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Abstract: Discrete choice models (DCMs) are applied in many fields and in the statistical modelling
of consumer behavior. This paper focuses on a form of choice experiment, best–worst scaling in
discrete choice experiments (DCEs), and the transition probability of a choice of a consumer over
time. The analysis was conducted by using simulated data (choice pairs) based on data from Flynn’s
(2007) ‘Quality of Life Experiment’. Most of the traditional approaches assume the choice alternatives
are mutually exclusive over time, which is a questionable assumption. We introduced a new copula-
based model (CO-CUB) for the transition probability, which can handle the dependent structure of
best–worst choices while applying a very practical constraint. We used a conditional logit model to
calculate the utility at consecutive time points and spread it to future time points under dynamic
programming. We suggest that the CO-CUB transition probability algorithm is a novel way to analyze
and predict choices in future time points by expressing human choice behavior. The numerical results
inform decision making, help formulate strategy and learning algorithms under dynamic utility in
time for best–worst DCEs.

Keywords: discrete choice models (DCM); best–worst scaling; CO-CUB model; paired model; Bellman
equation; utility in time (UiT)

1. Introduction

Modelling choice behaviors has always been a very challenging part in statistical
research. Best–worst scaling (BWs) choice pairs in model behaviors has been coined by
Louviere and Woodworth (1990) [1]. With the addition of the attribute and attribute levels,
the logistic distributions are convenient tools from analytic and practical aspects; they
rely on assumptions of ordinality in the responses that can only be met under limited
situations. Furthermore, the computational issues related to the large choices in the best–
worst cases hamper patterns in the preferences. Discrete choice experiments (DCE) are one
of popular models used to quantify the inspiration of attributes, which characterize the
choice options. In the literature, Train (2009) [2] present multiple models based on different
assumptions about the distribution of random components. In some of his suggested
models, the error terms seem to be homogeneous and uncorrelated. Lancsar et al. (2013) [3]
used a form of choice experiment, “Best–Worst Discrete Choice Experiments”, which is
designed in a way by asking respondents to choose not only the best option in a choice
set but also the worst option followed by the best from the remaining options and so
on until the implied preference ordering of the option is obtained. Marley and Louviere
(2005) [4] and Marley et al. (2008) [5] discuss some of the theoretical aspects of attribute-
level best–worst experiments and Flynn et al. (2007) [6] provides detailed instructions
for the analysis of such experiments. Following Marley et al. (2008) [5], Street and Knox
(2012) [7] constructed a probability function called best–worst choice probability which
can be used to find the probability of choice from one state to another. Working et al.
(2018) [8] used a conditional logit approach to calculate the transition (of conditional choice)
probabilities over time assuming that the consumer behavior is a time-dependent process.
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The assumption of “making two choices in two different time points is independent process
for an individual” cannot be justified in general. As mentioned in Potoglou et al. (2011) [9],
the interaction between attributes and choice pairs needs further piloting and investigation.
The dependence in the modelling of the choices made over time is not fully included in
many research venues. The dependence in the selection is a wide and fast field, but the
theory is biased towards the estimation method. The premise of the traditional choice
models assumes of mutually exclusive alternatives; that is, if a choice is made, alternates
are not selected anymore. An alternative would be to build patterns of the preferences and
their weighted measures. That option opens a new framework for choices, especially those
that are made over time. Many factors shape the choices made. We include a priority in
the selection over times and build it in the design. Specific association in the choices is
highlighted to show the need to develop progressive models where temporal dependence
in the choices is integrated, and utility is computed. In that sense, the innovation we
propose is built under the copula theory, as it captures the dependence among the choices
made over time periods irrespective of the marginal distributions. We utilized a completely
new copula structure call ‘CO-CUB’ to calculate transition probabilities in the BWs choices
over time.

The paper is organized as follows. In Section 2, DCMs are reviewed. The design
for the BW choice pairs and their utilities are also included under a priority setting. The
transition probabilities under CO-CUB are described in Section 3. We present the model’s
theory overtime sequence to quantify and measure consumer behavior and derive utilities
using the Markov decision process (MDPs) in Section 4. Section 5 is about the application.
Empirical data from Flynn et al. (2007) [6] are simulated and our methods are tested,
which have the ability to estimate selected significant parameters such as the “feeling” and
“uncertainty” of human beings when making a choice. The literature on Copula for DCE is
at its infancy by utilizing our newly constructed probability model to analyze the choices
of individuals, comparisons are made, and we end up with a conclusion.

2. Preliminary Results for Best–Worst Discrete Choice Modelling

Best–worst scaling experiments are modified DCEs to elicit further information about
the best and worst product, or best and worst attributes and attribute-levels of a product.
Respondents are asked make choices between different attributes within a same product;
that is the alternatives are the attributes. In the experiment, each of the alternatives
is described by a set of K attributes or characteristics of the product or scenario being
modelled. Further, each attribute contains lk levels. That is, each product is represented
by a profile X = (A1, A2, . . . , AK), where Ai represents an attribute level of a choice.
Consider K profiles such that P1 = (A11, A12, . . . , A1K), P2 = (A21, A22, . . . , A2K), . . . , PG =
(AG1, AG2, . . . , AGK). For every profile, the choice set is then, CX = [(x1, x2), . . . , (x1, xK),
(x2, x3), . . . (xK−1, xK), (x1, x2), . . . , (xK, xK−1)], where the first attribute level is the best and
the second is the worst, called best–worst pairs. This model is designed in such way that the
choice pair (xa, xb), xa, and xb cannot be acquired from the same attribute. From the choice
set CX , the respondent determines a BW choice pair from τ such pairs, where τ = K(K − 1).
If we consider G products, that is, G profiles and G associated choice sets, then we can
define a finite set S that is S = {C1, C2, . . . , CG} such that Ci ̸= Cj for all i ̸= j. The BW
choice pairs are illustrated in Figure 1 and shows all the possible combinations.

