regulators typically require that utilities restore power within four days, a
timeframe that for major events constitutes a major challenge [6]. Therefore, the ability to
forecast outages with lead times of up to several days would give utility managers time to
prepare for major outage events.

The use of machine-learning algorithms has been standard practice for predicting
power outages in the past two decades [7–13]. Nateghi et al. used a Bayesian additive
regression tree to predict power outages caused from hurricanes and the model showed
a root mean squared error (RMSE) of 894 [14]. Nateghi et al. continued this research and
used the same data but used a random forest algorithm to develop an hurricane-induced-
outage prediction model, which showed an RMSE of 0.76 and 5.91 by grid level [15]. They
only used five hurricanes from a power distribution system in the Gulf Coast region of
the United States. The weather products were from the commercial weather forecasting

Forecasting 2021, 3, 501–516. https://doi.org/10.3390/forecast3030031 https://www.mdpi.com/journal/forecasting

https://www.mdpi.com/journal/forecasting
https://www.mdpi.com
https://orcid.org/0000-0001-5918-4885
https://orcid.org/0000-0002-1622-0302
https://doi.org/10.3390/forecast3030031
https://doi.org/10.3390/forecast3030031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/forecast3030031
https://www.mdpi.com/journal/forecasting
https://www.mdpi.com/article/10.3390/forecast3030031?type=check_update&version=2


Forecasting 2021, 3 502

service. Liu et al. used a generalized linear mixed model based on 12 hurricanes and 11 ice
storms to predict the number of hurricane- and ice-storm-related electric power outages
and showed 3.15 and 4.35 square root of the mean-squared errors for Hurricane Charley
and the January 2004 ice storm, respectively [16]. The weather data in that study were
obtained from the National Oceanic and Atmospheric Administration National Climatic
Data Center and Weather Research and Forecasting (WRF). Kabir et al. utilized a quantile
regression forest model based on 11 thunderstorms to predict thunderstorm-induced power
outages based on weather data from the National Digital Forecast Database [17]. Wanik
et al. studied 89 weather-caused outage events in Connecticut from different seasons
and used multiple machine-learning methods including boosted gradient tree to predict
the power outages, and the gradient boosting model showed a mean APE of 57.2% [18].
Cerrai et al. studied 76 extratropical and 44 convective storms and used multiple machine-
learning models for outage prediction, showing a mean absolute percentage error (MAPE)
of 65% for the entire dataset, and 80% for the extratropical events [19]. The weather
products in the research of Wanik et al. and Cerrai et al. were both from WRF numerical
weather prediction simulations. The main input in all outage-forecasting studies has been
information on weather conditions such as wind speed, gust, durations of wind speed
over certain thresholds, temperature, and precipitation variables, which is combined with
land cover variables, vegetation information, and utility infrastructure data. Arguably, the
leading cause of power outages is the interaction among severe weather, electric overhead
network distribution, and surrounding trees [20]. While the application of the different
machine-learning models described in the literature has improved the ability to predict
outages in the electric distribution network, we still need to understand how the accuracy
of outage forecasts varies at different lead times. Current literature lacks such studies.

Furthermore, given that weather parameters’ uncertainties are key factors limiting
model accuracy, we need to understand how weather forecasting uncertainty varies by lead
time and how this uncertainty manifests in outage prediction error through its propagation
in the complex machine-learning-based outage prediction models [21]. Numerical weather
prediction–based [22] forecasting error is caused by uncertainties in the model’s initial
conditions [23], boundary conditions [24], physical parameterizations [25], and model
errors [26]. All of these factors, and especially the initial-condition errors [27], determine
the quality of forecasted weather parameters at the various lead times (up to five days)
used in the OPM. Below, we summarize studies in the literature that have investigated
errors in high-resolution weather forecasts.

