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Abstract: Point prediction of future record values based on sequences of previous lower or upper
records is considered by means of the method of maximum product of spacings, where the underlying
distribution is assumed to be a power function distribution and a Pareto distribution, respectively.
Moreover, exact and approximate prediction intervals are discussed and compared with regard to
their expected lengths and their percentages of coverage. The focus is on deriving explicit expressions
in the point and interval prediction procedures. Predictions and forecasts are of interest, e.g., in
sports analytics, which is gaining more and more attention in several sports disciplines. Previous
works on forecasting athletic records have mainly been based on extreme value theory. The presented
statistical prediction methods are exemplarily applied to data from various disciplines of athletics as
well as to data from American football based on fantasy football points according to the points per
reception scoring scheme. The results are discussed along with basic assumptions and the choice of
underlying distributions.

Keywords: point and interval prediction; power function distribution; Pareto distribution; athletics;
American football

1. Introduction

The consideration, collection and importance of data and their analysis is gaining more
and more attention in many different fields—as it does in several sports disciplines. For
example, in US sports such as baseball, basketball and American football, data regarding
many aspects of a game, team or player have been recorded for many years. This trend can
be observed in other areas of sports such as athletics, as well. Thus, statistical methods and
analysis have become a topic of growing interest, and an interesting part in sports analysis
are predictions and forecasts.

Among many other authors and articles on statistical methodology in sports, we
refer to some of them. Based on results for order statistics and record values, Noubary [1]
proposed methods to forecast athletic records. Several authors applied extreme value theory.
In Einmahl and Magnus [2], the authors examined and compared world records in athletics
based on extreme value theory, and they forecast the ultimate record in a specific discipline.
By this, they initiated a series of subsequent works in this area. Noubary [3] was concerned
with athletic records and calculated the probabilities of future best performances based on
tail estimation in extreme value theory. Einmahl and Smeets [4] estimated ultimate world
records for the 100 m running of women and men. Henriques-Rodrigues et al. [5] focused
on the semiparametric estimation of the extreme value index and of the right endpoint of
the underlying distribution in case it was finite. The ultimate record in men’s long jump
was examined in Fraga Alves et al. [6]. Annual best times were used in Stephenson and
Tawn [7] to fit a model based on extreme value distributions to come up with extrapolated
values which served as predicted records. Adam and Tawn [8] considered annual records
in athletics and swimming disciplines and fitted the parameters of the generalized extreme
value distribution as underlying distribution.
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A variety of other approaches for data from, e.g., baseball, football and athletics, can
be found in the literature. As examples, we refer to Albert et al. [9] and Wunderlich and
Memmert [10].

In contrast to forecasting procedures via extreme value theory in the sense of a long-
term prediction by determining an extreme value distribution, the focus of our approach is
on statistical prediction of the next record or records by means of previous record values in
a particular sports discipline. We first repeat properties of upper and lower record values
while focusing on lower records. We use the maximum product of spacings prediction
procedure to derive a point predictor of the next record value based on previous ones, which
are usually recorded. In the statistical model, we assume the lower/upper record values
to be based on a sequence of independent and identically distributed random variables
having a power function distribution/Pareto distribution due to our focus on explicit
statistical prediction methods. Then, we derive some exact and approximate prediction
intervals. We compare these intervals with regard to their expected lengths, and we analyze
their percentages of coverage in a simulation study. We apply our results to real data from
women’s 100 m and various other disciplines of athletics as well as to American football
data by considering the evaluation of players by assigning so-called fantasy football points
to players’ actions. Moreover, we discuss the distributional assumptions.

2. Prediction of Record Values

We first recall some basic properties of record values. For details, we refer to the
monograph of Arnold et al. [11].

