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Abstract: Improving decision-making in various areas of water policy and management (e.g., flood and
drought preparedness, reservoir operation and hydropower generation) requires skillful streamflow
forecasts. Despite the recent advances in hydrometeorological prediction, real-time streamflow
forecasting over the Himalayas remains a critical issue and challenge, especially with complex basin
physiography, shifting weather patterns and sparse and biased in-situ hydrometeorological monitoring
data. In this study, we demonstrate the utility of low-complexity data-driven persistence-based
approaches for skillful streamflow forecasting in the Himalayan country Nepal. The selected
approaches are: (1) simple persistence, (2) streamflow climatology and (3) anomaly persistence.
We generated the streamflow forecasts for 65 stream gauge stations across Nepal for short-to-medium
range forecast lead times (1 to 12 days). The selected gauge stations were monitored by the Department
of Hydrology and Meteorology (DHM) Nepal, and they represent a wide range of basin size, from ~17
to ~54,100 km2. We find that the performance of persistence-based forecasting approaches depends
highly upon the lead time, flow threshold, basin size and flow regime. Overall, the persistence-based
forecast results demonstrate higher forecast skill in snow-fed rivers over intermittent ones, moderate
flows over extreme ones and larger basins over smaller ones. The streamflow forecast skill obtained
in this study can serve as a benchmark (reference) for the evaluation of many operational forecasting
systems over the Himalayas.

Keywords: Himalayan region; streamflow forecast verification; persistence; snow-fed rivers;
intermittent rivers

1. Introduction

Skillful streamflow forecasts are critically important in improving decision-making in water-related
policy and management (e.g., flood and drought preparedness, reservoir operation and hydropower
generation). Real-time streamflow forecasting over the Himalayas remains a critical challenge.
(e.g., [1,2]) because of complex basin physiography, shifting weather patterns and sparse distribution
of hydrometeorological monitoring stations. The verification of streamflow forecasts can provide
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insight into hydrologic forecasting by elucidating the level of forecast skill that can be reasonably
expected from the forecasting system [3]. In this study, we demonstrate the utility of a persistence-based
approach to benchmark forecast skill of the operational streamflow forecasting system in the Himalayan
country Nepal.

Nepal is an important part of the Hindu Kush Himalayas (HKH), which are referred to as the
water towers of Asia due to the largest concentration of snow and glaciers outside the two poles [4–7].
The snow cover and glaciers make significant contributions to the hydrology of glacierized basins.
Khadka et al. [5] showed, in the simulation study of Tamakoshi basin in eastern Nepal for the years
2000–2009, that snowmelt contributes about 18% of the annual runoff. Further, they showed that the
snowmelt represents about 17% of the runoff in the summer season (June to September) while about
25% in the spring season, when the streamflow in these rivers are low. The study by Bhattarai and
Regmi [8] in the Langtang river basin in central Nepal shows similar numbers on the contribution
of snowmelt to the runoff (~19% on the annual runoff). Dhami et al. [9] used the Soil and Water
Assessment Tool and snow-melt runoff model in the Karnali river basin in western Nepal to simulate
components of water balance. They reported that about 12% of annual runoff is contributed by the
snowmelt, while about 29% by the groundwater base flow.

In Nepal, the Department of Hydrology and Meteorology (DHM) is responsible for monitoring
the streamflow at rivers, providing real-time river watch, and developing decision support systems.
At present, the real-time river watch system at DHM generates siren alerts at critical stations leveraging
the internet and mobile devices for alert delivery [10]. In addition, the community-based early
warning system (CBEWS) has been integrated by the early warning system managed by the DHM with
the aid of intergovernmental organizations, UN organizations and international non-governmental
organizations [11]. CBEWS is inherently people-centric, helping communities use local resources and
capacities for flood preparedness efforts [10–12]. The simplified data-based mechanistic forecast model
was adopted by the DHM to cover the major river basins of Nepal that stem from the mountains to the
Terai plains. The integration of the data-based mechanistic model with CBEWS provides an additional
lead time of 3–5 h for larger basins and 1–3 h for smaller basins in addition to previous 2–3 h [13].
Owing to the major contribution of snow to the streamflow, particularly in the glacierized basins,
persistence-based forecasts could serve as reference to evaluate the skill of the current operational
forecasting system, which this study explores. Moreover, this approach could serve as a tool to guide
the decision-making pertaining to flood preparedness in the short-medium forecast range.