The unbiased forecast root mean square error of 2 m temperature, 10 m wind speed,
and 3 h accumulated precipitation for three selected precipitation events increased by 37%,
7%, and 30%, respectively, at forecast lead times ranging from zero hours to four days for
COSMO-E weather forecast model [28]. The temperature at 850 hPa for the 3 km Model for
Prediction Across Scales (MPAS) ensemble forecasts for 35 events had a bias increase from
−0.2 to −1.2 and RMSE from 0.8 to 2.4 for lead times ranging from 0 to 120 h [29]. Slingo
and Palmer showed that the root mean square error of the ensemble mean anomaly forecast
grew from less than 1 to 70 for forecast lead times ranging from hours to decades [30].
Yang et al. compared the forecast wind speed for 146 storms based on the Weather Research
and Forecasting (WRF) and Integrated Community Limited Area Modeling System models,
showing that the RMSE for both models increased from zero hours to 54 forecast hours [31].
Using the gridded Bayesian linear regression to improve the deterministic wind speed
prediction with the NCAR’s Real-Time Ensemble Forecast System, the authors showed that
R-square decreased by 28% and centered root mean square error increased by 38% for lead
times ranging from 0 to 48 h [32].

This study devises a numerical experiment to quantify the weather forecast and
corresponding outage prediction uncertainty at different lead times and to investigate how
errors in the various weather parameters propagate to outage prediction. By applying an
outage prediction model on 273 historical weather-caused outage events across three states
in northeastern of the United States—Connecticut, Massachusetts, and New Hampshire—
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we (i) analyzed the differences between numerical weather prediction analysis and forecasts
at different lead times based on a subset of events (25); and (ii) subsequently used the
remaining record (217 events) to investigate how the uncertainties of weather forecasting
and outage prediction errors change at different lead times using zero-hour forecasts as
reference. The numerical experiment quantified how uncertainties of weather forecasting
propagate into outage prediction modeling for lead times ranging between one and five
days. In the next section, we discuss the study area, while Sections 3 and 4 describe the
methods and results. Discussion and conclusions are presented in Sections 5 and 6.

2. Study Area and Data

Our study focused on the northeastern U.S. region comprising the New England
states of Connecticut, Massachusetts, and New Hampshire. The utility companies for
these states are Eversource Energy and AVANGRID—United Illuminating, and the study
areas covered the territories of Eversource Connecticut (CT), AVANGRID—Connecticut
(UI), Eversource West Massachusetts (WMA), Eversource East Massachusetts (EMA), and
Eversource New Hampshire (NH). We investigated historical outage events associated
with 273 extratropical storms that took place between April 2016 and April 2018 and
yielded 252,666 observations, integrating weather variables with information on utility
infrastructure, land cover, vegetation, tree canopy, and utility-reported power outages
for each storm event and modeling the power outages to a resolution of 1/32 degrees
(the resolution of weather data), covering the region. The numerical experiment is based
on a subset of the 273 events (217 events between October 2017 and November 2019)
for which we used forecasts for lead times ranging from zero hours to five days. The
remaining 25 events (in the period October 2017 to April 2018) for which we have available
weather analysis and forecasts (hereafter called overlap events) were used to evaluate the
validity of zero-hour forecasts as reference for evaluating the uncertainty of the longer-
lead-time forecasts.

The weather data used in our study include numerical weather prediction analysis
and forecasts from the Global Weather Corporation (GWC) [33]. The forecast data incor-
porate the outputs from multiple global numerical weather prediction systems such as
the Global Forecast System (GFS) produced by the National Centers for Environmental
Prediction (NCEP) and the Integrated Forecast System (IFS) produced by the European
Centre for Medium-Range Weather Forecasts (ECMWF) and from additional regional and
higher-resolution numerical weather prediction models at shorter lead times. GWC uses
machine learning to fine-tune the accuracy of the model forecasts based on in situ station
observations. We obtained forecasts from the GWC PointWX product, which represents
high spatial and temporal resolution weather forecasts globally, every fifteen minutes [34].
This GWC PointWX product includes forecasts with up to 14 days lead time. In this study,
we used PointWX weather data across the study domain and the 217 extratropical events
for zero up to five days lead times. It is noted that zero-hour forecast in the GWC PointWX
product is “forward-error corrected,” ensuring that the forecast at hour zero matches the
observations at that time for key variables (temperature and wind speed). For the GWC
PointWX weather analysis product, observational data were input into multiple numerical
weather prediction model simulations to output the numerical weather prediction analysis
at the grid locations of our study area.