Let (Xi)i∈N be a sequence of independent and identically distributed (iid) random
variables with absolutely continuous cumulative distribution function (cdf) F and probability
density function (pdf) f . Here, N denotes the set of positive integers. The random variables

Tu(1) = 1 and Tu(n + 1) = min{j > Tu(n) : Xj > XTu(n)}, n ∈ N,

are called upper record times. The random variables Rn = XTu(n), n ∈ N, are then called
upper record values. Analogously, the lower record times

Tl(1) = 1 and Tl(n + 1) = min{j > Tl(n) : Xj < XTl(n)}, n ∈ N,

are used to define the sequence of lower record values Ln = XTl(n), n ∈ N. The joint
densities for the first r ∈ N upper and lower record values R? = (R1, . . . , Rr) and
L? = (L1, . . . , Lr) are given by

fR?(x1, . . . , xr) = f (xr)
r−1

∏
i=1

f (xi)

1− F(xi)
(1)

where −∞ < x1 < x2 < · · · < xr < ∞ and

fL?(x1, . . . , xr) = f (xr)
r−1

∏
i=1

f (xi)

F(xi)
(2)

where ∞ > x1 > x2 > · · · > xr > −∞, respectively.
It is well known that, in distribution, the upper record values R1, . . . , Rr as well as

the lower record values L1, . . . , Lr can be simultaneously expressed by independent and
identically standard exponentially distributed random variables Z1, . . . , Zr via

(R1, . . . , Rr)
d
=

(
F−1

(
1− exp

(
−

j

∑
i=1

Zi

)))
1≤j≤r

,

(L1, . . . , Lr)
d
=

(
F−1

(
exp

(
−

j

∑
i=1

Zi

)))
1≤j≤r

,

(3)



Stats 2023, 6 133

where d
= denotes equality in distribution (see Arnold et al. [11]).

Aiming at deriving explicit statistical procedures, we choose power function dis-
tributions in case of lower records and Pareto distributions in case of upper records as
underlying distributions; both families of distributions turn out to have a good fit to various
data sets in sports. For parameters λ > 0 and β > 0, the cdf and pdf of the power function
distribution Pow(λ, β) are given by

Fλ,β(x) =
( x

λ

)β
and fλ,β(x) =

βxβ−1

λβ
, x ∈ (0, λ), (4)

and, for parameters µ > 0 and γ > 0, the cdf and pdf of the Pareto distribution Par(µ, γ)
are given by

Fµ,γ(x) = 1−
(µ

x

)γ
and fµ,γ(x) =

γµγ

xγ+1 , x ∈ (µ, ∞). (5)

In the sequel, we assume the parameters β and γ to be unknown and the (threshold)
parameters λ and µ to be fixed.

There is a close relationship between power function and Pareto distributions, namely,
if Y ∼ Par(µ, γ) holds then Y−1 ∼ Pow(λ, β) follows, where λ = 1

µ and β = γ. Because
of this relationship, we get consistent results for running (looking for minimum times),
throwing and jumping events in athletics (looking for maximum lengths, widths and
heights) without transforming times in velocities, as, e.g., in Einmahl and Magnus [2].

2.1. Point Prediction

We consider point prediction of future record values based on previous records in a
sequence of iid random variables. Among others, Kaminsky and Rhodin [12] presented
the maximum likelihood predictor (MLP) and Volovskiy and Kamps [13] introduced the
maximum observed likelihood prediction (MOLP). Based on a Pareto distribution, the MLP
and MOLP for upper record values were shown in Volovskiy and Kamps [14]. However,
both methods share the disadvantage that neither the next upper nor the next lower record
value can be predicted reasonably, since the methods lead to the last record as predictor of the
next one. Raqab et al. [15] derived the MLP and the so-called conditional median predictor.
Moreover, there are some Bayesian results for estimation and prediction in the upper record
Pareto setting in Ahmadi and Doostparast [16], Madi and Raqab [17] and Raqab et al. [15].
For further references, we refer to Volovskiy and Kamps [13] and Volovskiy and Kamps [14].