Hydrologic forecasts are inherently uncertain (e.g., [3,14]). The uncertainty can originate from
different sources, including shortcomings in forcing data (e.g., quantitative precipitation forecasts),
model structure and parameters, as well as model initial conditions (e.g., [1,14–16]). In addition,
complex hydrologic processes, such as snowmelt, sub-surface and flow routing, make it more difficult
to produce skillful streamflow forecasts in the HKH region (e.g., [1,17]). Most countries in the HKH
region are prone to floods (e.g., [1,18]); therefore, achieving skillful forecasts up to the medium range is
of utmost importance for flood preparedness efforts. Because of such uncertainties and challenges,
achieving skillful streamflow forecasts in this region requires skillful reference forecasting systems.
For example, if a reference forecasting system with a low forecast skill is chosen, the operational
streamflow (flood) forecasting system might depict higher forecast skill. It will essentially give a false
sense of forecast skill associated with the operational system.

The persistence-based approach uses a notion of “tomorrow will be like today” (e.g., [19]). It is
tied to the concept of “memory” of any analyzed system [20]: in our case, the basins. One would expect
the notion of streamflow persistence to be more pertinent in the glacierized basins due to the relatively
slow snowmelt process over time. Though persistence-based forecasts are in use as the reference in the
hydrologic forecasting community, their utility across different hydroclimatic conditions and scales
have not been fully explored.

Forecasters use various reference forecasts, such as simple persistence, streamflow
climatology, a hydrological model fed with zero rainfall and a hydrological model fed with an
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ensemble of resampled historical rainfall [21], for operational forecast skill verification. Despite some
inherent predictability of hydrologic systems due to coupling with the weather and climate system,
streamflow shows some likelihood of repetition at seasonal to daily time scales, and hence some
inherent predictability [19,20,22]. Den Dool [23] and Fraedrich and Ziehmann-Schlumbohm [24] iterate
that only forecasts depicting skill better than persistence can handle the forecast of the time derivative.
The degree of persistence, however, might demonstrate variation with location, time of the year and
the system studied [23,25]. Den Dool [23] indicated that processes with a long-time scale show higher
skill with persistence forecasts, which makes persistence a hard-to-beat method for many complex
mechanistic models. Though some authors (e.g., [26]) attribute the streamflow persistence to the
carryover storage of water in lakes, and below the land surface, the comprehensive evaluation of
persistence-based forecasts was lacking until recently. Palash et al. [1], motivated by the concept of
requisite simplicity, showed the utility of a simple linear flood-forecasting system for the Ganges,
Brahmaputra and Meghna Rivers, using streamflow persistence as the mechanism of prediction.
Recently, Ghimire and Krajewski [19] and Krajewski et al. [27] showed, through a comprehensive study
of 140 mid-western agricultural watersheds in the United States, that persistence-based forecast skills
show strong dependence with the basin scale, while weaker but non-negligible dependence with the
properties of the river network.

In the context of a lack of comprehensive evaluation of persistence-based reference forecasts in
the data-scarce Himalayan region, their quantitative assessment can provide the benchmark across
scales for any operational forecasting system (e.g., DHM’s forecasting system). This paper specifically
explores the following questions: (1) what is the utility of data-driven persistence-based approaches
for skillful streamflow forecasting in the Himalayan region? (2) Which forecast conditions, such as
lead time, flow threshold, basin size and flow regime (e.g., perennial/snow-fed and intermittent),
benefit potential increase in forecast skill? We organize the paper as follows: In Section 2, we discuss
the materials and methods used in this study. Section 3 presents results of this study and Section 4
discusses these findings. In Section 5, we summarize and present some conclusions and limitations of
this work.