Besides the weather variables, we also converted land cover variables generated from
the 2016 National Land Cover Database (NLCD) product [35] about forecast categories
covering percentages of miscellaneous forest, deciduous forest, and developed area, the
distribution of electric infrastructure by percentage, leaf area index (LAI) [36], and tree
canopy cover [37], and historical utility-reported power outages gridded at the resolution of
the weather variables. A utility-reported power outage is defined as the loss of the electrical
power network that breaks the supply to an end user and needs to be repaired, excluding
short-term interruptions (less than 5 s) that are automatically corrected by the system-
protection device. According to this definition, a single power outage may affect a different
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number of customers and is reported at the nearest isolating device. The utilities reported
the loss of the electrical power network with geospatial information, so we aggregated the
numbers of losses of the electrical power network per grid cell reported by outage event.

For vegetation, we extracted information from the United States Forest Service (USFS)
geospatial data on tree canopy cover with 30 m resolution, which is derived from mul-
tispectral Landsat imagery and other available ground and ancillary information [38].
Containing percentage tree canopy estimates for each pixel across different land covers and
types, these data were aggregated into 1/32 degree cells. This variable introduces in the
machine-learning model information on trends and patterns of the trees. All explanatory
variables used in the OPM are described in Appendix A.

3. Methods
3.1. Numerical Experiment

Figure 1 shows a flow chart of the methodology for evaluating the propagation of
the uncertainties of weather forecasting to outage forecasting for different lead times.
Our experiment had three parts. In the first part, we used input variables and power
outages from the 273 historical extratropical storm events to create the OPM. In 2020,
Watson et al. covered training data from five service territories (CT, EMA, WMA, NH,
and UI), developed a clustering algorithm to summarize the different characteristics of
the OPM grid cells, and used RF and BART models to develop an OPM demonstrating
an MAPE of 58% to 63% and an NSE of 0.39 to 0.41 [39]. Because some service territories
had fewer outage events in the training dataset than others, the inclusion in the training
dataset of events from different service territories could benefit the ability of the OPM to
predict future events [40,41]. Specifically, a regional OPM using data from different service
territories and utilities allowed the study of information from the same or similar storm
events in other areas. This approach benefited the areas with limited historical events in
the training, potentially giving them better prediction results than they would obtain by
running separate OPMs. The details about how to split the data to create the OPM are
described in Section 3.2.
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In the second part of the experiment, we compared the characteristics of weather
analysis and forecast data for the same severe events at different lead times. The forecast
included weather at lead times of one to five days (that is, one to five lead days) and of
zero hour (zero-hour lead time). The investigation of weather forecast uncertainty had two
parts. First, we compared the forecasted weather at different lead times (i.e., from five days
to zero hours) with the analysis of weather for overlapping historical storm events. The
forecasted weather at lead times with the smallest relative difference was taken into account
as the replacement for weather analysis of the forecasted events. We demonstrated that the
weather forecast at zero hour had the smallest relative difference to analysis. Moreover,
the weather forecast uncertainty at different lead times was quantified in this part. Based
on the analysis results from the first part, we compared the weather characteristics of the
forecasts at one to five lead days with those of the baseline weather forecast at zero-hour
lead time in the second part.

