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Abstract: Accurate forecast of aggregate end-users electric load profiles is becoming a hot topic
in research for those main issues addressed in many fields such as the electricity services market.
Hence, load forecast is an extremely important task which should be understood more in depth.
In this research paper, the dependency of the day-ahead load forecast accuracy on the basis of the
data typology employed in the training of LSTM has been inspected. A real case study of an Italian
industrial load with samples recorded every 15 min for the year 2017 and 2018 was studied. The effect
in the load forecast accuracy of different dataset cleaning approaches was investigated. In addition,
the Generalised Extreme Studentized Deviate hypothesis testing was introduced to identify the
outliers present in the dataset. The populations were constructed on the basis of an autocorrelation
analysis that allowed for identifying a weekly correlation of the samples. The accuracy of the
prediction obtained from different input dataset has been therefore investigated by calculating the
most commonly used error metrics, showing the importance of data processing before employing
them for load forecast.

Keywords: load forecast; outliers detection; LSTM; machine learning

1. Introduction

Smart grids are going to substantially change the electricity system in the near future.
Due to the wide spread existence of metering and sensoring technologies, the relationship
among customers, electricity supplier, and distribution system operator (DSO) will become
more and more complex.

In fact, customers are going to play an active role, adapting their needs in accordance
with a dynamic electricity market. In this scenario, wide opportunities and challenges
may rise for DSO in the management of the electrical system [1]. Furthermore, the new
topic of virtual power plant (VPP) is rising. VPP is the sum of several power plants that
is aggregating the overall power of mixed distributed energy resources for enhancing
power generation, trading or selling electrical energy on the electricity market [2]. This
kind of aggregated power plant includes industrial loads which can be combined to power
generation and therefore its forecast should be as much accurate as possible in order to
guarantee certain hourly load profiles.

In view of the above, the issue of providing accurate electric load forecast, studied
since the 1960s, is gaining even more importance. In literature, widely adopted are the
auto-regressive models, which are based on the assumption that the load at a given time
can be expressed as a linear combination of past observations and a number of exogenous
variables, summed with a white noise (zero mean, normal distribution). Based on this idea,
many models were developed, such as autoregressive (AR), AR with exogenous inputs
(ARX), AR with moving average (ARMA) and Seasonal ARIMAX, which were successfully
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implemented for the load forecast application in [3–5]. Thanks to the availability of
computational power, machine learning (ML) techniques have flourished in the last 20 years.
These approaches have given the possibility to relax the linear assumption underlying the
previous models, opening huge possibilities in terms of increased accuracy in the forecast
prediction. These models, in fact, are able to infer trends from historical data, without any
prior assumption regarding the underlying model [6]. In the wide range of available ML
model, recurrent neural network (RNN) were widely adopted, and, in particular, Long-
Short Term Memory were proven to return the best result [7,8]. This particular deep leaning
models, in fact, are able to overcome problems such as vanishing gradient [9] experienced
in the early days.

Among the others, the main question this paper wants to address is how much the load
forecast accuracy is affected by the quality of the samples in the load time series. In order
to investigate this issue, the effect of different strategies for dataset cleaning are studied,
moving from a simple removal of incorrect measurements to holidays identification to,
eventually, the implementation of a complete procedure for outliers detection, namely the
Generalized Extreme Studentized Deviate (Generalized ESD) test [10].

In view of the day-ahead forecast, a real example of an industrial load that has been
monitored between the years 2017 and 2018 is presented here.

This paper extends the preliminary analysis provided in [11] providing more details
on the motivations, deepening the investigation of the implemented techniques that are
adopted and testing them against a manual recognition. Above all, however, the most
important content of this extension is represented by the provided outliers’ detection study,
enforced and supported by the analysis of real industrial loads’ case studies.

2. Methods

In the following sections, the methodologies adopted in this work are thoroughly
explained. In Section 2.1, the ML algorithm implemented for the load forecast is described
while, in Section 2.2, the outliers’ detection technique is detailed.