2. Materials and Methods

2.1. Study Area and Data

Our domain of interest for this study was Nepal, which is in the central part of Himalayan mountain
range. The total area of Nepal is about 147,520 km2, located approximately between 80◦03′–88◦12′ E
and 26◦21′–30◦26′N (Figure 1). The topographic elevation ranges from 8848m (elevation of Mt. Everest)
in the north to 70m in the south above mean sea level featuring diverse climatic conditions varying
from polar to tropical [28]. Forest (39.1%), agriculture (29.8%), barren (10.7%) and snow/glaciers (8.2%)
are the major land cover types in Nepal [29]. Most of the climate variability in Nepal is attributed to
the high reliefs of river catchments e.g., [4]. The climate in Nepal is dominated by a southwestern
monsoon (June–September) that originates from the Bay of Bengal and about 80% of precipitation
in Nepal occurs only in the monsoon season [30]. The months of October–November occasionally
experience post-monsoon rainfall, November–March typically remains dry, and April–May experiences
pre-monsoon rainfall [4,5,9,31]. The summer monsoon is more active in the eastern part of Nepal
as the monsoon enters and departs from that region, and the winter monsoon is more active in the
western region because of the influence of western disturbances [28]. The average annual precipitation
(1990–2010) ranges from ~270 mm to ~5500 mm [32]. The consequent runoff during the monsoon
accounts for 70%–90% of the annual water balance, as shown in [33].



Forecasting 2020, 2 233

Forecasting 2020, 2 FOR PEER REVIEW  4 
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represent stream gauge stations monitored by the Department of Hydrology and Meteorology 
(DHM), Nepal. 
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rivers in Nepal can be broadly categorized into five major river systems: Karnali, Narayani, Koshi, 
Mahakali, and the southern and Mahabharat rivers [33]. The former four river systems are 
combinations of rain- and snow-fed rivers, while the latter river system mostly comprise mid-size 
rivers, such as the Mechi, Kankai, Kamala, Bagmati, Babai and West Rapti, mostly fed by rainfall and 
characterized by frequent flash floods [33]. The Karnali, Gandaki and Koshi river systems highlighted 
in Figure 1 represent about two-thirds of the area of Nepal. These river systems show variability in 
their hydroclimatic conditions, in addition to the topographic characteristics such as average basin 
slope and snow cover. In this study, we used historic daily streamflow data at stream gauges stations 
(red dots in Figure 1) monitored by the DHM across Nepal. Daily streamflow data is the highest-
resolution data publicly available from the DHM. It corresponds to the mean values of three readings 
recorded daily at 8 AM, 12 noon and 4 PM, local time. The streamflow data across stations span 
between 1962 and 2010, with varying record lengths. Thirty-eight stations have more than 30 years 
of historical daily streamflow records (Figure A1, Appendix A). We screened the stream gauge 
stations based on the availability criteria of at least 10 years of streamflow records and at least fair 
quality data categorized by DHM. The stations that are not shown within the three major river 
systems correspond to the rivers of the southern and Mahabharat river systems. In total, we used 
streamflow data from 65 unregulated stream gauge stations. The corresponding basin size varies 

Figure 1. Location of the study domain, Nepal. The white patches in the terrain map (not to scale) depict
the snow cover (Nepal Himalaya). The land cover is from Uddin et al. [29]. The red dots represent
stream gauge stations monitored by the Department of Hydrology and Meteorology (DHM), Nepal.