Total number of attribute levels

L = ∑K
k=1 lk

and the total number of unique attribute-level pairs

Z = ∑K
k=1 lk(L − lk), (1)

where lk is the number of levels for kth attribute, where 1 ≤ k ≤ K. Equation (1) is also
described in Street and Knox (2012) [7].



Stats 2024, 7 187
Stats 2024, 7, FOR PEER REVIEW  3 
 

 

 
Figure 1. BW Choice pairs in 𝐺 choice sets, Working et al. (2018) [8]. 

Total number of attribute levels 𝐿 = ∑ 𝑙   

and the total number of unique attribute-level pairs 𝑍 = ∑ 𝑙 (𝐿 − 𝑙 ),  (1)

where 𝑙  is the number of levels for 𝑘  attribute, where 1 ≤ 𝑘 ≤ 𝐾. Equation (1) is also 
described in Street and Knox (2012) [7]. 

2.1. Design of Experiment 
Assume that the profiles have 𝐾 attributes, and each attribute has 𝑙  levels, where 𝑘 = 1,2, … , 𝐾. The simulation has performed in such a way that each person has to make 

choices in all sets. The debate concerning optimal designs for DCEs could be enhanced by 
a closer connection to the established literature on the optimal design of experiments as 
suggested in Sun et al. (2023) [10]. We used orthogonal design here for the simulation. 
There are three standard models in best–worst choice model design experiments which 
are: (1) paired, (2) marginal, and (3) marginal sequential models. In this manuscript, we 
used the paired model Aizaki and Fogarty (2019) [11] and Marley and Louviere (2005) [4], 
which assumes that the difference in utility between the two levels represents the greatest 
utility difference among all 𝜏 utility differences. 

2.1.1. Paired Model with Attribute and Level Variables 
Flynn et al. (2007) [6] used a paired model in his “Quality of life” analysis. In this 

approach, the attribute variables are created as dummy-coded variables (attribute-specific 
constants), with reversed signs when the attributes are treated as the worst and the level 
variables are created as effect coding with a base level for each attribute. The signs of the 
effect-coded level variables are also reversed when levels are treated as the worst. When 
estimating this model, an arbitrary attribute variable is omitted, and the coefficient of the 
omitted attribute variable is normalized to be zero. That is, the coefficients of the 

            𝐂𝟐 (𝑥 , 𝑥 ) (𝑥 , 𝑥 ) ⋮ (𝑥 , 𝑥 ) (𝑥 , 𝑥 ) ⋮ (𝑥 , 𝑥 ) (𝑥 , 𝑥 ) ⋮ (𝑥 , 𝑥 ) 
 

            𝐂𝑮 (𝑥 , 𝑥 ) (𝑥 , 𝑥 ) ⋮ (𝑥 , 𝑥 ) (𝑥 , 𝑥 ) ⋮ (𝑥 , 𝑥 ) (𝑥 , 𝑥 ) ⋮ (𝑥 , 𝑥 ) 
 

⋯ 

⋮ 
            𝐂𝟏 (𝑥 , 𝑥 ) (𝑥 , 𝑥 ) ⋮ (𝑥 , 𝑥 ) (𝑥 , 𝑥 ) ⋮ (𝑥 , 𝑥 ) (𝑥 , 𝑥 ) ⋮ (𝑥 , 𝑥 ) 
 

Figure 1. BW Choice pairs in G choice sets, Working et al. (2018) [8].

2.1. Design of Experiment

Assume that the profiles have K attributes, and each attribute has lk levels, where
k = 1, 2, . . . , K. The simulation has performed in such a way that each person has to make
choices in all sets. The debate concerning optimal designs for DCEs could be enhanced
by a closer connection to the established literature on the optimal design of experiments
as suggested in Sun et al. (2023) [10]. We used orthogonal design here for the simulation.
There are three standard models in best–worst choice model design experiments which are:
(1) paired, (2) marginal, and (3) marginal sequential models. In this manuscript, we used
the paired model Aizaki and Fogarty (2019) [11] and Marley and Louviere (2005) [4], which
assumes that the difference in utility between the two levels represents the greatest utility
difference among all τ utility differences.

2.1.1. Paired Model with Attribute and Level Variables

Flynn et al. (2007) [6] used a paired model in his “Quality of life” analysis. In this
approach, the attribute variables are created as dummy-coded variables (attribute-specific
constants), with reversed signs when the attributes are treated as the worst and the level
variables are created as effect coding with a base level for each attribute. The signs of the
effect-coded level variables are also reversed when levels are treated as the worst. When
estimating this model, an arbitrary attribute variable is omitted, and the coefficient of the
omitted attribute variable is normalized to be zero. That is, the coefficients of the remaining
attribute variables are estimated relative to the omitted attribute. Unlike dummy coding,
effect coding allows the calculation of a coefficient of the base level in each attribute: it is
the negative of the sum of the remaining coefficients in each attribute.

