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Abstract: A Bass diffusion model is defined on an arbitrary network, with the additional introduction
of behavioral compartments, such that nodes can have different probabilities of receiving the
information/innovation from the source and transmitting it to other nodes. The dynamics are
described by a large system of non-linear ordinary differential equations, whose numerical solutions
can be analyzed in dependence on diffusion parameters, network parameters, and relations between
the compartments. For example, in a simple case with two compartments (Enthusiasts and Sceptics
about the innovation), we consider cases in which the “publicity” and imitation terms act differently
on the compartments, and individuals from one compartment do not imitate those of the other, thus
increasing the polarization of the system and creating sectors of the population where adoption
becomes very slow. For some categories of scale-free networks, we also investigate the dependence
on the features of the networks of the diffusion peak time and of the time at which adoptions reach
90% of the population.
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1. Introduction

The Bass diffusion model describes, through one or more differential equations, the
diffusion in a given population of a “technological innovation”, by which one means, in
marketing applications, some material item purchased by consumers, and more in general,
a definite practice or procedure spreading among individuals or communities [1–4].

There are innumerable examples of such diffusion processes that we experience every
day, both at the local or global level, and many have been discussed in the literature [5–7].
Technically, the Bass model belongs to the category of “epidemic” models [8], being a
version of the well-known SI model (Susceptible-Infected) with the addition of a source
term, called “publicity term”, which constantly generates new adoptions of the innovation
in the population.

Due to the publicity term, the initial conditions are less important in the Bass model
than in the SI model: even if a diffusion process begins with an initial fraction of adopters
equal to zero, the number of adopters will grow and saturate the entire population in
a characteristic time, which depends, in a complex way, on the parameters describing
diffusion probabilities and on the connectivity in the population. Other characteristic times
predicted by the model and measured empirically in various situations are the peak time
(the time at which the diffusion rate is the maximum) and the take-off time (when the
second derivative of the diffusion rate vanishes).

In our works [9–11], we have introduced a network version of the model, writing
its equations in the Heterogeneous Mean Field approximation [12], and then we have
computed numerical solutions for different kinds of networks, in order to investigate the
dependence of the characteristic times on the features of the networks. For example, we
discovered that for a scale-free exponent γ = 3, the smallest diffusion times are found in
Barabasi–Albert networks, followed by uncorrelated networks, and then by disassortative
and assortative networks. Our network Bass equations are recalled in Section 2.1. In the
current work, we will extend them with the motivations explained in this Introduction.
Further approaches to the network Bass model are given, for example, in Ref. [13,14].
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The sociological theory of innovation diffusion was developed in the 1970s especially
by Rogers [15], and the Bass model has since represented its “quantitative” branch, suited
for marketing applications. The basic version of the model has been improved by introducing,
for example, product generations [16,17] and optimal dynamic advertising policies for
new products [18].

In comparison to Rogers’ theory, the Bass model is more sophisticated mathematically,
but it is somewhat over-simplified concerning the different possible behavior of
innovators/consumers. Rogers identified at least four behavioral compartments: Early
Adopters, Early Majority, Late Majority, and Laggards. It is important to implement a
classification of this kind into the framework of an extended Bass model, as in fact was
accomplished in Ref. [19–21], among others.

At the same time, however, it is crucial to also consider the role played in the diffusion
process by the networks of interpersonal connections. Many empirical studies are available
on this subject, thanks also to the wealth of data collected through online social networks.
Speaking, for instance, of political choices, consider a country such as the US, which is
strongly polarized about two main parties. Social science has produced numerous analyses
of diffusion processes of ideas, opinions, slogans, impact videos, and so forth occurring
over a virtual network whose nodes belong to one of two behavioral compartments:
Democrats/Progressive vs. Republicans/Conservatives. Such processes are driven both
from centralized and official sources of opinion and information, and from the digital
word-of-mouth, thus fully in the spirit of the Bass model.

Another recent important example of polarization in a society concerning the adoption
of an innovation is the diffusion of vaccines against COVID-19 in the years 2021–2022.
Additionally, in this case, we can schematically classify individuals into those who are
favourable to or contrary to vaccination; in addition, each individual belongs to a network
of communications conveying word-of-mouth, as well as authoritative information from
government and official science sources.