We applied the maximum product of spacings prediction (MPSP) procedure for lower
record values along the lines of Volovskiy and Kamps [14] for upper record values. The idea
underlying the MPSP method is to apply a transformation to the sequence L? = (L1, . . . , Ls)
of observed records L1, . . . , Lr, r < s as well as the yet-to-be-observed record values
up to Ls, such that the transformed random variables are distributed as order statistics
U1:s−1, . . . , Us−1:s−1 from an iid sample of s − 1 uniform random variables. Then, by
considering the spacings of the observed data after applying the transformation, the
MPSP method chooses the prediction value π

(s)
MPSP for the record value Ls that renders the

observed data as uniform as possible according to some measure of uniformity. For a related
estimation method in parametric inference utilizing the probability integral transform, we
refer to Cheng and Amin [18] and Ranneby [19].

In what follows, we assume that the observed record values are from a sequence
of iid random variables with continuous cdf Fθ , which may depend on an unknown
parameter θ ∈ Θ, where Θ denotes the set of parameters. Let Gθ denote the function
Gθ(x) = − ln(Fθ(x)), x ∈ R. Then, Equation (3) reveals that

Gθ(Li)
d
= R̃i, i ∈ N, (6)
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where (R̃i)
∞
i=1 is the sequence of upper record values in an iid sequence of standard

exponential random variables. Reasoning as in Volovskiy and Kamps [14], we conclude that

Gθ(Li)

Gθ(Ls)
d
= Ui:(s−1), i = 1, . . . , s− 1. (7)

As mentioned above, the prediction of the sth record is assumed to be based on
observations of the record values L1, . . . , Lr. Since the expected values of the order statistics
U1:s−1, . . . , Us−1:s−1 are equidistantly arranged in the interval (0, 1), Equation (7) motivates
the following inferential procedure for the future realization of Ls: using the notational
convention that, for an interval I ⊆ R and n ∈ N, In

< = {(x1, . . . , xn) ∈ In | x1 < x2 < . . . <
xn}, for n ∈ N, we define

Zn = {(θ, x1, . . . , xn) ∈ Θ×Rn
<| (x1, . . . , xn) ∈ (α(Fθ), ω(Fθ))

n
<}

and

Pn(θ, x1, . . . , xn) =
n

∏
i=1

(
Gθ(xi)

Gθ(xn)
− Gθ(xi−1)

Gθ(xn)

)
, (θ, x1, . . . , xn) ∈ Zn,

and we call any function x̂? = (x̂r+1, . . . , x̂s) : Rr
< → Rs−r

< a maximum product of spacings
predictor of Ls if, for a suitable function θ̂ : Rr

< → Θ, we have that x̂? and θ̂ maximize Ps,
i.e., for any θ ∈ Θ,

(θ̂(x?), x?, x̂?(x?)) ∈ Zs, x? ∈ (α(Fθ), ω(Fθ))
r
<

and
Ps(θ̂(x?), x?, x̂(x?)) = max

θ∈Θ, x?∈Rs−r
< :

(θ,x? ,x?)∈Zs

Ps(θ, x?, x?), x? ∈ (α(Fθ), ω(Fθ))
r
<,

where α(Fθ) and ω(Fθ) denote the left and right endpoint of Fθ , respectively. Note that
the maximization of Ps with respect to θ is necessary since θ is considered to be unknown.
However, given that in the present situation our focus is exclusively on predictive inference,
the main object of interest is the point predictor given by the function π

(s)
MPSP = x̂?. By

actually carrying out the above maximization, one obtains that the MPSP of Ls takes
the form

π
(s)
MPSP(L?) = F−1

θ̂(L?)

(
Fθ̂(L?)

(Lr)
s
r

)
, s > r (8)

where the function θ̂ is such that, for any θ ∈ Θ,

(θ̂(x?), x?) ∈ Zr, x? ∈ (α(Fθ), ω(Fθ))
r
<

and
Pr(θ̂(x?), x?) = max

θ∈Θ:
(θ,x?)∈Zr

Pr(θ, x?), x? ∈ (α(Fθ), ω(Fθ))
r
<.