In the third and final part, based on the weather variables of the 217 forecasted events
as testing data, we used the created OPM to predict the outages of these forecasted events
at the different lead times (1–5 days) and evaluated error performance comparing against
the zero-hour weather and outage predictions. This part allowed us to investigate the
relationship between the uncertainties of weather forecasting to those of outage prediction
modeling to quantify how the weather error propagated to the outage prediction.

3.2. Outage Prediction Model

We structured the OPM using weather analysis (for training) and forecast (for pre-
diction). We used weather, utility infrastructure, land cover, tree canopy, and LAI data
described in the previous section and the Appendix A as the input variables and the
count of power outages as the target variable. The model outputs are predicted number
of outages per grid cell associated with storms in the outage forecasting model, and we
counted the outages of all the grids as total outages associated with that storm for each
service territory. Since our outage prediction outputs are at the grid level with geospatial
information, the utilities could use this information to have a faster and better power
restoration management as they know which location would have power outages and how
often outages would happen at that location in the coming storms.

We used the historical extratropical events to train a gradient-boosting machine (GBM)
model to predict power outages. The GBM model is an ensemble technique that builds
several small trees, called “weak learners,” by sequence to correct errors made by previously
trained trees and generates a “strong learner” to obtain robust predictive models [42,43].
The GBM focuses on difficult samples and treats the unbalanced data by sequence. The
model development began with the determination of three hyperparameters (i.e., tree number,
learning rate, and interaction depth) using k-fold cross-validation. The parameter values are
2000 trees, 0.02 learning rate, and 48 for the interaction depth. These hyperparameters were
then used to train the GBM model for predicting the number of power outages.

We used “leave one storm out” cross-validation to train the GBM model by holding
out the data of a predicted storm from the training dataset. The training dataset comprised
the 273 historical extratropical storms. The testing data in this paper were 217 forecasted
events at different lead times ranging from zero hours to five days. When we used the
created OPM to predict the outages of one forecasted event at different lead times, we
held out the data of that forecasted event from the training dataset because there were
25 overlap events with both weather analysis and weather forecast.

Our past research has shown that outage prediction models are sensitive to the extent
to which the training data are representative of the severity of the predicted bad weather,
and unbalanced dispersed event severity in the training dataset has been shown to cause
low accuracy levels [40,41]. After training machine-learning models in the OPM with many
different outage ranges to predict events of differing severity, we obtained three optimal
ranges for the training datasets: for predicting low-impact events (less than 100 outages),
the training dataset comprised all the events with less than 100 outages; for predicting
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moderate-impact events (100–500 outages), it comprised all historical events; and for
predicting high-impact events (more than 500 outages), it comprised all the events with
more than 200 outages.

Results from our model cross-validation are shown in Section 4.1. The variable impor-
tance of input variables referring to how much GBM “uses” each variable to predict outages
is shown in Table 1. As shown in the Table 1, wind-gust, temperature, and precipitation
are among the most important variables. The wind duration variables exhibited the least
importance in the GBM.

Table 1. Variable importance.

Variables Importance

Max Gust 17.68
Max Temperature 11.72

poles 10.24
totAssets 8.69

Mean Gust 6.53
Total Precipitation 6.32

reclosers 5.81
percDevel 3.59

Mean Temperature 3.54
Max Wind Speed 3.30

LAI 2.71
Max Precipitation Rate 2.64

percDecid 2.43
wgt9 2.33

Mean Wind Speed 2.19
Mean Precipitation Rate 2.12

Avg_treeCanopy 2.11
percXFrst 1.73

wgt5 1.20
Cowgt5 1.15
Cowgt9 0.77
wgt13 0.75

Cowgt13 0.25
wgt18 0.16

Cowgt18 0.04

3.3. Performance Evaluation Error Metrics

We used absolute error (AE) to measure the difference between the predicted (pi) and
actual (oi) totals of service territory outages from each event (i). The first, second, and
third quantiles of the sorted absolute error data (AE Q25, AE Q50, and AE Q75), the first,
second, and third quantiles of the sorted absolute percentage error (APE Q25, APE Q50,
and APE Q75), mean absolute percentage error (MAPE), Nash–Sutcliffe efficiency (NSE),
and normalized centered root mean square error (NCRMSE) were used to determine the
bias and random errors. The definition for these performance evaluation error metrics is
presented in Appendix B.