In the case of COVID-19 vaccines, the practical importance of adoption times has
been evident in all affected countries, concerning both the adoption peak time (because the
vaccination capacity is limited) and the evolution in time of the total fraction of adopters.
It became clear during the pandemic that a certain target fraction of adopters (vaccinated
persons) was desired in order to reach herd immunity, or at least a reduction in the pressure
by infected patients on the health system, and that reaching the target depended on the
amount of individuals favourable or unfavourable to vaccination, and on their interpersonal
connections (or disconnection, in some cases). For a comprehensive study, see Ref. [22].

Concrete scenarios such as these give us a motivation for introducing into our model,
as a first step, just two behavioral compartments, which we call Enthusiasts and Sceptics.
Before that, in Section 2.1, we recall our formulation of the network Bass model in
heterogeneous mean field approximation without behavioral compartments. In Section 2.2,
we give a general formulation with an arbitrary number K of behavioral compartments. In
Section 3, we specialize to the case of two compartments called Enthusiasts and Sceptics,
and in Section 3.1 we introduce a feature that we call “stronger polarization”; namely, we
admit the possibility that the imitation probability is smaller when a Sceptic individual
meets an Enthusiastic adopter (leaving Sceptic–Sceptic as the main binary interaction).
The dependence of the adoption times is discussed in Section 4. Section 5 contains our
conclusions and outlook.

2. The Network Bass Model in Heterogeneous Mean Field Approximation
2.1. Model without Behavioral Compartments

In this case, already treated in Ref. [9–11], the population of potential adopters is
regarded as homogeneous, as far as adoption attitudes are concerned. The heterogeneous
element in the model (hence the name Heterogeneous Mean Field) is the connectivity. The
population is divided into n classes labeled with the lower index i, such that an individual



Stats 2023, 6 484

of class i has i connections to other individuals. In other words, each individual is a node
of a social network having degree i, and n is the maximum degree present in the network.

We recall that the fundamental equation of the original Bass model is

dF(t)
dt

= [1− F(t)][p + qF(t)], (1)

where F(t) is the cumulative fraction of adopters at time t, while p and q are, respectively,
the innovation coefficient (also called publicity coefficient) and the imitation coefficient.

In the network version, one defines normalized cumulative fractions of adopters as

Gi(t) =
Fi(t)
P(i)

, (2)

where Fi(t) is the fraction of the total population composed by elements with i links who,
at time t, have adopted the innovation, and P(i) is the probability that a randomly chosen
node of the network has degree i (degree distribution). One then obtains a system of n
coupled non-linear differential equations of the form

dGi(t)
dt

= [1− Gi(t)]

[
p + iq

n

∑
h=1

P(h|i)Gh(t)

]
, i = 1, . . . , n. (3)

Here, P(h|i) is the degree correlation matrix of the network, expressing the conditional
probability that a node of degree i is connected to one of degree h.

This formulation of the dynamics of the system through a probabilistic self-coupling
is typical of mean-field approaches to epidemic models [12]. In these approaches, one
usually disregards higher-order correlations which are present, in principle, in formulations
via master equations [3], if higher-order closure relations are introduced and the entire
adjacency matrix is known.

2.2. General Case with K Compartments

In this case, we suppose that the population is divided, in addition to n connectivity
classes, also into K behavioral compartments denoted with an upper index (j). We thus
write the cumulative adopter fraction at time t as F(j)

i (t). We further suppose that the
degree distribution does not depend on the behavioral compartment, and is given for a
scale-free network by

P(j)(i) = η(j)cγi−γ, (4)

where γ is the scale-free exponent and cγ is the corresponding normalization constant,
such that ∑n

i=1 i−γ = c−1
γ . The constant positive numbers η(j), j = 1, . . . , K represent the

fractions of the population belonging to the various behavioral classes, and satisfy the
condition

K

∑
j=1

η(j) = 1. (5)

Defining, in a similar way as we did in the previous section,

G(j)
i (t) =

F(j)
i (t)

P(j)(i)
, (6)

we obtain the n× K equations

dG(j)
i (t)
dt

= [1− G(j)
i (t)]

p(j) + iq(j)
n

∑
h=1

P(h|i)
K

∑
j=1

η(j)G(j)
h (t)

, i = 1, . . . , n; j = 1, . . . , K. (7)
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Note that the innovation coefficients p(j) and the imitation coefficients q(j) depend on
the behavioral class.