Most rivers in Nepal drain from north to south and eventually to the Ganges River in India.
The rivers in Nepal can be broadly categorized into five major river systems: Karnali, Narayani,
Koshi, Mahakali, and the southern and Mahabharat rivers [33]. The former four river systems are
combinations of rain- and snow-fed rivers, while the latter river system mostly comprise mid-size
rivers, such as the Mechi, Kankai, Kamala, Bagmati, Babai and West Rapti, mostly fed by rainfall and
characterized by frequent flash floods [33]. The Karnali, Gandaki and Koshi river systems highlighted
in Figure 1 represent about two-thirds of the area of Nepal. These river systems show variability in their
hydroclimatic conditions, in addition to the topographic characteristics such as average basin slope
and snow cover. In this study, we used historic daily streamflow data at stream gauges stations (red
dots in Figure 1) monitored by the DHM across Nepal. Daily streamflow data is the highest-resolution
data publicly available from the DHM. It corresponds to the mean values of three readings recorded
daily at 8 AM, 12 noon and 4 PM, local time. The streamflow data across stations span between 1962
and 2010, with varying record lengths. Thirty-eight stations have more than 30 years of historical daily
streamflow records (Figure A1, Appendix A). We screened the stream gauge stations based on the
availability criteria of at least 10 years of streamflow records and at least fair quality data categorized
by DHM. The stations that are not shown within the three major river systems correspond to the rivers
of the southern and Mahabharat river systems. In total, we used streamflow data from 65 unregulated
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stream gauge stations. The corresponding basin size varies from ~17 to ~54,100 km2, with more than
half of the stations monitoring catchments greater than 1000 km2 (Figure A1, Appendix A). Note that
the hydropower projects built in some of these rivers are run-off-river schemes, which typically do not
store the water.

2.2. Experimental Design

Several persistence-based forecast approaches have been discussed in den Dool [19], Wu and
Dickinson [23] and Ghimire and Krajewski [25]. Here, we present three of these approaches to generate
the reference (benchmark) forecasts in the time domain and evaluate them; these are simple persistence,
streamflow climatology and anomaly persistence. Our experimental setup mostly follows the methods
outlined in Ghimire and Krajewski [19]. If t represents the time of observation of streamflow Q(t),
the forecast for lead time ∆t is given by

Q(t + ∆t) = Q(t) (1)

Note that the forecasts are generated for the entire streamflow time-series in the records for
65 stream gauge stations in Nepal. While considering the entire time-series, we account for the
interannual variability of streamflow.

Here, we use the “climatology” as the average of streamflow on record at time t. The corresponding
forecast for lead time ∆t is given by

Q(t + ∆t) =
∑n

i=1 Q(t + ∆t)
n

(2)

where Q(t + ∆t) refers to the streamflow at time t + ∆t from previous years of record and n refers to the
number of years in record.

The anomaly persistence forecast scheme assumes that streamflow anomalies persist over the
lead time ∆t. The anomalies are computed with respect to the climatology. The anomalies at t and
t + ∆t i.e., Q′(t) and Q′(t + ∆t), respectively, are computed as

Q′(t) = Q(t) − clim(t) (3)

Q′(t + ∆t) = Q(t + ∆t) − clim(t + ∆t) (4)

where clim(t) and clim(t + ∆t) are climatology forecasts obtained from Equation (2) at t and t + ∆t,
respectively. The Equations (3) and (4) yield the forecast at t + ∆t as

Q(t + ∆t) = Q(t) − clim(t) + clim(t + ∆t) (5)

The forecasts computed in Equations (1)–(5) use the entire streamflow time-series in record,
i.e., at least 10 years of streamflow data. Here, we are also interested in exploring the forecast skill
associated with the direct runoff component of streamflow. In other words, we computed forecast
skill from persistence-based approaches for the rainfall-runoff events. Acknowledging the fact that
the separation of runoff components from baseflow is not easy, we used the automated separation
technique used by the United States Geological Survey (USGS) called the hydrograph separation
program (HYSEP) [34]. The HYSEP employs three methods to separate storm flow from baseflow in
the hydrograph: fixed interval, sliding interval, and local minimum. The duration of the surface runoff

is computed empirically by
K = A0.2 (6)

where K is the number of days after which the surface runoff stops and A is the upstream drainage
area of the basin in sq. miles [34]. The interval used to separate the storm flow is 2K*, which should
be the nearest odd integer to 2K. The hydrograph separation starts one interval, i.e., 2K* days, before
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the start of the date selected for the start of the separation, while it ends 2K* days after the selected
date. For further details of the separation technique, refer to Sloto and Crouse [34]. Figure A2 of the
Appendix A shows the demonstration of storm flow separation across two river basins (small and
large scales) using the sliding interval method.