Besides the above metrics, we used the weather/outages error metric ratio (NCRMSE
Ratio) to evaluate the relationship between the weather uncertainty and outage prediction
modeling uncertainty. The NCRMSE ratio was calculated as follows:

NCRMSE Ratio =
NCRMSE_weatherVariables

NCRMSE_outages
(1)

As stated in the previous section, zero-hour weather forecast was used as a reference
to calculate the NCRMSE_wwatherVariables, while zero-hour predicted outages were the
reference to calculate the NCRMSE_outages. NCRMSE_weatherVariables means the NCRMSE
of weather forecast variables for each respective lead time of one to five days to those of
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zero-hour forecast; and NCRMSE_outages means the NCRMSE of predicted outages for
each respective lead time of one to five days to those of zero-hour forecast.

4. Results
4.1. OPM Model Evaluation

This section discusses the performance of the regional outage prediction model (OPM).
Figure 2 shows the validation results of the OPM for the 273 historical events. The vertical
and horizontal axes represent the log-scale predicted and actual outages for each event,
respectively. The points with different colors corresponds to different regions (blue—CT,
green—EMA, purple—NH, orange—WMA, and red—UI). The parallel red lines represent
50 percent model overestimation (top line) and 50 percent model underestimation (bottom
line), whereas the black line is the 45 degree line at which predicted and actual agree.
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The model evaluation results for the OPM are in Table 2, which shows an MAPE of
38%, NCRMSE of 68%, APE less than 50%, and NSE of 0.54. These model performances
are consistent with prior applications of the model [19,39], which indicates that the GWC
dataset can be applied for outage modeling. Having established the mode performance,
the following sections will discuss the application of the OPM in the numerical experiment.
Specifically, we used the model to predict the outages using weather forecasts at different
lead times (i.e., the data of forecasted events are used as testing data for the OPM), and
we investigated the outage prediction errors at different lead times and how the weather
parameter uncertainty propagated into outage prediction error at these lead times.

Table 2. OPM evaluation results.

Model AEQ25 AEQ50 AEQ75 APEQ25 APEQ50 APEQ75 MAPE NCRMSE NSE

OPM 7 15 33 12% 28% 46% 38% 68% 0.54
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4.2. Weather and Outage Forecast Uncertainties