In the following section (Section 3), we shall consider, for simplicity, a case with only
two behavioral classes. The general definitions given in this subsection will be repeated and
the notation slightly changed in order to adapt to that binary case. Starting from Section 3.1,
however, we shall introduce in the binary model a further variation, which has not been
considered in the general formalism of this section. Namely, we shall admit the possibility
that the imitation coefficient depends on both the compartments to which two meeting
individuals belong.

3. Network Bass Equations with Two Behavioral Compartments

We suppose that, in the population, there is a certain fraction η of Enthusiasts (E)
and a fraction (1− η) of Sceptics (S), but the degree distribution has the same form for
both, namely,

PE(k) = ηcγk−γ (8)

PS(k) = (1− η)cγk−γ. (9)

This is like saying that in a scale-free network with degree distribution cγk−γ, we
choose at random a fraction η of enthusiast nodes, and a fraction (1− η) of sceptic nodes.

Usually, one defines Gi(t) = Fi(t)/P(i), where Fi(t) is the fraction of adopters at time t.
Similarly, we define here

Ei(t) = Êi(t)/PE(i) (10)

Si(t) = Ŝi(t)/PS(i), (11)

where Êi(t) is the fraction of enthusiasts who have adopted at time t and, analogously,
for Ŝi(t).

Let us write the evolution equations as follows:

Ėi = (1− Ei)

[
pE + iqE

n

∑
k=1

P(k|i)(ηEk + (1− η)Sk)

]
(12)

Ṡi = (1− Si)

[
pS + iqS

n

∑
k=1

P(k|i)(ηEk + (1− η)Sk)

]
. (13)

Note that the coefficient q is different for E and S (and also p), but we suppose that
when one encounters an adopter, the imitation probability does not depend on whether
the adopter is E or S; for this reason, the two densities are simply summed in the imitation
term. Their sum (ηEk + (1− η)Sk) can also be thought of as obtained from the weighted
average of the fractions of E and S effectively present. Taking into account the degree
distribution, one namely has

PE(k)Ek + PS(k)Sk
PE(k) + PS(k)

= ηEk + (1− η)Sk. (14)

Another important underlying assumption is that the correlations P(k|i) in the network
depend only on the nodes’ degrees and not on their property of being E or S (in other
words, the network is pre-existent or independent with respect to the subdivision between
Enthusiasts and Sceptics).

3.1. Simulating Stronger Polarization

We also want to consider a modification of the Equations (12) and (13) in which
one supposes, more realistically, that the imitation probability is smaller when a Sceptic
individual meets an Enthusiastic adopter. To this end, we multiply Ek in Equation (13) by a
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further factor χ ∈ [0, 1], such that in the limit χ = 1 we return to the previous model, while
in the limit χ = 0 a Sceptic can only be convinced to adopt by an encounter with another
Sceptic, who has already adopted. We call χ the factor of “strong polarization”, because if
χ < 1, the polarization already present in the population is reinforced.

Figures 1–5 show examples of the graphs of the adoption rate as a function of time
in a case in which η = 0.5, that is, one half the population consists of Enthusiasts (orange
curve), and one half of Sceptics (blue curve). The publicity and imitation coefficients p and
q have been set to values of a magnitude typical for the Bass model, but such that they
are definitely larger for E than for S. Therefore, for Enthusiasts, both the probability of
adoption due to external publicity and the probability of imitating an adopting individual
are higher than for Sceptics. (One can also determine for which of the two probabilities the
difference is more important.)

Figure 1. Example of adoption curves for Enthusiasts and Sceptics when they each make up half
of the population (η = 0.5) and their publicity and imitation coefficients p and q are different, as
displayed in the legend. The network is scale-free with exponent γ = 2.5, maximum degree n = 50,
and uncorrelated (r = 0). There is no strong polarization (χ = 1; compare Figure 2).

Figure 2. Same as in Figure 1, but with strong polarization (χ = 0.2, meaning that the probability
that a Sceptic imitates an Enthusiast is reduced by 80%). This clearly has the effect of further delaying
adoption for Sceptics.
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Figure 3. Adoption rate as a function of time with a moderately assortative network having r = 0.25.
(Left) No polarization (χ = 1); (Right) strong polarization (χ = 0.2). Compare Figures 1 and 2 and
see their captions for more details.