The proof of Equation (8) proceeds along the same lines as the proof of (Volovskiy
and Kamps [14], Theorem 2.3). The maximum product of spacings prediction procedure is
applied to the problem of sports records prediction in Section 3.

In the particular situation of an underlying power function distribution as in Equation (4),
one easily sees that, for any sequence of observed lower record values x? ∈ (0, λ)r

<, the
objective function β 7→ Pr(β, x?) is independent of the shape parameter β, since the ratio
in Equation (7) is

Gθ(Li)

Gθ(Ls)
=

ln(Li)− ln(λ)
ln(Ls)− ln(λ)

, i = 1, . . . , s− 1.
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Consequently, according to Formula (8), the MPSP of Ls is given by

π
(s)
MPSP(L?) = λ

(
Lr

λ

) s
r
.

The MPSP is based on the ratios of Gθ evaluated for certain arguments. Hence, in the
power function situation, the shape parameter β drops out.

Analogously, the MPSP of the sth upper record value in a Pareto distributed sequence
of random variables is given by

π
(s)
MPSP(R?) = µ

(
Rr

µ

) s
r
.

It should be noted that the threshold parameters λ and µ are supposed to be known.

2.2. Interval Prediction

There are only a few articles in the literature dealing with prediction and prediction
intervals for lower record values. In one of them, Wang et al. [20] discussed estimation and
prediction in a lower record setting with a baseline cdf Fλ,α(x) = (Dλ(x))α for x > 0 with
parameters λ, α > 0 from the proportional reversed hazard family, where Dλ is a cdf itself
depending only on the parameter λ.

Prediction intervals for upper record values have been studied in several articles.
For example, Awad and Raqab [21] compared different intervals for records based on an
exponential distribution. Asgharzadeh et al. [22] and Raqab et al. [15] introduced some
intervals for upper record values from Pareto distributions. The intervals for lower record
values proposed in this section are similar to those in the aforementioned articles and are
applied to sports data in Section 3.

2.2.1. Lower Record Values from Power Function Distributions

According to Equation (2), the density of the first r lower record values is

fL?(x | λ, β) =
βr

λβ
xβ−1

r

r−1

∏
i=1

1
xi

. (9)

From the log-likelihood function

l(β | x, λ) = r ln(β)− β ln(λ) + (β− 1) ln(xr)−
r−1

∑
i=1

ln(xi),

we obtain the maximum likelihood estimator

β̂ML =
r

ln(λ)− ln(Lr)

of β, which is required in the sequel.
In order to derive some prediction intervals for future lower record values, we examine

the statistic

T1 =
ln(Ls)− ln(Lr)

ln(Lr)− ln(L1)
.

By using Equation (3), one gets

T1
d
=

ln(λ)− 1
β ∑s

i=1 Zi − ln(λ) + 1
β ∑r

i=1 Zi

ln(λ)− 1
β ∑r

i=1 Zi − ln(λ) + 1
β Z1

=
∑s

i=r+1 Zi

∑r
i=2 Zi

.
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Since the Zi are standard exponential random variables, the sums in the numerator and
denominator follow a gamma distribution. Furthermore, the sums in the latter expression
are independent, and, after scaling, we find

r− 1
s− r

T1 =
r− 1
s− r

ln(Ls)− ln(Lr)

ln(Lr)− ln(L1)
∼ F(2(s− r), 2(r− 1)),

where F(·, ·) denotes an F-distribution with respective degrees of freedom. Now, we can
compute a (1− α)-prediction interval for the sth lower record value by using F-quantiles,
namely

I1 =

[
Lr exp

(
s− r
r− 1

(ln(Lr)− ln(L1))F1− α
2
(2(s− r), 2(r− 1))

)
,

Lr exp
(

s− r
r− 1

(ln(Lr)− ln(L1))Fα
2
(2(s− r), 2(r− 1))

)]
,

where α ∈ (0, 1). Next, we consider

T2 =
ln(Ls)− ln(Lr)

ln(Lr)− ln(λ)
d
=

∑s
i=r+1 Zi

∑r
i=1 Zi

.