In this section, we used the 25 events with available weather analysis and forecasts,
covering lead times from zero hours to five days. We used the weather analysis data as a
reference to calculate the relative difference between forecast and analysis for the weather
variables of these events. Figure 3 shows the relative differences of forecasted mean wind
gust, max wind speed, total precipitation, and max temperature weather variables to their
reference weather data for these 25 events at different lead times. In it, 5D-, 4D-, 3D-, 2D-,
and 1D-ahead refer to weather forecasts with lead times of five, four, three, two, and one
day, respectively, and 0H-ahead refers to the zero-hour forecast. As expected, the relative
difference of forecast to analysis decreases for lead times ranging from five days to zero
hours, and the zero-hour weather forecast, with the lowest relative difference, is shown
to be the closest to the weather analysis. Since observational data of wind speed and
temperature were used in the GWC zero-hour wind speed and temperature forecasts, the
relative errors of these variables between zero hour and weather analysis were ignored.
Therefore, in the subsequent analysis we used the zero-hour forecast, in place of analysis,
as a reference to evaluate weather and outage forecasts at one to five day lead times.
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We calculated the mean absolute percentage error (MAPE) between the weather
forecasts for the different lead days and the zero-hour weather forecast, for the key weather
variables sustained wind, gust, precipitation, and temperature, based on the 217 storms.
As Figure 4 shows, the MAPE of weather parameters decreased from five lead days to
one, indicating a decreasing trend for weather forecast uncertainty with diminishing lead
time. Specifically, for max and mean wind speed, from five to one day lead time, MAPE
decreased by nearly 56% and 59%, respectively. For max and mean wind gust, MAPE
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decreased by 67%. For max and mean temperature, the MAPE decrease was 60% and 56%,
respectively, and finally, for mean, max, and total precipitation, MAPE decreased by 29%,
30%, and 64%, respectively. These results indicate a significant effect of lead time on the
accuracy of weather parameters used in outage prediction modeling.
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We next investigated the outage prediction modeling uncertainty. We fed the OPM
with weather forecasts associated with the 217 events at zero-hour lead time and at one
to five lead days to predict outages and compared the results with the actual outages,
calculating the error metrics between predicted and actual outages to show the differences
in OPM uncertainty. Figure 5a shows the scatter plot of OPM performance for the forecasted
weather at the different lead days, while Figure 5b shows the performance for the zero-hour
weather forecast. Table 3 shows the values of error metrics AE Q50, MAPE, NCRMSE,
and NSE of the model performances for the weather forecasts at different lead times.
The performances showed a decreasing trend for AE Q50, MAPE, and NCRMSE and
an increasing trend for NSE from five lead days to one, and the performance of outage
prediction modeling at zero-hour lead time was better than that at one to five lead days,
indicating a decreasing trend for outage prediction modeling uncertainty with diminishing
lead time. It is shown that OPM based on the zero-hour forecasted weather was the closest
to the OPM performance based on weather analysis, which signifies the use of the zero-hour
OPM prediction as reference for the numerical experiment used in this study.
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Table 3. Model performance of the OPM for forecast weather at different lead times.

Model AE Q50 MAPE NCRMSE NSE

0H-ahead 18 49% 72% 0.48
1D-ahead 18 50% 84% 0.29
2D-ahead 22 51% 86% 0.24
3D-ahead 18 48% 87% 0.22
4D-ahead 21 54% 86% 0.22
5D-ahead 24 60% 87% 0.21

5. Discussion

As noted in Section 4.2, the uncertainties of weather forecasts and outage prediction
modeling showed increasing trends from one to five days lead time. In this section, we use
the results from the numerical experiment to discuss the NCRMSE of the top 10 important
weather predictors and the relationship between uncertainties of weather forecasts to
outage prediction errors. In Figure 6, the NCRMSE of weather variables and outage
predictions shows increasing trends from the one to five days lead time. The NCRMSE
increased from 0.56 to 0.97, 0.41 to 0.71, and 0.9 to 1.08 for max gust, max wind speed, and
total precipitation, respectively. The temperature variable showed the lowest NCRMSE
relative to other weather variables. It is noted that most NCRMSE values (especially
precipitation and gust) at four and five days lead times had a significant jump relative to
the shorter lead time (1–3 days); this is due to the inclusion of regional weather models
starting from 84 h and increasing progressively at shorter lead times. The regional weather
models provide both increased spatial and temporal resolution, which is likely the cause
for the differences noted in Figure 6. Figure 6 also shows a gradual increase of NCRMSE
for the outage predictions between one and three days and a more significant increase in
the four-day lead time.

Figure 7 shows the NCRMSE ratio of weather variables to outage prediction for the
different lead times, and it shows that precipitation variables had ratios larger than 1 at all
lead days, and the mean and max gust variables had a ratio larger than 1 at the lead days
of three to five. The other variables such as wind speed, temperature, and wind duration
had ratios less than 1 indicating that these variables play a lesser role in the overall outage
prediction model’s uncertainty.
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To compare the overall weather forecast uncertainty to the outage prediction uncer-
tainty at different lead times, we calculated the weighted NCRMSE of all-weather variables
used in OPM using as weights the variable importance shown in Table 1. The NCRMSE
of weighted weather variables is compared against the outage prediction NCRMSE in
Figure 8. It is shown that in the long lead times (four and five days), the weather and
outage prediction NCRMSEs have similar values indicating that the weather constitutes
the main source of uncertainty in the OPM at these lead times. In one to three days lead
time, we noted a less gradual increase in the outage prediction NCRMSE relative to the
weather forecasts, indicating that OPM modeling can filter some of the increased weather
forecasting uncertainty in shorter lead times.
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6. Conclusions