Let us consider the general scenario to the formulation for the paired model. Consider
the K attributes A1, A2, . . . , AK; each has lk levels. Assume that attribute AK is omitted,
and that the last level (lk) in each attribute (i.e., levels A1lk , A2lk , . . . and AKlk ) is the base
level. As in Aizaki and Fogarty (2019) [11], the systematic component of the utility function
is then:
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V = βA1 MA1 + · · ·+ βAK−1 MAK−1 + βA11 MA11 + · · ·+ βA1(lk−1)
MA1(lk−1)

+ · · ·+ βAK(lk−1)
MAK(lk−1),

(2)

where the βs are the coefficients to be estimated and Ms are the design matrices asso-
ciated with the attributes and attribute levels. The coefficient of the attribute variable
corresponding to AK is zero, and the coefficients of the base level Ajlk , j = 1, 2, . . . , K can
be calculated by Ajlk = −∑k−1

i=1 βAji for j = 1, 2, . . . , K. Detailed calculations are shown
in the application section. M is composed of indicators for the best and worst attributes
and attribute levels. Let M be the Z × P design matrix, where Z = ∑K

k=1 lk(L − lk) and
P = Klk − 1. Columns correspond to attribute AK and the base levels (A1lk , A2lk , . . . and

AKlk ) are omitted from the design matrix. Consider the choice pair
(

xij, xij′
)

from the

choice set Ci, for i = 1, 2, . . . , G, j ̸= j′ = 1, 2, . . . , K, and 1 ≤ xij ≤ lk. For

MAh =


1 , if xij ϵ Ah for h = 1, 2, . . . , K − 1
−1, if xij′ ϵ Ah for h = 1, 2, . . . , K − 1

0, otherwise
(3)

Let MAhxih be the data for the attribute level 1 ≤ xih ≤ lh, h = 1, 2, . . . , K − 1 (non-

base levels) within attribute AJ , ∀j = 1, 2, . . . , K. Referring to the choice pair
(

xij, xij′
)

, the
corresponding data for the attribute-levels are given by,

MAhxih =


1 , if xij ϵ Ah for h = 1, 2, . . . , K − 1
−1, if xij′ ϵ Ah for h = 1, 2, . . . , K − 1

0, otherwise
. (4)

Within attribute AJ , ∀j = 1, 2, . . . , K, the base levels (A1lk , A2lk , . . . and AKlk )

MA1lk = MA2lk = · · · = MAK lk =


−1 , if xij ϵ AK
1 , if xij′ ϵ AK
0, otherwise

. (5)

Table 1 shows the design matrix for the based on data from Flynn et al. (2007) [6]
‘Quality of Life experiment.’ The estimated parameters of the choices are given in Table 2.
The BW choice pairs are then arranged according to their popularity (with highest number
of picks) in Table 3.

Table 1. Design Matrix based on Equations (3)–(5).

B W MA MB MC MD MA1 MA2 MA3 MB1 MB2 MB3 MC1 MC2 MC3 MD1 MD2 MD3 ME1 ME2 ME3

A3 D2 1 0 0 −1 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0

A1 B3 1 −1 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

E3 C3 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1

A2 C4 1 0 −1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0

D2 E3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1

A1 B4 1 −1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0

A4 B2 1 −1 0 0 −1 −1 −1 0 −1 0 0 0 0 0 0 0 0 0 0

A1 E4 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

E4 A4 −1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 −1 −1 −1
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Table 2. Estimated parameters.

Parameters ^
βFlynn

SEFlynn
^
βSim

SESim Parameters ^
βFlynn

SEFlynn
^
βSim

SESim

Constant −0.3067 0.075 * * Security All 0.9511 * 0.8199 *

Attachment 0.8105 0.0803 0.8655 0.0575 Enjoyment None −0.8888 0.1286 −0.8327 0.0759

Security * * * * Enjoyment Little −0.3367 0.1632 −0.3535 0.0773

Enjoyment 0.2632 0.101 0.2684 0.0563 Enjoyment Lot 0.6561 0.1493 0.5862 0.0781

Role 0.1908 0.0974 0.2294 0.0565 Enjoyment All 0.5695 * 0.60007 *

Control 0.1076 0.0971 0.1217 0.0564 Role None −0.8956 0.1239 −0.7697 0.0761

Attachment_None −1.9678 0.1129 −1.9633 0.0775 Role Few −0.0277 0.1532 0.1086 0.0776

Attachment_Little 0.1694 0.1012 0.1811 0.0756 Role Many 0.4435 0.1363 0.2616 0.0784

Attachment_Lot 0.9053 0.0905 1.0493 0.0811 Role All 0.4798 * 0.3995

Attachment_All 0.8932 * 0.7329 * Control None −0.8085 0.1122 −0.7149 0.0763

Security_None −0.6123 0.118 −0.6953 0.0764 Control Few 0.0835 0.1596 0.1505 0.0774

Security Little −0.3761 0.1302 −0.2449 0.077 Control Many 0.278 0.1376 0.2854 0.0785

Security Lot 0.0373 0.1153 0.1203 0.0779 Control All 0.4471 * 0.2791 *

β̂Flynn—Estimated parameters from Flynn’s experiment. β̂Sim—Estimated parameters from the simulation. The *
represent the base levels in our simulated data.

Table 3. Arrangement of BW choice pairs in choice set 1, based on their popularity.