2.3. Evaluation Metrics

We used several standard hydrologic forecast evaluation measures to evaluate the forecasts
described in Section 2.2. The metrics we computed were Kling–Gupta efficiency (KGE), mean absolute
error (MAE), normalized MAE (nMAE), timing of the hydrographs (TH) and peak difference (PD).
The KGE comprises three components: Pearson’s correlation coefficient (r), variance ratio (α) and mean
ratio (β) (refer to [35]). It is given by

KGE = 1−
√
(r− 1)2 + (α− 1)2 + (β− 1)2 (7)

where α =
σ f
σo

and β =
µ f
µo

. σf and σo correspond to the standard deviations of forecasts and
observed streamflow, respectively. µf and µo correspond to the means of forecasts and observed
streamflow, respectively. The ideal value of KGE is equal to 1, which can be obtained when all three
components attain values of 1. For example, if the values of α and β are close to 1, the corresponding
KGE is dominated by the correlation component. By construction, the KGE associated with the
persistence-based forecasts is dominated by correlation. When the mean of the observations is used as
a benchmark, the frontier of the KGE separating between the good model and the bad model is equal
to −0.41 see [36]. In our discussion, we primarily focus on the KGE.

We compute the MAE associated with the forecasts as below:

MAE =

∑∣∣∣Q f −Qo
∣∣∣

N
(8)

where Qf is the streamflow forecast, Qo is the observation and N is the number of data pairs. For fair
comparison across the basin scales, we normalize MAE by the upstream drainage area to compute
nMAE. The hydrograph timing (TH) is computed as the number of hours a hydrograph requires
to be shifted so that the cross-correlation between the forecasts and the observations is maximized.
By construction, TH is close to the lead time of the forecast. The peak difference (PD) in percentage is
computed as

PD =
peak f − peako

N
× 100 (9)

where peakf and peako are peaks of the forecast and the observations, respectively.

3. Results

In this section, we present key results from our experiment evaluating persistence-based reference
forecasts at 65 stream gauge stations in the Himalayan region in Nepal. First, we present results for
three major river systems (basin-wise forecasts), and then for the entire region (regional forecasts).

3.1. Basin-Wise Forecasts

Our notion behind exploring basin-wise forecast skill is due to the variability of snow/glacier cover,
storage conditions and hydroclimatic conditions across three major river basins. In Figure 2, we show
the variability of the KGE metric with drainage area for three major river systems of Nepal (Karnali,
Narayani and Koshi) across forecast lead times of 1, 3, 6 and 12-days. The result corresponds to the
simple persistence forecasts. For simple persistence forecasts, the KGE is dominated by the correlation
component r. For all three basins across most of the stations, KGE > 0.8 for the lead time of 1-day.
The stronger relationship between the KGE and basin size emerges with the increasing forecast lead
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times. Note that the pattern is not as strong in the Koshi river basin, but the KGE values are relatively
higher across basin scales. In addition, there are not many smaller monitored basins in the Koshi river
system to exactly decide on the pattern relative to other two river systems. The overall results across
three river systems clearly show a strong spatio-temporal dependence of simple persistence-based
forecast skill.Forecasting 2020, 2 FOR PEER REVIEW  7 
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3.2. Regional Streamflow Forecasts