2.1. LSTM Forecasting Method

Several existing forecasting methods are nowadays available and, among all, there
are many techniques that are commonly adopted in the time series analysis such as auto-
regressive moving average (ARIMA) or artificial neural network (ANN) based load forecast
methods [12]. However, many features in the data of the load are affecting the choice of
the forecasting method mainly according to the end-user time behavior (daily, weekly, or
season) and classification (industrial, household, etc...). Many reviews about load forecast
observe that, according to the time horizon, the forecasting method accuracy may be
affected. Hence, the forecasting processes can be grouped into four main categories based
on their horizons [13,14], which are summarized in the following Table 1:

Table 1. Load forecast time term classification.

Acronym Load Forecasting Classification Time Horizon

VSTLF very short term 1 day
STLF short term 2 weeks
MTLF medium term 3 years
LTLF long term >3 years

However, more often, the conclusion, as it is stated here [15], is that, over the past
several decades, the majority of the load forecasting literature has been filled with attempts
to determine the best technique for load forecasting. It is very important to understand
that a universally best method simply does not exist, and it is the data that determine
which technique should be used. Among all the available methodologies, Long-Short
Term Memory (LSTM) neural networks are one of the most promising for the time series
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forecasting. They were first introduced in [16], and, since then, have been refined, and many
authors contributed to their development in many different fields [17,18]. They belong to
the class of Recurrent Neural Networks (RNN), but, due to their functional unit, the cell,
LSTM overcome the problem related RNN learning long term dependencies [19,20].

All RNN ultimately present the form of a chain of repeating neural network modules.
As for LSTM, each module is called cell (Figure 1). The core concept of the LSTM is the
cell state C, which can be associated with the memory of the network. From one cell to the
next, new and relevant information can be added or removed from the cell state via the so
called “gates”.

Figure 1. LSTM cell.

The circles in Figure 1 are either sigmoid (σ) or tansigmoid (tanh) layers. The operation
represented in the squares are the pointwise multiplications (x) and pointwise addition
(+). The variable h represents the previous hidden state, while, with x, the current input
is given.

• Forget gate
The first gate, also called “forget gate” (Equation (1), where W f and b f are the weights
and biases associates with the forget gate and [·, ·] is a simple vector concatenation)
tells which information of the cell state Ct−1 should be retained or forgotten:

ft = σ(W f · [ht−1, xt] + b f ) (1)

• Input gate
The input gate, on the other hand, decides which new information should be stored in
the cell state for later use. It provides the following two operations:

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3)

• Cell state
The new cell state, to be used in the next steps, can hence be computed as:

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

where the operator ∗ is the point-wise multiplication.
• Output gate



Forecasting 2021, 3 94

Once the cell state has been updated, an output (ht), dependent on the current input
xt and on previous information, must be produced. In the output gate, the following
operations are computed:

ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = ot × tanh(Ct) (6)

Further details regarding the network structure used in this paper are later described
in Section 4.3.

2.2. Outliers Detection

When dealing with time series deriving from real time measurements, the presence
of erratic values or extreme events not representative of the problem under study is
very likely to occur. In Figure 2, an example is provided. Two periods can be identified
here where the power plant was not in operation due to holidays (August 2018 and
December 2018/January 2019) or unexpected failures in the measuring system (February
2019). Moreover, in November 2018, a spike can be observed in the measurements that,
if not erratic, must be identified anyway since it is not representative of the series. When
dealing with a machine learning algorithm, those occurrences must be carefully understood
and treated to avoid the so-called “Garbage in Garbage out” (GIGO) or “Rubbish in Rubbish
out” (RIRO) behavior.

Figure 2. Original time series of the plant electrical load measurements.