This study uses a numerical experiment based on a large number of historical outage
events from the northeastern United States to investigate the interactions between weather
forecasting and outage prediction modeling uncertainties for lead times between one and
five days. Our findings could help electric utilities gain a better understanding of the
limitations in storm outage forecasting and be aware of the tradeoffs between outage
forecast uncertainty and lead time, allowing for more efficient emergency preparedness
and restoration.

The outage prediction model used in our numerical experiment was trained by com-
bining extratropical events that affected five service territories across three states in New
England between 2016 and 2019 and exhibited a mean absolute percentage error of 38%,
NSE of 0.54, and NCRMSE of 68%. We showed decreasing trends in the weather forecasting
uncertainties and outage prediction errors for lead times ranging from five days to one
day. The weather uncertainties for precipitation and wind-gust variables played a more
important role in the outage prediction error, while sustained wind speed and temperature
played a lower role in the outage prediction error. While the weather forecast exhibited
a gradual increase of uncertainty from one to five days, outage prediction uncertainty
was less dependent on weather forecasting uncertainty in the short (1–3 day) lead times
but exhibited a stepwise increase in the four and five days lead forecasts. This behavior
of weather uncertainty in outage modeling could guide future improvements in outage
prediction, focusing on the implementation of different OPMs for longer-range forecasts
(4 and 5 days) versus the one to three days forecasts.

This investigation, based on the Connecticut, Massachusetts, and New Hampshire
service territories, needs to be expanded to multiple service territories in the mid-Atlantic
and northeastern United States to evaluate the scalability of these results across different
vegetation and infrastructure characteristics and weather patterns. Another extension of
the study would be to develop statistical error corrections for outage predictions based on
predicted uncertainties in weather forecasting at different lead times. This could lead to an
ensemble outage-forecasting system that accounts for weather forecasting uncertainty and
characteristics of error propagation in outage prediction modeling.
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Appendix A. Explanatory Variables

The utility infrastructure in the Connecticut service territory of Eversource Energy
and AVANGRID—United Illuminating contains multiple types of assets, including electric
poles and reclosers, among others. We geographically aggregated utility infrastructure
data to the 1/32 degree cells of the GWC model’s inner domain and provided three utility
infrastructure variables for the OPM: “poles”—that is, a count of poles per 1/32 degree cell;
“reclosers”—a count of reclosers per 1/32 degree cell; and “totAssets,” representing the
sum of all assets per 1/32 degree cell. Shown in Table A1, these three variables are the most
important predictors in a trained OPM, since outages are recorded at the asset level, and
the risk of having a reported outage is directly proportional to the number of utility assets.

In this paper, we used variables of wind speed, wind gust, precipitation, and tem-
perature. We determined “MEAN” and “MAX” for each weather variable. The “MAX”
variables (such as “MAXWind10m”) represent the 48 h maximum values of each variable,
and the “MEAN” variables (such as “MEANGust”) are the mean values of the strongest
gusts during a four-hour window. We also used duration and continuous hours of wind
at 10 m above different thresholds to represent the wind strength, which was used in the
weather variables.

To create the land cover variables, we obtained National Land Cover Database (NLCD)
products from the U.S. Geological Survey (USGS). NLCD 2016, published in 2019, these
products provide detailed vegetation and urbanization patterns [44]. The percentage of
miscellaneous forest, deciduous forest, and developed area at grid level using the land
cover product were generated and used in the OPM, which are shown in Table A1. The
interaction of trees with overhead lines during storms is the major cause of outages, so we
used tree-related land cover variables, which we aggregated into 1/32 degree cells.