The results from basin-wise forecasts show that no distinct pattern of forecast skill emerges across
major river systems in Nepal. Therefore, we decided to pool all stations from three major river systems,
including the mid-sized river stations from other river basins (see Figure 1), and refer to their forecasts
as regional forecasts. In Figure 3, we present results in terms of two skill metrics, i.e., KGE (first
row) and nMAE (second row), based on simple persistence forecasts (Equation (1)). The relationship
between the KGE and basin size is more prominent for pooled stations across lead times of the forecast.
There are, however, few stations which diverge from the overall pattern of the KGE observed in the
basin-wise forecast evaluation. We explore the forecast performance associated with these stations
separately (see Figure A3, Appendix A). We find that their forecast skills show more variability and
decay much faster with forecast lead times. In addition, these stations are mostly mid-sized river
basins associated with the intermittent flow regime. We present the detailed discussion on the origin
of their forecast skill later. Note that basins > 1000 km2 show relatively higher forecast skill (KGE~0.7)
even at the lead time of 12 days. The values of nMAE also depict similar dependence with basin size as
the KGE. The values of nMAE show a much stronger relationship with basin scale at shorter lead times,
while starting to diverge at longer lead times particularly for small basin scales of size < 1000 km2.
By construction, PD for the simple persistence forecast is close to 0. In addition, by construction,
PD for the climatology-based forecasts does not vary with lead times (see Figure A4, Appendix A).
The corresponding median value of PD across basins in Nepal is about −76% (underestimation of the
peak). For anomaly persistence, however, the median values of PD across basins range from about
−1.5% to −3% at lead times of 1 day to 12 days, respectively (see Figure A4, Appendix A). Note that
climatology-based forecasts show sizable a dependence of PD on basin size, while this is not apparent
for anomaly persistence-based forecasts.
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In this section, we evaluate the forecast performance associated with various reference forecast
schemes described in Section 2. Here, we present the one-to-one comparison of forecast skill in
terms of KGE (first row) and nMAE (second row) between these schemes in Figure 4. Apparently,
persistence-based forecasts outperform climatology-based forecasts at shorter lead times across all
basin scales. Both simple persistence and climatology-based forecasts perform similarly for longer
lead times. Anomaly persistence, however, performs similarly with simple persistence for shorter lead
times, while it outperforms simple persistence for longer lead times at smaller basin scales (also see
Figure 5). Note that climatology is an integral component of anomaly persistence forecasts. Therefore,
the improved skill of anomaly persistence at longer lead times and smaller basin scales could be
attributed to the improved performance of climatology-based forecasts at longer lead times.
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From the real-time streamflow forecasting point of view, it would be more informative to explore
how KGE evolves over time across basin scales. In Figure 5, we show that the evolution of KGE skill
is associated with three methods across four nested basins in the Karnali river system (refer inset).
In addition to the apparent strong dependence of KGE with basin scales, the temporal evolutive
pattern of KGE shows variability across basin scales. For example, the smallest basin (A~159 km2)
depicts the sharp drop in the KGE metric up to lead time of four days and remains stable from
thereon. However, as the basin size increases, the rate of decrease of the KGE metric becomes slower.
The other important observation is that up to about four days of lead time, both persistence-based
forecast schemes outperform climatology-based forecasts. After four days of lead time, the difference
between climatology and anomaly persistence-based forecast skill is negligible. Note, however, that the
difference in KGE between simple persistence and other two forecast schemes shows systematic
decrease with the increasing basin scales.