Figure 4. Adoption rate as a function of time with a strongly assortative network having r = 0.5.
(Left) No polarization (χ = 1); (Right) strong polarization (χ = 0.2). Compare Figures 1 and 2 and
see their captions for more details.

Figure 5. Adoption rate as a function of time with a Barabasi–Albert network having β = 1 (each
new node is attached to one parent node in the growth of the network by preferential attachment).
(Left) No polarization (χ = 1); (Right) strong polarization (χ = 0.2). Compare Figures 1 and 2 and
see their captions for more details.

As one can expect, the peak of adoptions is reached earlier by E than by S; for E it is
also higher, and after the peak, the adoption rate decreases faster. Note that the integral of
the two adoption curves is the same, because it gives the amount of total adoptions, which
at the end, corresponds to half the total population both for E and S, in these examples.

In the graphs, the adoption rate is summed over all nodes of the network. It would
be possible to display the adoption rates fi(t) of each set of nodes of degree i. In that case,
one would see, as shown and discussed in our previous work, that nodes of higher degree
are adopted earlier (their peak time is smaller), essentially due to the effect of the imitation
term.

In order to assess the influence of the network on the total adoption rate, it is
possible to change the maximum degree n (connected to the size N of the network by
the Dorogotsev–Mendez relation (γ− 1)nγ−1 = cγN). One can also change the scale-free
exponent γ in the interval [2,3]. Both n and γ, however, appear to have little influence upon
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the curve of the adoption rate. In all figures, we have taken n = 50, corresponding to a
system of 50 coupled non-linear equations, and γ = 2.5.

The effect of degree correlations in the network is more evident. Figures 1 and 2 show
the curves of the adoption rate for an uncorrelated network, while Figure 3 shows the
case of a moderately assortative network (r = 0.25), and Figure 4 shows that of a strongly
assortative network (r = 0.5), obtained using the degree correlation matrix by Vazquez:

PVaz(h|k) = (1− r)
h
〈k〉 + rδhk, (15)

where r is the Newman assortativity coefficient. Here, 0 ≤ r ≤ 1 and 〈k〉 denotes the
average node degree computed over all networks. The degree correlation matrix gives the
conditional probability that a randomly chosen node of the network having degree k is
connected to a node of degree h.

The graphs show that when the network assortativity increases, both the E andS
curves become more steep on the left of the adoption peak. Using an improved version of
the solution code which automatically computes and plots the peak time tmax and the time
t90, one can also observe the dependence of these times on the assortativity coefficient r.

The time t90 (see Section 4 for more details) is defined as the time when 90% of the
individuals have adopted. It can, of course, be computed for each subset of the population,
but here we consider this time as referring to the entire population (the same holds for
tmax).

We have not computed numerical solutions for disassortative networks, for which no
simple recipes such as the PVaz matrix exist, but it is possible to define the correlations using
other methods [10]. Disassortative networks are not very interesting in the present context,
because social networks are generally assortative. We recall that, in assortative networks,
nodes tend to be more connected to nodes of similar degree, while the opposite occurs in
disassortative networks. Instead, we have considered the case of Barabasi–Albert networks,
whose P(h|k) matrix has recently been given in the general case (for any β—see below)
by Fotouhi and Rabbat [23]. As shown in Ref. [10], although the Newman assortativity
coefficient r of Barabasi–Albert networks is very close to zero, these networks are actually
disassortative for nodes of small degree, and slightly assortative for nodes of high degree,
in the sense that their knn function knn = ∑n

h=1 hP(h|k) (average nearest-neighbor degree)
is decreasing at small k and slightly increasing at large k. For simplicity, we have limited
ourselves here to the case β = 1 (in which in the growth of the network, by preferential
attachment, each new node is attached to only one parent node). In this case, the degree
distribution and the correlation matrix are written in the limit n→ ∞, as

P(k) =
4

k(k + 1)(k + 2)
(16)

and

P(h|k) = k + 2
kh(h + 1)

− 6(k + 2)(k + 1)
(k + h + 2)(k + h + 1)(k + h)(k + h− 1)

. (17)

For finite n, these expressions must be normalized in order to satisfy the conditions

n

∑
k=1

P(k) = 1;
n

∑
h=1

P(h|k) = 1 ∀k. (18)