Thus, we find
r

s− r
ln(Ls)− ln(Lr)

ln(Lr)− ln(λ)
∼ F(2(s− r), 2r).

Hence, a (1− α)-prediction interval is given by

I2 =

[
Lr exp

(
s− r

r
(ln(Lr)− ln(λ))F1− α

2
(2(s− r), 2r)

)
,

Lr exp
(

s− r
r

(ln(Lr)− ln(λ))Fα
2
(2(s− r), 2r)

)]
.

A generalized version of the statistic T2 is used in Wang et al. [20] in a setting with
unknown parameter λ. For a known parameter λ, prediction interval I2 will be applied
instead of I1.

In addition to those exact intervals, we study some approximate (1− α)-prediction
intervals based on statistics similar to T1 and T2, starting with T3 = ln(Lr) − ln(Ls). It
follows that

2βT3
d
= 2β

1
β

s

∑
i=r+1

Zi ∼ χ2(2(s− r)),

where χ2(·) denotes a χ2-distribution with respective degrees of freedom. Plugging in
β̂ML = r/(ln(λ)− ln(Lr)) for β leads to the approximate (1− α)-prediction interval

I3 =

[
Lr exp

(
ln(Lr)− ln(λ)

2r
χ2

1− α
2
(2(s− r))

)
, Lr exp

(
ln(Lr)− ln(λ)

2r
χ2

α
2
(2(s− r))

)]
,

containing χ2-quantiles. Furthermore, we consider the statistic T4 = ln(λ)− ln(Ls). From
Equation (3), one gets

2βT4
d
= 2

s

∑
i=1

Zi ∼ χ2(2s)

and plugging in β̂ML, leads to

I4 =

[
λ exp

(
ln(Lr)− ln(λ)

2r
χ2

1− α
2
(2s)

)
, λ exp

(
ln(Lr)− ln(λ)

2r
χ2

α
2
(2s)

)]
,

as an approximate (1− α)-prediction interval.
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The prediction intervals I1, . . . , I4 are compared via the expected length and coverage
percentage in a simulation study below.

2.2.2. Upper Record Values from Pareto Distributions

The corresponding prediction intervals for upper record values based on Pareto
distributed random variables can be obtained analogously and are given by

I′1 =

[
Rr exp

(
s− r
r− 1

(ln(Rr)− ln(R1))Fα
2
(2(s− r), 2(r− 1))

)
,

Rr exp
(

s− r
r− 1

(ln(Rr)− ln(R1))F1− α
2
(2(s− r), 2(r− 1))

)]
I′2 =

[
Rr exp

(
s− r

r
(ln(Rr)− ln(µ))Fα

2
(2(s− r), 2r)

)
,

Rr exp
(

s− r
r

(ln(Rr)− ln(µ))F1− α
2
(2(s− r), 2r)

)]
I′3 =

[
Rr exp

(
ln(Rr)− ln(µ)

2r
χ2

α
2
(2(s− r))

)
, Rr exp

(
ln(Rr)− ln(µ)

2r
χ2

1− α
2
(2(s− r))

)]
I′4 =

[
µ exp

(
ln(Rr)− ln(µ)

2r
χ2

α
2
(2s)

)
, µ exp

(
ln(Rr)− ln(µ)

2r
χ2

1− α
2
(2s)

)]
.

I′1 was introduced in Asgharzadeh et al. [22]. I′2 and I′4 can be derived from the correspond-
ing intervals in Awad and Raqab [21] via an analogous formulation of the transformation
in Equation (6) for upper record values. Raqab et al. [15] proposed I′3.

2.2.3. Expected Lengths of Prediction Intervals

For the expected lengths li = E(b̂i(L?) − âi(L?)) of the prediction intervals
Ii = [âi(L?), b̂i(L?)], i = 1, . . . , 4, for future lower record values, the following expres-
sions can be derived.