The results presented above are associated with the entire streamflow time-series. In other words,
the forecast skills computed originate from the contribution of both baseflow and stormflow. However,
the intrinsic question is whether we can achieve similar forecast performance for the storm flow (i.e.,
direct runoff component of hydrographs). In Figure 6, we present the forecast performance based
on simple persistence for the direct runoff obtained using HYSEP described in Section 2. As we
demonstrate through stormflow hydrographs in Figure A5, Appendix A, at a lead time of one day,
the simple persistence-based forecasts are essentially delayed by one day. In other words, the timing of
forecast hydrographs and the timing of the extreme event peak are delayed by one day, while preserving
the magnitude of the peak of the hydrograph. Note the damping of smaller rainfall-runoff event
stormflows in the smaller nested basin (see a, Figure A5, Appendix A) by the river network aggregation
process at the larger basin (see b, Figure A5, Appendix A). The resulting pattern of both KGE and nMAE
with basin scales is similar to the one presented before. Notably, reasonable KGE could be achieved for
a one-day-ahead stormflow forecast, while showing significant decline for longer lead times. Note that
the basins of size > 1000 km2 still show KGE > 0.3 for 12 days ahead forecast, illustrating the potential
of using it as reference forecast for the evaluation of stormflow forecasts particularly at short-range.
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As we highlighted in Section 2, our region predominantly contains rivers in the perennial flow
regime (snow/glacier fed). There are, however, some rivers originating in the southern plains of Nepal
which are predominantly in the intermittent flow regime. Since we established the fact that forecast
skill shows strong spatial scale dependence, it would be of interest to the forecasting community to
explore the dependence on the flow regimes. The ideal comparison would be to evaluate forecasts
conditional on the basin scale. We identified four basins of a size of ~2500 km2; two perennial river
basins in northern Nepal and the other two intermittent river basins in southern Nepal (see inset of
Figure 7). Figure 7 demonstrates the evolution of KGE (simple persistence-based) with lead times for
these four basins. A distinct pattern of KGE evolution emerges. The perennial rivers depict higher
forecast performance with gradual decline in the forecast performance with forecast horizon (lead time)
while the intermittent rivers show sharp decline in the forecast performance with forecast horizon.
Since intermittent rivers are mostly driven by rainfall-runoff events, their forecast skill evolution shows
similar behavior elucidated by the results in Figure 6. Note a sudden spike of KGE for the Babai river
at four days of lead time. Though it is hard to point out explicitly the reason, one could attribute it to
the ability of four days ahead forecast to capture two consecutive historic floods (separated by 4 days)
in the year 2015.

It is extremely important for forecasters to achieve good predictability of higher flow quantiles
for flood preparedness and mitigation efforts. For the same four basins, we evaluate the forecast
performance associated with the different streamflow quantiles. We refer to flow quantiles as
flow threshold. Figure 8 shows the evolution of KGE across lead times for various flow quantiles.
KGE reported here is computed for the streamflow forecasts exceeding the corresponding flow quantile.
Note that as the flow quantile increases, the sample size used to compute the forecast skill systematically
decreases. Given that we evaluate the forecast skill using the continuous streamflow time-series
in record, we consider the sample size to be enough for the evaluation. Clearly, the KGE for the
intermittent rivers (lower panel) shows sharp decline for the higher flow quantiles. The perennial rivers
(upper panel), however, depict much better forecast performance even for the higher flow quantiles at
longer lead times. However, of the two, the Marshyangdi basin at Bhakundebesi, shows relatively
faster decline in the performance of flows exceeding 60th percentile. As Ghimire and Krajewski [19]
highlighted, this variability in KGE could be explained by the difference in their river network
geometries, typically explained by the network width function see [37,38] for detail. Explicit attribution
is beyond the scope of this paper.
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Figure 8. Percentile plots showing the evolution of Kling–Gupta efficiency (KGE) with lead time for
four river basins described in Figure 7. Each percentile refers to the KGE computed for streamflow
forecasts exceeding corresponding percentile flow. For example, 90th percentile KGE represents the
KGE computed for streamflow forecasts >90th percentile flow. The envelope corresponds to each 10th
quantile on either side of the median flow. The higher and lower flow quantiles shown in the interval
correspond to the lower and upper bounds of the envelope, respectively. For example, the interval
[90, 10] corresponds to the KGE computed for 90th and 10th percentile flows, respectively.



Forecasting 2020, 2 241

4. Discussion

A clear signature emerging out of our persistence-based streamflow forecasts skill is its strong
spatio-temporal dependence. Our results substantiate it further. The results from Figures 3 and 6
demonstrate that significant contribution to the persistence-based forecast skill is from the baseflow
contribution. In other words, the contribution from snowpack (snow/glacier), groundwater and storage
in the contributing catchments plays an important role in the streamflow hydrographs, particularly for
the perennial rivers in the Himalayan region of Nepal. Typically, the streamflow predictability at small
basin scales is more tied to the rainfall than the large basin scales. We highlighted this fact through our
results for the intermittent rivers. The perennial rivers, however, receive sizable contributions from
the base flow relative to the rainfall even in the small basin scales, hence the relatively good forecast
skill. Moreover, the persistence-based forecast derives skill from the memory of the system, in this case
river catchments. The larger the basin scales, the longer the memory of the catchments, and hence
the long-range persistence. We show from our results that higher forecast skill (KGE > 0.7) could be
achieved for a basin size larger than 1000 km2, even at a longer forecast horizon. Another important
contribution to the skillful forecasts of larger basins at longer lead times is from the water transport
in the river network, where the streamflow aggregation process controls the shape of the streamflow
fluctuations [27,39–41]. In addition to the land surface (e.g., catchment) memory, the streamflow
predictability has a strong connection to the persistence in the land surface initial hydrologic conditions
(e.g., soil moisture, groundwater, current streamflow and snowpack) [42–44], providing the main
source for the skillful streamflow forecasts.