The Bass diffusion curves obtained with this degree distribution and correlation matrix
are shown in Figure 5 (with the same parameters n, p, q, η, χ used for uncorrelated and
assortative networks; note that Barabasi–Albert networks have thevscale-free exponent
γ = 3 and not γ = 2.5, but this does not appear to have any effect here). The difference
with respect to the uncorrelated case is very small, or in any case, much smaller than the
effect of polarization.
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4. Dependence of the Adoption Times on Polarization

The peak time tmax is defined, as we have seen, as the time at which the curve of the
total adoption rate attains its maximum. Another useful characteristic time is the time “t90”,
defined as the time at which the total adoptions reach 90% of the population (the 90% figure
being a conventional threshold which clearly can be modified). We recall that the integral
function of the adoption rate f (t) is a typical S-shaped curve giving the total number of
adopters as a function of time, distinguishing, in the present case, between Enthusiasts and
Sceptics. Especially for certain applications, such as, for example, vaccination campaigns, it
is important to know when this quantity reaches a certain threshold value.

By implementing a cycle of repeated numerical solutions with increasing values of η,
we can check how the fraction η of Enthusiasts (or correspondingly the fraction (1− η)
of Sceptics) influences the times tmax and t90. Qualitatively, one expects that both times
decrease with η, and this is confirmed numerically (see Figures 6 and 7). There is an
anomaly, however, in the presence of strong polarization. As seen, for example, in the
third graph of Figure 6, with a polarization χ = 0.25, the time t90 increases slightly at small
η, and then it reaches a maximum and decreases when η → 1. This happens because,
with this value of polarization, an S-individual imitates an E-individual with a probability
reduced by 75%. It follows that a population composed almost exclusively of Sceptics can
paradoxically reach the 90% adoption level earlier than a population including approx. 1/3
of Enthusiasts.

Figure 6. Dependence of the adoption times tmax and t90 on the fraction η of Enthusiasts in the
population. Uncorrelated network, maximum degree n = 50, scale-free exponent γ = 2.5; increasing
polarization in the three graphs.
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Figure 7. Dependence of the adoption times tmax and t90 on the fraction η of Enthusiasts in the
population. Strongly assortative network (r = 0.5), maximum degree n = 50, scale-free exponent
γ = 2.5; increasing polarization in the three graphs.

5. Conclusions

Models of diffusion processes on networks consisting of coupled nonlinear equations
in the mean-field approximation approach their technical limits when one also introduces,
besides n connectivity classes, a considerable number K of behavioral classes.

In this work, after giving the general formulation of the equations, we thus focused our
attention on the case K = 2 and qualitatively analysed its phenomenology.

Already in the simplest case, when half the population consists of Enthusiasts and the
other half of Sceptics and the network is uncorrelated, one notices a clear difference in the
adoption curves of the two compartments: the peak of adoptions is reached earlier by E
than by S, where for E the peak is higher, and after the peak the adoption rate decreases
faster. Both these effects are considerably enhanced by the presence of strong polarization
(when S individuals imitate, almost exclusively, other S individuals). The size of the
network and the scale-free exponent appear to have little influence on the adoption curves.
The effect of degree correlations is more pronounced: for assortative networks, the adoption
peaks are approached more quickly in both the E andS compartments.

It should be stressed that the numerical integration of the equations is fast, thanks
to the smooth character of the solutions, which allows the use of a second-order Euler
algorithm (see Appendix A). We can thus expect that integration will also be reasonably fast
with a larger number of behavioral compartments and with larger networks (for example,
having a maximum node degree of n = 100 or n = 200). What becomes more difficult in
the presence of many behavioral compartments is the interpretation of the results. For this
purpose, machine learning methods could be employed in future work.

Clearly, even the introduction of many compartments does not allow to capture the
entire complexity of a diffusion process, and agent-based simulations have also been
employed in the literature (see, for example, Ref. [4]). Nevertheless, methods based on
diffusion equations represent a useful benchmark for agent-based simulations as well.