According to Equation (3), the expectation of the upper bound of I1 is given by

E
(

Lr exp
(

s− r
r− 1

(ln(Lr)− ln(L1))Fα
2
(2(s− r), 2(r− 1))

))
= E

(
exp

(
ln(Lr) +

s− r
r− 1

Fα
2
(2(s− r), 2(r− 1))(ln(Lr)− ln(L1))

))
= E

(
exp

(
ln(λ)− 1

β

r

∑
i=1

Zi +
s− r
r− 1

Fα
2
(2(s− r), 2(r− 1))

(
− 1

β

r

∑
i=1

Zi +
1
β

Z1

)))

= λE
(

exp
(
− 1

β
Z1

)) r

∏
i=2

E
(

exp
(

1
β

(
−1− s− r

r− 1
Fα

2
(2(s− r), 2(r− 1))

)
Zi

))

= λ
1

1 + 1
β

 1

1 +
(

1 + s−r
r−1 Fα

2
(2(s− r), 2(r− 1))

)
1
β

r−1

.

In the last step, it was used that the moment-generating function of a standard expo-
nential random variable Z takes the form E(exp(tZ)) = 1

1−t for t < 1. Hence,

l1 =
λ((r− 1)β)r−1

1 + 1
β

( 1
(r− 1)β + r− 1 + (s− r)Fα

2
(2(s− r), 2(r− 1))

)r−1

−
(

1
(r− 1)β + r− 1 + (s− r)F1− α

2
(2(s− r), 2(r− 1))

)r−1
.
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The expected lengths of the other prediction intervals can be calculated similarly. They
are given by

l2 = λ(rβ)r

((
1

βr + r + (s− r)Fα
2
(2(s− r), 2r)

)r

−
(

1
βr + r + (s− r)F1− α

2
(2(s− r), 2r)

)r)

l3 = λ(2rβ)r

 1
2βr + 2r + χ2

α
2
(2(s− r))

r

−

 1
2βr + 2r + χ2

1− α
2
(2(s− r))

r
l4 = λ(2rβ)r

 1
2βr + χ2

α
2
(2s)

r

−

 1
2βr + χ2

1− α
2
(2s)

r.

In the comparisons of prediction intervals, we restricted ourselves to the most relevant
cases in practice, namely s = r + 1 and s = r + 2. Moreover, as examples, we chose
the parameters as (λ, β) = (11.3, 70) and (λ, β) = (45.5, 90), which corresponded to the
women’s 100 m and the men’s 400 m, respectively (see Tables 1 and 2 and Section 3).

Table 1. Expected lengths of the 95% and 90% prediction intervals I1, . . . , I4 for the sth lower record
value based on the first r records from a Pow(λ, β) distribution.

α = 5% α = 10%

I1 I2 I3 I4 I1 I2 I3 I4

λ = 11.3, β = 70
r = 3, s = 4 1.45 1.03 0.54 1.13 0.98 0.74 0.44 0.95
r = 8, s = 9 0.66 0.64 0.51 1.61 0.51 0.49 0.41 1.35
r = 8, s = 10 1.01 0.97 0.72 1.67 0.79 0.77 0.60 1.40
r = 25, s = 26 0.43 0.43 0.40 2.17 0.34 0.34 0.32 1.83
r = 25, s = 27 0.63 0.63 0.57 2.18 0.51 0.51 0.47 1.83
r = 25, s = 28 0.78 0.78 0.70 2.19 0.64 0.64 0.58 1.84
λ = 45.5, β = 90
r = 3, s = 4 4.72 3.32 1.72 3.61 3.15 2.37 1.39 3.02
r = 8, s = 9 2.15 2.07 1.64 5.21 1.65 1.60 1.32 4.38
r = 8, s = 10 3.29 3.16 2.35 5.43 2.59 2.50 1.95 4.56
r = 25, s = 26 1.47 1.46 1.36 7.41 1.17 1.17 1.10 6.23
r = 25, s = 27 2.16 2.15 1.96 7.46 1.76 1.75 1.62 6.28
r = 25, s = 28 2.69 2.68 2.40 7.52 2.21 2.20 2.00 6.32

Table 2. Percentages of coverage of the 90% prediction intervals I1, . . . , I4 for the sth lower record
value based on n = 10,000 sequences of the first r lower record values from a Pow(λ, β) distribution.