In order to detect those erratic behaviors, the samples have to undergo a cleaning
procedure and a robust and reliable methodology must be defined. In this work, the Gener-
alized ESD test is implemented to detect the outliers. This hypothesis testing was firstly
introduced in [10] by Rosner in 1983 and is able to overcome the limits posed by the
Grubbs [21,22] test and the Tietjen–Moore test [23,24]. These two types of latter hypothesis
testing, in fact, rely on the knowledge of the number of outliers and can return a distorted
conclusion. On the other hand, the Generalized ESD only requires the maximum number
of outliers that can be found in a population. Given r, the maximum number of outliers in a
population, the Generalized ESD detects k outliers, where k ≤ r. The population on which
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the test is applied requires that the dataset is univariate and follows an approximately
normal distribution.{

H0 : There are no outliers in the data set
H1 : There are up to r outliers in the data set

(7)

The Test Statistic can be computed as follows:

Ri =
maxi|xi − x̄|

s
(8)

where x̄ and s are the sample mean and sample standard deviation, respectively. The proce-
dure consists of removing the observation maximizing maxi|xi − x̄| and then recomputing
the above statistic with n− 1 observations. The process is repeated until r observations
have been removed. This results in r test statistics (R1, R2, . . . , Rr).

From the Ri test statistics, the following critical values can be computed:

λi =
(n− i)tp,n−i−1√(

n− i− 1 + t2
p,n−i−1

)
(n− i + 1)

i = 1, 2, . . . , r (9)

where tp,ν is the 100p percentage point from the Student’s t-distribution with ν degrees of
freedom and

p = 1−
α

2(n− i + 1)
(10)

The number of outliers is determined finding the largest i realizing the condition
λi < Ri.

Once the outliers are identified, a procedure must be implemented to handle them
properly. In fact, the mere elimination of those samples may lead to the erosion of the
available dataset that would finally determine an overall decrease of the performances
due to the reduced number of samples in input to the LSTM. Several studies have been
conducted and are available in literature (e.g., in [25]) and, in the current work, every time
a sample is detected as outliers, it is substituted with the median value of the population it
is extracted from.

3. Error Metrics

Different error metrics are adopted in forecast assessment and, as it has been previ-
ously showed in [26], the typology of data could affect the load forecast result. The load
forecast error et made in the t-th sample of time is the starting point. It is the difference
between the values of the actual load power Pm,t and the forecast one Pf ,t [27]:

et = Pm,t − Pf ,t (11)

Moving from this definition, the most commonly used error definitions can be in-
ferred [28,29], such as:

• the Normalized Mean Absolute Error NMAE:

NMAE =
∑N

t=1|et|
N · Pn

· 100, (12)

where the percentage of the absolute error is referred to as the rated power Pn, and N
is the number of samples considered in the time frame;
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• the Normalized Root Mean Square Error nRMSE is based on the maximum power
output (Pn):

nRMSE =
1
Pn
·

√
∑N

t=1 |et|2

N
· 100 (13)

• the Nash–Sutcliffe Efficiency Index E f , was firstly introduced in [30] in a very different
context such as hydrology. Its implications were later discussed in many articles such
as [31]. Its definition is the following:

E f = 1−
∑N

i=1 (Pf ,i − Pm,i)
2

∑N
i=1 (Pm,i − P̄m)2

(14)

where P̄m is the mean power measurement of the whole period under study. The range
of this index is (−∞, 1], where 1 is reached only when forecast and measurements over-
lap corresponding to the perfect forecast. The Nash–Sutcliffe model efficiency coeffi-
cient (NSE) is used to assess the predictive power. An efficiency of 1
(NSE = 1) corresponds to a perfect match of modeled discharge to the observed
data. An efficiency of 0 (NSE = 0) indicates that the model predictions are as accurate
as the mean of the observed data, whereas an efficiency less than zero (NSE < 0) occurs
when the observed mean is a better predictor than the model or, in other words, when
the residual variance (described by the numerator in the expression above) is larger
than the data variance (described by the denominator). Essentially, the closer the
model efficiency is to 1, the more accurate the model is. The efficiency coefficient
is sensitive to extreme values and might yield sub-optimal results when the dataset
contains large outliers in it.

All of these metrics are calculated here in order to compare different scenarios analyzed
which are excluding part of the samples in the training of Deep learning LSTM.

4. Case Study

The LSTM forecasting method previously described is applied here to a real case study.
An Italian industrial electrical load was monitored for more than two consecutive years
(2017, 2018 to the end of January 2019) and quarter-hourly data have been recorded. The
dataset structure comprises three columns:

• date time column (yyyy-MM-dd HH:mm), with quarter-hour time step;
• electrical load measurements;
• sensor fault message (not mandatory).