As a further example of possible specialization of our differential equations, we
considered the occurrence of strong opinion polarization in a population, such that individuals
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in a certain compartment almost exclusively imitate those from the same compartment. A
different possibility, not considered in this work, is to define a model in which the degree
distribution of the nodes of the underlying network is different in different compartments.
In that case, Equations (12) and (13) are not valid and should be properly generalized.
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Appendix A. Python Code for Integration of the Equation System

#### INTEGRATION OF NETWORK BASS EQUATION WITH 2 COMPARTMENTS

from numpy import zeros
import matplotlib.pyplot as plt

eta=0.75
n=20 ## network max degree (corresp. to nr. of equations)
m=n+1
gamma=2.5 ## scale-free exponent
N=200 ## integration steps
dt=40/N ## 40: integration time interval
pE=0.03 ## publicity coefficient for enthusiasts
pS=0.01 ## publicity coefficient for sceptics

P=zeros(m,float)

## Definition of degree distribution
for k in range(1,m):
P[k]=1.0/k**gamma

## Normalization of degree distr.
norm=0
for k in range(1,m):
norm+=P[k]

P=P/norm

## calc. of <k>, used to renormalize the q coefficient
km=0
for k in range(1,m):
km+=k*P[k]

qE=0.35/km ## imitation coefficient for enthusiasts
qS=0.15/km ## imitation coefficient for sceptics
polariz=1 ## chi coefficient of polarization; chi=1 no polariz.

PP=zeros([m,m],float)

## definition of correlation matrix
for h in range(1,m):
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for k in range(1,m):
PP[h,k]=h*P[h]/km ## uncorrelated matrix

## Definitions of various variable vectors
E=zeros([m],float) ## E relative population
S=zeros([m],float) ## S relative population
somma_E1=zeros([m],float) ## correlation sum for E in variation 1
somma_E2=zeros([m],float) ## correlation sum for E in variation 2
somma_S1=zeros([m],float) ## correlation sum for S in variation 1
somma_S2=zeros([m],float) ## correlation sum for S in variation 2
e1=zeros([m],float) ## variation 1 of E
e2=zeros([m],float) ## variation 2 of E
e=zeros([m],float) ## variation of E
s1=zeros([m],float) ## variation 1 of S
s2=zeros([m],float) ## variation 2 of S
s=zeros([m],float) ## variation of S
ee=zeros([m],float) ## derivative of E mult. by P
ss=zeros([m],float) ## derivative of S mult. by P
X=zeros([N+1],float)
Y=zeros([N+1],float)
Z=zeros([N+1],float)

## Start of integration cycle, with counter k
for k in range(0,N+1):

t=k*dt

## calculation of Euler variation 1 and 2 of the correlation terms
for i in range(1,m):
somma_E1[i]=0
somma_E2[i]=0
somma_S1[i]=0
somma_S2[i]=0

for i in range(1,m):
for j in range(1,m):
somma_E1[i]+=PP[j,i]*(eta*E[j]+(1-eta)*S[j])
somma_S1[i]+=PP[j,i]*(eta*polariz*E[j]+(1-eta)*S[j])
e1[i]=dt*(1-E[i])*(pE+qE*i*somma_E1[i])
s1[i]=dt*(1-S[i])*(pS+qS*i*somma_S1[i])

for i in range(1,m):
for j in range(1,m):
somma_E2[i]+=PP[j,i]*(eta*(E[j]+e1[j])+(1-eta)*(S[j]+s1[j]))
somma_S2[i]+=PP[j,i]*(eta*polariz*(E[j]+e1[j])+(1-eta)
*(S[j]+s1[j]))
e2[i]=dt*(1-(E[i]+e1[i]))*(pE+qE*i*somma_E2[i])
s2[i]=dt*(1-(S[i]+s1[i]))*(pS+qS*i*somma_S2[i])

## variations for the total population (sum over node degrees)
ee_tot=0
ss_tot=0
E_tot=0
S_tot=0
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for i in range(1,m):
e[i]=(e1[i]+e2[i])/2
s[i]=(s1[i]+s2[i])/2
E[i]+=e[i]
S[i]+=s[i]
ee[i]=e[i]*P[i]*eta/dt
ss[i]=s[i]*P[i]*(1-eta)/dt
ee_tot+=ee[i]
ss_tot+=ss[i]
E_tot+=E[i]*P[i]*eta
S_tot+=S[i]*P[i]*(1-eta)

X[k]=k
Y[k]=ee_tot
Z[k]=ss_tot

line1, = plt.plot(X,Z)
line2, = plt.plot(X,Y)
plt.show()
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