I1 I2 I3 I4

λ = 11.3, β = 70
r = 3, s = 4 0.9041 0.9001 0.8229 0.9404
r = 8, s = 9 0.8965 0.8989 0.8716 0.9910
r = 8, s = 10 0.8995 0.8994 0.8492 0.9785
r = 25, s = 26 0.8995 0.8985 0.8890 0.9998
r = 25, s = 27 0.8980 0.8990 0.8832 0.9988
r = 25, s = 28 0.9032 0.9040 0.8808 0.9971
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Table 2. Cont.

I1 I2 I3 I4

λ = 45.5, β = 90
r = 3, s = 4 0.9041 0.9001 0.8229 0.9404
r = 8, s = 9 0.8965 0.8989 0.8716 0.9910
r = 8, s = 10 0.8995 0.8994 0.8492 0.9785
r = 25, s = 26 0.8995 0.8985 0.8890 0.9998
r = 25, s = 27 0.8980 0.8990 0.8832 0.9988
r = 25, s = 28 0.9032 0.9040 0.8808 0.9971

In Table 1, the expected lengths of the prediction intervals I1, . . . , I4 are shown for the
two chosen parameter combinations and for different values of r and s. The prediction
interval I2 which uses λ as a known parameter outperforms I1, where the first record value
is used. Compared with the other intervals, I4 has large expected lengths, which are even
increasing in the number of record values used in the prediction method. The asymptotic
method I3 tends to have slightly shorter prediction intervals than the exact ones, I1 and I2.
Figures 1 and 2 illustrate the expected lengths of all intervals for s = r + 1 and s = r + 2,
respectively.

Figure 1. Expected lengths of the 90% prediction intervals I1, . . . , I4 for the next lower record value
(s = r + 1) based on the first r lower record values from a Pow(λ, β) distribution with λ = 11.3 and
β = 70.
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Figure 2. Expected lengths of the 90% prediction intervals I1, . . . , I4 for the next but one lower record
value (s = r + 2) based on the first r lower record values from a Pow(λ, β) distribution with λ = 11.3
and β = 70.

We performed a simulation study concerning the percentages of coverage of the
prediction intervals. We generated n = 10,000 sequences of record values from a power
function distribution and considered the first r record values as known and the remaining
records as unknown. Then, we computed the four prediction intervals based on these
sequences and their empirical percentages of coverage. The results in Table 2 show that the
empirical coverage of the exact prediction intervals I1 and I2 was always close to 1− α. As
observed in Table 1, I3 had small expected lengths, which corresponded to percentages of
coverage (considerably) smaller than 90%, throughout. The asymptotic prediction interval
I4 turned out to be too conservative. Summarizing, the exact prediction intervals I1 and I2
seemed to outperform the approximate approaches I3 and I4.

3. Application to Athletics and American Football Data

Records play an important role in athletics. We applied statistical prediction methods
for future lower and upper record values, namely, future world records, in athletic events,
and we focused on the respective next record, i.e., s = r + 1 was chosen. We assumed that
lower records, as in running events, were based on a power function distribution, and that
upper records, as in throwing and jumping events, were based on a Pareto distribution.
These assumptions have to be justified in a given data situation. As an example, we consid-
ered the women’s 100 m; data of this discipline have been studied by extreme value methods
before (Einmahl and Magnus [2], Einmahl and Smeets [4], Stephenson and Tawn [7]). We
used the data provided at https://www.worldathletics.org/records/all-time-toplists, ac-
cessed on 19 December 2019. These data contain the personal bests of respective athletes,
and we considered results until 2018. Since the times were taken with an accuracy of 0.01 s,
we further adjusted those times in order to eliminate ties as in Einmahl and Magnus [2]. A
histogram of these slightly modified times is given in Figure 3.

https://site.uat.aws.worldathletics.org/records/all-time-toplists/sprints/100-metres/outdoor/women/senior?regionType=world&timing=electronic&windReading=regular&page=1&bestResultsOnly=true&firstDay=1900-01-01&lastDay=2018-12-31
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Figure 3. Histogram of the times of women’s 100 m in seconds.