Best Attribute Worst Attribute Best Level Worst Level No. of Picks Rank

Attachment Security Attach_all Security_none 2629 1

Attachment Role Attach_all Role_few 1204 2

Enjoyment Security Enjoyment_all Security_none 1075 3

Attachment Control Attach_all Control_many 994 4

Control Security Control_many Security_none 700 5

Attachment Enjoyment Attach_all Enjoyment_all 629 6

Role Security Role_few Security_none 509 7

Enjoyment Role Enjoyment_all Role_few 498 8
Enjoyment Control Enjoyment_all Control_many 400 9

Control Role Control_many Role_few 341 10

Role Control Role_few Control_many 206 11

Control Enjoyment Control_many Enjoyment_all 162 12

Security Role Security_none Role_few 130 13

Role Enjoyment Role_few Enjoyment_all 122 14

Enjoyment Attachment Enjoyment_all Attach_all 117 15

Security Control Security_none Control_many 89 16

Control Attachment Control_many Attach_all 62 17

Security Enjoyment Security_none Enjoyment_all 58 18

Role Attachment Role_few Attach_all 51 19

Security Attachment Security_none Attach_all 24 20
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2.2. Utility Function–Attribute–Level Best–Worst Design

The utility function as described in McFadden (1974) [12] for the ith consumer/individual
selecting the jth choice is given as:

Uij = Vij + εij (6)

where Uij is the utility for ith consumer selecting jth choice. Vij captures the systematic
component and εij captures the error component. The distribution of the error terms
is studied in McFadden (1974) [12]. He proposed the type I extreme value distribution
(Gumbel distribution) for the error terms, which modelled data from the conditional logit
model. However, this utility function can only accommodate single choice cases. Under
the random utility theory, the probability of an alternative is based on the utility as defined
in Equation (6); Flynn et al. (2007, 2008) [6,13] and Louviere et al. (2008) [14] provided the
utility function for best–worst choice models. Here, we consider the choice set C,

(
xij, xij′

)
being the chosen pair, and the utility for choosing this pair within set C is then given by:

Uijj′ = Vijj′ + εijj′ , (7)

where Uijj′ is the utility value for ith consumer selecting jth choice as the best and j′th as
the worst. Vijj′ is the corresponding systematic component and εijj′ is the error term. The
systematic component in Equation (7) can be calculated under the above-described paired
model (Equation (2)).

3. Transition Probability

In the context of choice models, we say that the choices are not independent of an
irrelevant alternative (IIA) and they are also time dependent. Therefore, we may not
achieve an accurate overall performance by not accounting for the relationship between the
present and future decisions and their outcomes. Our interest is with discrete time finite
horizon Markov Decision Processes (MDP); that is, t = 1, 2, . . . T where T is a fixed number
of time periods. The rewards are maximized by the best sequential decisions over time,
making MDPs a dynamic optimization tool as used in Blanchet (2016) [15] to identify the
right choices of substitution behaviors of consumers. Let st ∈ S be the states occupied at
time t, rt(st) which is the reward associated with st, and dt (rt, st) is the decision based on
the possible rewards and states at time t. The decision process maps the movement from
one state to another over time t based on rewards received and an optimal decision set. As
the decision process is Markovian, the transition probability to the next state, S′ = St+1
based solely on the decision made at the current state, S = St is PSS′ = P[St+1 = S′|St = S],
where t = 1, . . . , T. The conditional probability of state transition from S to S′ is defined as:

P(st+1|st) = P
(
st+1 = s′

∣∣st = s
)
= Pss′ (8)

The transition probability of state s′ is not homogeneous. As described in Equation (8),
it depends on the action taken in the state S. Factors such as ‘feeling’ and ‘uncertainty’ of
an individual can be highly affected to this probability. Further, the human behavior has
a tendency to select options that have immediate gratification or those with the nearest
range rather than selecting alternatives further away in time. Those are some of challenging
constraints in terms of building a transition probability function. Further, the dependent
structure of adjacent time probabilities needs to be handled carefully. Based on McFadden
(1974) [12], the conditional logit model on the error term, Working et al. (2018) [7] establish
a time-dependent probability formula while avoiding the IIA condition. It is reasonable
as an initiation, but the dependent structure of the choice at the next time point or the
above-mentioned ‘close at hand’ constraint cannot be seen in that transition matrix. In this
manuscript, we introduced copula-based distribution with a CUB marginal, which is a
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combination of a discreet uniform and shifted binomial distributions introduced by Piccolo
(2003) [16]. This model is a totally new approach for discrete choice modelling.

3.1. Copula Methods

Many stochastic models define the relation between X and Y through expectations,
E(Y|X = x) = α + βx + ε. Copulas are functions that connect multivariate distributions to
their one-dimensional margins. If F is an m-dimensional cumulative distribution function
with one-dimensional margins, F1, . . . , Fd, then there exists an m-dimensional copula C
such that F(y1, . . . , yd) = C(F1(y1), . . . , Fd(yd)). The case d = 2 has attracted special
attention; Trivedi and Zimmer (2005) [17]. Copula modelling demonstrates that practical
implementation and estimation is relatively straightforward despite the complexity of
its theoretical foundations. The copula approach for constructing joint distributions has
gained popularity in recent years in applied research in finance, civil engineering, medicine,
climate, and weather research and many more. Copula models have been widely used for
modelling and characterizing dependence structure in multivariate data. The extension to
handle discrete and continuous forms of data offers contingency to model the probability
of best–worst pair selection probability.

3.2. CUB Probability Model

Piccolo (2003) [16], Piccolo and Simone (2019) [18], and D’Elia and Piccolo (2005) [19]
introduce a radical model which is a Combination of a discrete Uniform and a shifted
Binomial distribution (CUB). CUB jointly considers two latent components, called ‘feeling’
and ‘uncertainty’. General references for the statistical background for CUB are included
in Iannario (2012) [20] and Iannario and Piccolo (2010) [21]. The stingy parameterization
and the ease of estimation and interpretation make CUB models a very useful tool for
choice data analyses. Piccolo and Simone (2019) [18] asserts that there is a possibility to fit
statistical models to ordinal/choice data without the need of explanatory covariates. Our
interest is to use CUB marginals for copula distribution to construct a transition probability
matrix which can be used to identify human choice behavior in future time points, given
the present state of choice. An interesting attempt at defining a bivariate CUB distribution
using a multivariate model with fixed margins is made by Andreis and Ferrari (2013) [22].
The CUB is a class of mixture models, possibly involving covariates, developed as a new
approach for modelling discrete choice processes. CUB models consider two components,
which are the ‘uncertainty’ and ‘feeling’ of humans when making a choice. The intrinsic
‘uncertainty’ in choosing an item is modelled through a discrete uniform variable. The
latent process leading to the choice is directed by the subjective ‘feeling’ and modelled
using a shifted binomial distribution. The probability of observing a particular response
r = 1, 2, . . . m, with m known. Assuming m > 3 to ensure identifiability, the mixture
probability model is described in Piccolo (2003) [16] and D’Elia and Piccolo (2005) [19]. It is
given as:

P(R = r|π, ξ) = π

(
m − 1
r − 1

)
ξm−r(1 − ξ)r−1 + (1 − π)

1
m

; r = 1, 2, . . . , m, (9)

with π ϵ (0; 1] and ξ ϵ (0; 1].
Here, π defines the weights of discrete uniform shifted binomial and it is inversely

related to the amount of uncertainty in the choice decisions. The ξ is related to personal
preferences and measures the strength of feeling. In CUB models, there is non-uniqueness
of the copula representation and the non-uniqueness stems from the fact that marginal
distribution functions, which are not strictly monotonically increasing, rather monotoni-
cally non-decreasing, do not possess an inverse in the usual sense, rather a pseudo-inverse;
Nelsen (2007) [23], Genest et al. (2007) [24]. Because of that reason, we must be pre-
cisely cautioned when handling copulas with non-continuous margins, which is in the
CUB model.
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3.3. The CO-CUB Model (Copula-Based CUB)

Andreis and Ferrari (2013) [22] defines a multidimensional extension of CUB in Equa-
tion (9), called CO-CUB model, as a multivariate copula with discrete margins, each
following a CUB distribution. A k-dimensional (k ≥ 2) CO-CUB model with copula C is
a multivariate discrete variable with margins Ri ∼ CUB(πi, ξi), i = 1, . . . , k, each with
support {1, . . . , mi}, mi > 3. Joint distribution function is given by:

Ψ
(

r1, . . . , rk, π, ξ, α
)
= P

(
R1 ≤ r1, . . . , Rk ≤ rk, π, ξ, α

)
= Cα[F1(r1; π1, ξ1), . . . , Fk(rk; πk, ξk)], (10)

where π = (π1, . . . , πk)
′ and ξ = (ξ1, . . . , ξk)

′ as in Equation (6), for a particular choice
of copula C, characterized by a parameter α = (α1, . . . , αd)

′ taking values in some real
d-dimensional space α defining the dependence structure of its components. Fi(ri; πi, ξi)
stands for the distribution function of the ith margin; that is, Fi(ri) = P(Ri ≤ ri) and the
support of the CO-CUB variable is the grid {1, . . . , m1} × . . . × {1, . . . , mk}. The whole
parameter set for a k-dimensional CO-CUB is, then, the ordered triplet

(
π, ξ, α

)
ϵ [0, 1]k ×

[0, 1]k × α, having the following interpretation: by the definition of copula, being margins
of CUB, parameters

(
π, ξ

)
hold the same interpretation as in the unidimensional case,

while for what concerns the copula parameter α, its interpretation as a dependence measure
relates to the specific copula C adopted in Equation (10). Andreis and Ferrari (2013) [22]
justified that the Placket copula distribution is one of the better candidates for the CO-
CUB model.

3.4. The CO-CUB Model with Plackett Copula without Covariates

The Plackett copula is defined as:

Cα

(
uπ1,ξ1 , vπ2,ξ2

)
=

Aα(uπ1,ξ1
,vπ2,ξ2)−

√
A2

α(uπ1,ξ1
,vπ2,ξ2)−4αuπ1,ξ1

vπ2,ξ2 (α−1)

2(α−1) ,

for α ∈ (0, 1) ∪ (1,+∞),
(11)

Here, uπ1,ξ1 = F1(r1) = ∑r1
i=1 π1

{(
m1 − 1
i − 1

)
ξm1−i(1 − ξ1)

i−1 + (1 − π1)
1

m1

}
, where

m1 is the (fixed) number of categories of the first CUB model. This is similar for vπ2,ξ2 and
we will from now on assume m1 = m2 = m > 3. The copula probability mass function can
be obtained as cα(r1, r2) = Cα(b1, b2)− Cα(a1, b2)− Cα(b1, a2) + Cα, where ai = Fi(ri) and
bi = Fi(ri − 1) for i = 1, 2. Model parameters are then π1, ξ1, π2, ξ2 and α. Estimation can be
performed by inference for the margin method (IFM), as shown in Joe and Xu (1996) [25].

3.5. Setting up the Transition Probability Matrix

Let F(x, y) = C(x, y) be the cumulative function and fXY(x,y)
fX(x) fY(y)

= c(u, v), where

fY=j|X=i =
f (y=j,x=i)

f (x=i) . Then, fY|X=i = c(u, v) fY(y = j). For the notation convenient, let the
choice state at time point t + 1, si(t+1) := s′i and the state at t, si(t) := si, where s′i, si are
ordered labels (ranks) of the BW choice pairs and s′i, si = 1, 2, . . . , τ; i = 1, 2, . . . , G, and
time t = 1, 2, . . . , T. The transition probability is denoted as Pt

iss′ = Pt(s′i
∣∣si

)
. Since we

do not have publicly available data from Flynn et al. (2007) [6] experiment, we have to
simulate data under the paired model and distributed them among different choice sets.
We simulated a number of different datasets under the same set of estimated regression
parameters to prioritize choice pairs based on their popularity. That is, for a given choice
set C, we counted the number of times an individual picked the choice pair

(
xij, xij′

)
.