4.1. Dataset Cleaning

In order to inspect the marginal benefit of different cleaning procedure, four method-
ologies are here presented. It must be highlighted that the cleaning procedure is imple-
mented in the training dataset while the test dataset is not manipulated, for the sake of a
fair comparison.

1. No cleaning performed: the full dataset is provided in the input to the LSTM model.
The obtained results can be considered as a benchmark to evaluate the effectiveness of
the following approaches. The forecast was performed on 34,368 samples because the
first days of the year 2018 were provided as input as historical measurements;

2. Removal of holidays. This case represents a cleaning procedure that can be imple-
mented on the data looking and analyzing them manually. In fact, when dealing with
industrial electrical load, no assumption can be made a priori regarding the plant
operating status throughout the year. In this particular case, the plant shut down
followed the Italian national holidays (e.g., Christmas and Easter) and other periods
had to be removed as well showing the same trend (e.g., part of July and August);
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3. Removal of the outliers through the Generalized ESD. This methodology, whose
implementation is further explained in the following section, is able to perform the
dataset cleaning without any prior knowledge on the status of the plant and its
scheduling activity. Furthermore, no information regarding any error occurred in the
system is needed here;

4. Error removal (information provided by the plant manager and data communication
error): the case is representative of a full knowledge scenario, very unlikely to occur
in real cases, where comprehensive information regarding the time series data are
given such as unavailability, error caused in the data transmission, etc.

4.2. Generalized ESD Application

In order to clean the available dataset and not provide erratic values to the network
in the training phase, the Generalized ESD hypotheses testing is presented through an
application. This statistical approach requires that the population are from a normal
distribution. The data, in their original form, are not compliant with this requirement, and,
for this reason, the following steps are individuated.

From the autocorrelation plot in Figure 3, a significant spike can be observed at
672 samples a week. For this reason, the data are gathered on a weekly basis, and
672 populations are found (sampling rate every 15 min) of approximately 52 individuals
(52 weeks/year).

Figure 3. Autocorrelation analysis of the load profile.

In Figure 4, a single exemplifying population is highlighted in orange belonging to all
the Tuesdays at 1:30 p.m. of the year 2017. As it is possible to see, there are some samples in
the lower region, which occurred during holidays, unexpected power plants shut-downs,
and faults in the measuring system.

The cleaning process must be performed through the Generalized ESD applied to
all the above described populations, and the results are given in Figure 5. In the upper
graph, the number of excluded samples per population is given. As it is possible to see, not
every population has the same number of rejected observations. The maximum number of
outliers that the algorithm was set to find was fixed to 25. This amount is never reached
for any population, and the maximum number of excluded samples was 13. On the lower
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graph, the results of the normality test on the cleaned populations are given in terms of
p-values. As can be inferred, most of the populations (≥95%) can be assumed deriving
from a Gaussian distribution with significance α = 0.025.

Once the outliers are identified, they must be properly substituted or erased. It is
worth highlighting that, when dealing with time series, the elimination of a single sample
can have a broader impact since the sampling sequence and the time dependencies could
be lost. For this reason, if the erratic samples are sporadic and not consecutive, in this
work, they are replaced with the median value of the population they belong to. If whole
days/periods have to be removed, the whole week the erratic days/periods belong to
is removed.

Figure 4. Available data samples aggregated in populations weekly wise visualization. For example,
a single sampled quarter-hourly population is highlighted in orange.

Figure 5. Generalized ESD application: rejected samples (above) and relevant p-value of the new
population without outliers (below).
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4.3. Dataset Aggregation and LSTM Architecture

Once different cleaning procedures on the data are properly implemented, the model
architecture can be suitably optimized. The available dataset for the training phase is then
divided into sub-portions to address both the training and the validation with a ratio 0.8:0.2.
A grid search approach was then implemented in order to optimize the network topology
and history size to be given as input to the model. This approach allows for optimizing
the available parameters and hyperparameters running multiple independent simulations
varying their values in a predefined range [32]. As for the scope, a three layer network
having a fully connected layer on top of two layers LSTM was used.