Since the seasonal variability of the number of leaves on trees is not explained by land
cover variables, we used the weekly climatological leaf area index (LAI, which describes
the amount of foliage on the plant) to indicate it. The LAI is based on observations from
the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra and
Aqua satellites, processed to create a weekly climatological product [19,45,46]. We sampled
the LAI at the GWC 1/32 degree resolution grid. Historical power outages were reported,
with starting times and geographical coordinates, by the utilities’ outage management
systems (OMSs). We aggregated and counted the outages during each storm period per
1/32 degree cell and used them as the target variable in the OPM.
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Table A1. Explanatory variables included in the OPM.

Variables Abbreviation Description Units

Duration of wind at 10 m above 5 m/s wgt5 Weather h
Duration of wind at 10 m above 9 m/s wgt9 Weather h

Duration of wind at 10 m above 13 m/s wgt13 Weather h
Duration of wind at 10 m above 18 m/s wgt18 Weather h
Continuous hours of wind above 5 m/s Cowgt5 Weather h
Continuous hours of wind above 9 m/s Cowgt9 Weather h
Continuous hours of wind above 13 m/s Cowgt13 Weather h
Continuous hours of wind above 18 m/s Cowgt18 Weather h

Maximum wind speed at 10 m height Max Wind Speed Weather m/s
Maximum wind gust Max Gust Weather m/s

Maximum precipitation rate Max Precipitation Rate Weather mm/h
Maximum temperature Max Temperature Weather K

Mean wind at 10 m height Mean Wind Speed Weather m/s
Mean wind gust Mean Gust Weather m/s

Mean precipitation rate Mean Precipitation Rate Weather mm/h
Mean temperature Mean Temperature Weather K

Total accumulated precipitation Tot Precipitation Weather mm
Percentage of miscellaneous forest percXFrst Land cover %

Percentage of deciduous forest percDecid Land cover %
Percentage of developed area percDevel Land cover %

Count of electric poles ploes Infrastructure count
Count of reclosers reclosers Infrastructure count

Count of total assets including poles, reclosers, and others totAssets Infrastructure count
Average tree canopy percentage around overhead power lines Avg_treeCanopy Tree Canopy %

Leaf area index (leaf area/ground area) LAI Vegetation m2/m2

Appendix B. Performance Evaluation Error Metrics

We used absolute error (AE) to measure the difference between the predicted (pi) and
actual (oi) totals of service territory outages from each event (i). The first, second, and third
quantiles of the sorted absolute error data were represented by AE Q25, AE Q50, and AE
Q75, respectively. AE was calculated as follows:

AE = |pi − oi | (A1)

The first, second, and third quantiles of the sorted absolute percentage error (APE) data
were represented by APE Q25, APE Q50, and APE Q75, respectively. APE was calculated
as follows:

APE =
|pi − oi |

oi
(A2)

We used mean absolute percentage error (MAPE) to measure the mean relative error
as a percentage. MAPE was calculated as follows:

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ oi − pi
oi

∣∣∣∣ (A3)

We used Nash–Sutcliffe efficiency (NSE), ranging between negative infinity and 1, to
determine how well the prediction fit the actual outages. NSE was defined as follows:

NSE = 1− ∑n
i=1(oi − pi)

2

∑n
i=1

(
oi − ∑n

i=1 oi
n

)2 (A4)

We used normalized centered root mean square error (NCRMSE) to quantify the
random component of the error. NCRMSE was defined as follows:

NCRMSE =

√
1
n ∑n

i=1 [pi − oi − 1
n ∑n

i=1(pi − oi)]
2√

1
n ∑n

i=1 (oi − 1
n ∑n

i=1(oi))
2

× 100% (A5)
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