Finally, all the choices are arranged according to their popularity; that is, from the highest
count to lowest count. This proceeding gave elements in a choice set, an ordinal power
and it is a necessary requirement to incorporate the CUB model for choice data. Further,
we adjusted the function for the repetition of selections in order to keep the transition
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probability formula as a probability distribution function. Then, the transition probability
formula can be written as

c∗(u = g, v = h) =

{
c(u=g,v=h) n

Cp
; Cp ̸= 0

0 ; Cp = 0
(12)

where n is the number of repetitions for a selection of the pair
(

xij, xij′
)

in the selected

choice set and Cp = ∑N
r=1 c(u = g, v).I(c(u = g, v)), c is the density function of the Placket

copula as shown in Equation (11). Let N be the size of the random sample, g, h = 1, 2, . . . , τ,
and τ be the number of BW choice pairs considered in each choice set. Then, the probability
transition matrix for the ith choice set is in the form of

c∗i (u = g, v = h) =


Pi11 Pi12 . . . Pi1τ

Pi21 Pi22 . . . Pi2τ
...

Piτ1

...
Piτ2

. . .
...

. . . Piττ

 = (Piss′)

i = 1, 2, . . . , G; , s, s′ = 1, 2, . . . , τ = K(K − 1).

(13)

Piss′ is denoted as the transition probability when a consumer changing his choice
selection state s at time t to s′ at time t + 1. For all the transitions, ∑τ

s′=1 Piss′ = 1 (e.g.,
the sum of the row values in Equation (13) is 1) and if there are no possible transitions
∑τ

s′=1 Piss′ = 0. The ordering scheme is such that for
∣∣s′i − si

∣∣ ≤ ω, ∑ Pss′ > ∑ Pss′′ for any
other s′′ ̸= s′ for the ith choice set, where ω is some small-time epoch number. That is,
in simple words the row sum of the probability of the region

∣∣s′i − si
∣∣ ≤ ω is the highest

portion than any probability sum in the same row of the probability transition matrix in
the ith choice set. We introduce a constraint

∣∣s′i − si
∣∣ ≤ ω for our copula model because

the nature of human behavior is that they have a greater tendency to grab options that
are close at hand or those within the nearest range rather than picking up alternatives
further away in time. The data were simulated based on that choice behavior assumption;
that is,

∣∣s′i − si
∣∣ ≤ ω. The transition matrix may be either stationary or dynamic in nature.

In this manuscript, we considered only the stationary case. It is important to state that
the transition probability matrix is calculated by considering all N individuals in the
experiment. The row sum of the transition matrix is kept as 0 if there is no transition from s
to s′. These proprieties can be seen in Tables 4 and 5.
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Table 4. Probability transition matrix for choice set 1; (n = 100).

( Piss’ )=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0.189 0.226 0.252 0.332 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.058 0.760 0.000 0.115 0.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.034 0.085 0.783 0.000 0.062 0.036 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.016 0.160 0.369 0.397 0.058 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.882 0.000 0.000 0.118 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.371 0.000 0.177 0.311 0.000 0.142 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.269 0.159 0.093 0.415 0.064 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.327 0.000 0.673 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.421 0.000 0.000 0.579 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.661 0.339 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000



Stats 2024, 7 195

Table 5. Probability transition matrix for choice set 1; (n = 500).

(Piss’ )=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0.441 0.266 0.178 0.116 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.101 0.557 0.197 0.112 0.033 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.113 0.171 0.631 0.046 0.012 0.026 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.189 0.191 0.219 0.355 0.022 0.016 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.076 0.434 0.083 0.377 0.016 0.000 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.263 0.075 0.121 0.459 0.000 0.053 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.204 0.146 0.052 0.549 0.048 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.053 0.037 0.034 0.730 0.071 0.037 0.038 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.091 0.000 0.000 0.865 0.044 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000 0.078 0.000 0.000 0.750 0.171 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.116 0.000 0.000 0.884 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.830 0.170 0.000 0.000 0.000 0.000 0.000 0.000
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.136 0.000 0.717 0.147 0.000 0.000
18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
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4. Utility in Time with Dynamic Programming

In this part, we incorporate MDPs and Dynamic Programming to calculate utility
in time with the help of transition probabilities. Bellman (1954, 1956) [26,27] introduced
a dynamic programming technique to evaluate the utility value function, also known
as Bellman’s equation. At each time step, dynamic programming uses numerical meth-
ods to evaluate the value function moving backwards in time. Rust (1994, 2008) [28,29]
and Ellickson (2011) [30] presented a numerical method with steps for evaluating DCEs
as MDPs.

The value function for the DCEs is defined by at each time t as:

Vt(Xt, εt) = max
dt∈D

∑T
t′=t Pt′

ss′

(
γt′−tU(Xt′ , dt′) + ε(dt′)

∣∣∣Xt

)
, (14)

with Pss′ = P(st+1|st) = P(st+1 = s′|st = s). This may also be defined in terms of the
transition in decisions as P(dt+1|dt, xt),where dt ∈ D is the decision at time t, U(xt , dt)
is the derived expected utility, and ε is the associated error term at time t, where t =
1, 2, . . . , T. The discount utility rate in Equation (14) is given by γ ∈ (0, 1); see Feinberg
and Schwartz (1994) [31]. There exist τ value functions for each of the τ alternatives in the
experiments evaluated at each time point t = 1, 2, . . . , T. The sum goes from t up to T
because it is evaluated using a backwards recursive method; that is, we start at the last time
point and work our way backwards to earlier time points.