The dependence of forecast skill depicted in this study with the basin size and forecast lead
times is consistent with the results presented in Ghimire and Krajewski [19]. Given a large number of
glacierized basins in the region, as opposed to agricultural watersheds used in the study of Ghimire
and Krajewski [19], more stations depict higher streamflow forecast skill. For instance, at a lead time
of one day, we show a median value of KGE of about 0.92 in the region, compared to the median
value of KGE of about 0.78 presented in their study. Therefore, our results demonstrate a clear
implication of persistence-based forecasts for the real-time streamflow forecasting in the Himalayan
region. Our illustration of reasonably good streamflow forecast skill across spatial and temporal
scales provides a reliable benchmark (reference) to evaluate the efficacy of the operational real-time
streamflow forecasting. Particularly for the larger basin scales, we are able to show that it is difficult
for many operational mechanistic hydrologic models to outperform persistence-based forecast skills.
Any operational forecasting scheme that can aptly depict forecast skill better than the three-reference
forecast schemes presented in this study, can be considered skillful. We are able to show quantitatively
that it can serve as a skillful reference for the evaluation of real-time flood forecasts (higher flow
quantiles) up to the medium range for perennial rivers while up to the short-range for the intermittent
rivers. Our findings clearly show that persistence-based forecast scheme, anomaly persistence in
particular, could provide skillful reference forecasts for the evaluation of current operational streamflow
forecasting systems in the Himalayan country of Nepal. Moreover, it could provide guidance to the
flood related decision-making process, especially in the short-medium forecast range.

5. Conclusions

In this study, we explored the utility of persistence-based forecasting schemes to benchmark
the real-time streamflow forecasting system in the Himalayan region of Nepal. We used the daily
streamflow data at 65 stream gauge stations monitored by the DHM, Nepal, to generate the forecasts
and evaluate the associated skills in the short-to-medium forecast horizon. To this end, we employed
three reference forecast schemes: (i) simple persistence, (ii) streamflow climatology and (iii) anomaly
persistence. Based on the results from this study, we could reach at following conclusions:

� Persistence-based forecast skill shows strong dependence with the basin scale and forecast lead
time. Anomaly persistence forecasts outperform others at small basin scales and longer lead
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times and hence can be a better selection for benchmarking the real-time streamflow forecasting
system in the Himalayan region of Nepal.

� The forecast skill shows strong dependence with the flow regime and flow threshold.
The verification results show higher forecast skill for perennial rivers over intermittent rivers and
moderate flow quantiles over high flow quantiles.

This study highlights the fact that a persistence-based forecast scheme is difficult to outperform
using many mechanistic hydrologic models, particularly for larger basin scales in the Himalayan
region. The findings from this study have implications for evaluating real-time streamflow forecasts
from the operational forecasting system across basin scales and lead times in this region. Moreover,
it provides insights on designing the streamflow monitoring network for future applications.

Our study, however, is not without limitations. We did not account for the measurement
uncertainty associated with streamflow observations. We considered the published streamflow data to
be within the acceptable limit of observational uncertainty. We did not account for the uncertainty
associated with the rating curves. Moreover, we could not perform the sub-daily forecast skill
evaluation due to the unavailability of published sub-daily streamflow observations. We expect that the
analysis using sub-daily streamflow data will not lead to a significantly different inference regarding
the forecasting performance of persistence-based systems, which we could explore further in our
future research.
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