Regarding the inputs, six days were identified as the best solution to be provided to
forecast the following one. The database is then assembled in order to provide couples of
input and output series from which the algorithm can learn and infer from. In Figure 6, the
single input and target given to the LSTM is explained. In blue, the history size of 6 days
(576 quarter hourly samples) is provided to forecast the following day (96 quarter hourly
samples) represented as red circles.

Figure 6. Input and target definition.

5. Results and Discussion

In this section, the results of the simulations performed with the four cleaning ap-
proaches (three actual cleaning process and the case in which no actions are taken) are
presented. For all of the above cases, the 2017 data are used to train the model while the
2018 data to test it. It is worth highlighting that, for the sake of a fair comparison, the test
data are the same for the four cases.

The number of samples available to train and test the different network are reported
in Table 2.

Table 2. Training and test feature.

Methodology Training Size Test Size
(Days) (Days)

No cleaning 358 243
Holidays removal 224 243
GESD 358 243
Error removal 308 243

When no action are taken, 358 couples of Input/Output could be assembled. Indeed,
this is the maximum number achievable needing a series of six days as input. The same
amount of data, thanks to the substitution procedure, is available with the GESD approach.
The removal of holidays and of error partially erode the available number of data.

In Table 3, the forecast accuracy obtained with the four considered approaches is
reported. As it is possible to notice, the worst performance is achieved in case no cleaning
process is implemented. On the other hand, the best result, in all the considered metrics,
is instead obtained when the cleaning of the outliers through the Generalised ESD is
applied. The removal of the samples deviating from the characteristics behavior of the load,
therefore, allows the LSTM to infer and learn the load pattern and to accurately predict its
future behavior.

It is worth noticing that the outliers removal approach is the most promising and
produces the best accuracy. In fact, its adoption allows for automatically detecting non-
representative trends of the load such as holidays and erratic values, together with other
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occurrences. Furthermore, as a very import aspect when dealing with real industrial
application, the procedure does not require any additional information regarding the data
composing the time series, which are usually uneasy or impossible to retrieve, since any
erratic behavior is automatically individuated.

Table 3. Load forecast results in terms of accuracy.

Metric No Removal Holidays Removal Outliers Removal Error Removal

NMAE(%) 4.11 3.70 3.30 3.37
nRMSE (%) 7.80 6.43 4.93 5.30
E f (-) 0.54 0.68 0.81 0.79

Moving from the benchmark, it is then validated that, as expected, properly cleaning
the available data, though requiring huge effort, allows for greatly reducing the number of
errors made. In Table 4, the accuracy increase is expressed in percentage points. The best
result is obtained through the Generalized ESD, which is able to increase the accuracy of
19.8%, 36%, and 52% in terms of NMAE, nRMSE, and EF, respectively.

Table 4. Load forecast increase of accuracy with respect to the benchmark (no cleaning procedure).

Metric Holidays Removal Outliers Removal Error Removal

NMAE 10.0 19.8 18.0
nRMSE 17.5 36.7 32.0
E f 27.7 52.0 48.3

6. Conclusions

In the present work, four dataset cleaning processes are presented with the aim of
improving the load forecast for the following 24 h computed through a Long-Short Term
Memory model. In particular, the effect of different dataset cleaning procedure is inspected.
The first approach used as a benchmark does not exclude any available data. The second
removes the holidays, which very often show a significant deviation from the normal
behavior due to a shutting down of the operations. The third implements the outliers
removal through the Generalized Extreme Studentized Deviation hypotheses testing with
replacement while the last approach, excluding the erratic values on the basis of the
information provided by the plant, hence representing a full knowledge scenario.

The Generalized ESD methodology is demonstrated to be the most promising one,
returning the highest performance for all the considered metrics and, moreover, does not
require any prior additional information apart from the electrical load measurements.

From the benchmark case, it was finally possible to reduce the error committed for the
period under study of 19.8%, 36%, and 52% in terms of NMAE, nRMSE, and EF, respectively.
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