VT(XT) = U(XT , dT)
VT−1(XT−1, dT−1) = U(XT−1, dT−1) + ∑

dt∈D
γVT(XT)P(dT |dT−1),

VT−2(XT−2, dT−2) = U(XT−2, dT−2) + ∑
dt∈D

γVT−1(XT−1)P(dT−1|dT−2),

...
Vt(Xt, dt) = U(Xt, dt) + ∑T

t′=t+1 ∑dt∈D γVt′(Xt′)P(dt′ |dt′),

(15)

where Ut is utility in time (UiT) and Vt is the value function. Based on Working et al.
(2018) [8], the initial utility for the selected choice pair can be calculated using:

VT =
((

β̂A + β̂Ak

)
−

(
β̂ A′ + β̂A′

k

))
≡ U(XT , dT), (16)

where β̂A, β̂Ak are estimated parameters for best attribute and attribute level and β̂A′ , β̂A′
k

are the estimated parameters for worst attribute and attribute level, respectively. Instead of
this simple model, in this manuscript we used the paired model which is one of the more
appropriate models for the paired data. In fact, to distribute the utility over time for the
future time points, further adjustment is needed for the value function. We adjusted the
value function in Equation (12) for the time in such a way that

VT =
(
M+ β̂

)
θt

b +
(
M− β̂

)
θt

w ≡ U(XT , dT), where M = M+ + M− (17)

M is the design matrix under the paired model which contains +1, −1, and 0 described
in Equations (3)–(5). We broke M into M+ and M−, which contains +1s and −1s. Fur-
ther, we introduce arbitrary time-sensitive constants θt

b, θt
w to make the initial systematic

component vary with time.

5. Application and the Design of the Experiment

A pilot best–worst study was conducted in summer 2005 among people aged 65 and
over with the aim of informing a larger quality of life valuation exercise by Flynn et al.
(2007) [6]. In this survey, there are K = 5 attributes, which are Attachment, Security, Role,
Enjoyment, and Control. Each attribute with lk = 4 levels. That is

Attachment: Attach_none, Attach_little, Attach_lot, Attach_all
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Security: Security_none, Security_little, Security_lot, Security_all
Role: Enjoyment_none, Enjoyment_little, Enjoyment_lot, Enjoyment_all
Enjoyment: Role_none, Role_few, Role_many, Role_all
Control: Control_none, Control_few, Control_many, Control_all

We simulated a new data set for 100 individuals and estimated regression parameters
by using a conditional logit model with the help of R package ‘support.BWS2’; see Aizaki
and Fogarty (2019) [11]. The application is from a balance design where all five attributes
have four- levels each; there are 320 unique BW choice pairs. We simulated data in such a
way that 16 choice sets were used to cage all 320 unique BW choice pairs (see Equation (1)),
by keeping each choice set with 20 choice pairs. Each person of the 100 sample should
make a choice in each choice set. Figure 2 shows the orthogonal design we used to simulate
the data. The shape of the questionnaire design based on the orthogonal array is shown in
Figure 3. Such a questionnaire could be used in the case of a real-life data collection process.
Table 1 shows the design matrix for the paired model. The attribute ‘Control’ is omitted
and the fourth level in each attribute (‘Attach_all’, ‘Security_all’, ‘Enjoyment_all’, ‘Role_all’
and ‘Control_all’) is considered to be the base level.
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The parameter estimated by Flynn et al. (2007) [6] and conditional logit regression
estimates for the simulation are presented in Table 2. Based on Equation (17), systematic
components for each choice and then the corresponding utility can be calculated. Estima-
tions for base levels are calculated by Ajlk = −∑k−1

i=1 βAji as mentioned in Section 2.1.1. As
per the iterative dynamic programming method introduced in Equation (15), with initial
utility as described in Equation (16), utility values for a consecutive 10 time periods are
calculated recursively by utilizing the transition probabilities and a discount factor γ = 0.95.
As a demonstration, the results for choice set 1 is presented in this manuscript.
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The BW choice pairs are arranged in order, as mentioned in Section 3.4. We ran the
choice selections algorithm 10,000 times within each choice set to get a proper ordering of
elements. Table 3 shows the arrangement for the BW pairs for choice set 1. This arrangement
is organized according to the popularity (highest number of picks) of the BW choice pairs.
That information is then used to calculate the transition probabilities at the next time point.
The probability transition matrix can be calculated utilizing our new model as derived in
Equation (12). It is a 20 × 20 matrix since each choice sets contain 20 choice pairs. Figure 4
shows the highest probability corresponding to each BW choice pair in choice set 1 for
three different samples sizes, which n = 100, n = 500, and n = 1000; that is, the highest
probable transition slot at time t to t + 1. Tables 4–6 show the corresponding transition
probability matrices for choice set 1 for sample sizes 100, 500, and 1000, respectively. The
constraint region, |si’ − si| ≤ 3, is highlighted in the probability transition matrix and the
highest probability is squared. Nobody picked choice pairs 11, 12, 15, 19, and 20 at time
t or t + 1 when n = 100. That has happened only to choice pair 19 in the n = 500 scenario.
However, for n = 1000 all the choice pairs have been selected. Table 7 shows the utilities
(UiT) calculated for time points t = 1, 2,. . ., 10. Figure 5 shows the utility–time distribution
of selected choices pairs (2, 7, 14, 16, and 18) in choice set 1. It highlights the dynamic utility
in time.
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1000 all the choice pairs have been selected. Table 7 shows the utilities (UiT) calculated for 
time points t = 1, 2,…, 10. Figure 5 shows the utility–time distribution of selected choices 
pairs (2, 7, 14, 16, and 18) in choice set 1. It highlights the dynamic utility in time. 

 
Figure 4. Most probable transition slots from time 𝑡 to 𝑡 + 1. 

  

Figure 4. Most probable transition slots from time t to t + 1.
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Table 6. Probability transition matrix for choice set 1; (n = 1000).

(Piss’ )=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0.574 0.217 0.123 0.086 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.131 0.583 0.161 0.085 0.040 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.197 0.217 0.498 0.052 0.017 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.236 0.217 0.127 0.329 0.050 0.029 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.204 0.327 0.140 0.288 0.017 0.017 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.148 0.158 0.093 0.497 0.012 0.038 0.053 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.187 0.111 0.045 0.548 0.046 0.063 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.021 0.017 0.034 0.780 0.054 0.037 0.057 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.044 0.021 0.044 0.820 0.047 0.024 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000 0.031 0.000 0.000 0.860 0.071 0.000 0.038 0.000 0.000 0.000 0.000 0.000 0.000 0.000
11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.145 0.000 0.000 0.800 0.055 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.122 0.000 0.000 0.808 0.069 0.000 0.000 0.000 0.000 0.000 0.000 0.000
13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.927 0.073 0.000 0.000 0.000 0.000 0.000 0.000
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.893 0.000 0.000 0.107 0.000
17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.086 0.000 0.820 0.094 0.000 0.000
18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
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Table 7. Expected utilities in time (UiT) for choice set 1.

Choice t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

1 1.2346 1.2613 1.3110 1.3983 1.5419 1.7660 2.1003 2.5814 3.2520 4.1576

2 0.9365 1.0047 1.1107 1.2680 1.4947 1.8143 2.2575 2.8627 3.6758 4.7452

3 0.8028 0.7827 0.7642 0.7572 0.7739 0.8287 0.9381 1.1201 1.3917 1.7638

4 1.2050 1.2500 1.3260 1.4446 1.6215 1.8769 2.2366 2.7325 3.4027 4.2880

5 0.5933 0.6260 0.6770 0.7530 0.8628 1.0178 1.2323 1.5241 1.9134 2.4200

6 0.9295 0.9248 0.9264 0.9418 0.9804 1.0536 1.1745 1.3574 1.6166 1.9616

7 0.9481 0.9799 1.0310 1.1087 1.2231 1.3867 1.6152 1.9276 2.3447 2.8856

8 1.0941 1.1007 1.1168 1.1484 1.2032 1.2902 1.4205 1.6063 1.8600 2.1914

9 1.1719 1.1818 1.2027 1.2404 1.3022 1.3971 1.5357 1.7300 1.9920 2.3310

10 0.7217 0.7911 0.8881 1.0144 1.1734 1.3711 1.6166 1.9242 2.3144 2.8145

11 0.3888 0.4186 0.4630 0.5224 0.5973 0.6890 0.8003 0.9358 1.1030 1.3135

12 0.1282 0.1306 0.1330 0.1335 0.1301 0.1200 0.0997 0.0648 0.0096 −0.0736

13 0.4320 0.4390 0.4430 0.4389 0.4205 0.3802 0.3089 0.1959 0.0295 −0.2022

14 0.7528 0.7431 0.7243 0.6911 0.6365 0.5516 0.4256 0.2452 −0.0044 −0.3383

15 0.3652 0.3564 0.3409 0.3160 0.2779 0.2214 0.1397 0.0234 −0.1402 −0.3686

16 1.4454 1.4596 1.4725 1.4786 1.4711 1.4417 1.3807 1.2765 1.1157 0.8841

17 0.8189 0.8620 0.9079 0.9462 0.9642 0.9469 0.8772 0.7351 0.4989 0.1469

18 1.5412 1.4548 1.3269 1.1446 0.8907 0.5427 0.0715 −0.5588 −1.3894 −2.4609

19 1.0774 1.0947 1.1169 1.1398 1.1576 1.1636 1.1492 1.1046 1.0170 0.8699

20 1.2778 1.2731 1.2608 1.2341 1.1843 1.0997 0.9652 0.7611 0.4613 0.0295
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Figure 5. Utility–Time graph for some selected BW choice pairs in choice set 1.

6. Conclusions

In general, the choices are made at different time points and are not IIA for any indi-
vidual. They depend on not only qualitative factors such as priority setting, feeling, and
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uncertainty, but also quantitative covariates such as measure of sequential selection proba-
bility in the process. By considering a specific popular model, we capture and monitor the
dependent structure and calculate the transition probability between consecutive choices
at adjacent time points. We were able to include parameters like feeling and uncertainty
to the model. This new approach to calculating transition probabilities extend the ideas
proposed by Piccolo (2003) [16] and Piccolo et al. (2019) [32]. Further, we could justify our
initial assumption of the human choice behavior of

∣∣s′i − si
∣∣ ≤ ω, that they have a greater

tendency to grab options that are close at hand or those within the nearest range rather
than picking up alternatives further away in time.

Data to quantify the BW in the DCE models are mainly found outside of academia. In
this paper, we have simulated the data. Such an issue is one limitation of the paper, but the
approach has the advantage of bringing and completing the ranking. The paper could also
gain if more covariates were given. Based on Flynn’s ‘Quality of life experiment’, we choose
value ω as 3. The accuracy of the CO-CUB model can be further improved relaxing that
constraint and by adding more latent covariates and updating knowledge of the ranking
labels of the choice pairs within the choice set. We leave such ideas for future research.
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