The common record model as introduced in Section 2 is based on a sequence of iid
random variables. While the assumption of independence seems to be reasonable, the
assumption of identical distribution is questionable due to a possible trend in the data
over time. In what follows, we stick to the iid situation. For the reason of comparability
of sports results and in order to better approximately meet the assumption of identical
distributions, we considered the times of top athletes only, whose running times were
below a given threshold. In Figure 4 and in our prediction results, this threshold was
chosen to be λ = 11.3.

The curve in Figure 4 illustrates the density function of a power function distribution
with parameters λ = 11.3 and β = 69.73, where the latter value is a maximum likelihood
estimate. Figure 4 suggests that the power function assumption seems to be reasonable.
However, the respective quantile–quantile (Q–Q) plot in Figure 5 gives rise to question the
assumptions.

Maybe the power function assumption should be modified as the smallest values indi-
cate, or the assumptions of independence and identical distributions should be modified.
Nevertheless, due to the histogram plot and for illustration of our theoretical results, we
stuck to the power function assumption.

Then, we applied the point predictor MPSP for lower and upper records and the predic-
tion intervals I1/I′1, I2/I′2 and I3/I′3, which were shown in Section 2. The world record progres-
sion for the different events was recorded in https://www.worldathletics.org/records/by-
category/world-records, accessed on 25 November 2022. Unfortunately, not all of these
lists were consistent. For example, some times in the running events were measured by
hand and therefore had an accuracy of 0.1 instead of 0.01 for electronically measured times.
In this listing, a record of 11.20 was regarded as faster than the old record 11.1 for the
women’s 100 m. To avoid such data problems, we excluded times measured by hand. To
illustrate the prediction results, Table 3 shows world records in the women’s 100 m along
with respective MPSP and prediction intervals I1, I2 and I3 based on the previous record
values. The point predictor (MPSP) and the prediction interval shown in row i of Table 3
are based on the previous records listed in rows 1, . . . , i− 1, i ≥ 2.

https://www.worldathletics.org/records/by-category/world-records
https://www.worldathletics.org/records/by-category/world-records
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Figure 4. Histogram of the results of women’s 100 m faster than 11.3 s and pdf of the power function
distribution with λ = 11.3 and β = 69.73, where the latter is the maximum likelihood estimate based
on all times below 11.3 as upper threshold.

Figure 5. Power function Q–Q plot for the times of women’s 100 m faster than 11.3 s, where the five
smallest times were omitted when calculating the regression line.
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Table 3. World records, maximum product of spacings predictor and (approximate) 90% prediction
intervals I1, I2 and I3 for the next record of the women’s 100 m based on the previous records.

s World Record MPSP I1 I2 I3

1 11.20
2 11.08 11.10 [9.46, 11.19] [10.91, 11.19]
3 11.07 10.97 [9.03, 11.07] [10.35, 11.07] [10.76, 11.07]
4 11.04 10.99 [10.63, 11.07] [10.69, 11.07] [10.84, 11.07]
5 11.01 10.98 [10.77, 11.04] [10.76, 11.04] [10.85, 11.04]
6 10.88 10.95 [10.80, 11.01] [10.78, 11.01] [10.84, 11.01]
7 10.81 10.81 [10.62, 10.88] [10.62, 10.88] [10.68, 10.88]
8 10.79 10.74 [10.56, 10.81] [10.56, 10.81] [10.61, 10.81]
9 10.76 10.73 [10.58, 10.79] [10.57, 10.79] [10.61, 10.79]
10 10.49 10.70 [10.57, 10.76] [10.55, 10.76] [10.59, 10.76]
11 10.41 [10.22, 10.49] [10.22, 10.49] [10.26, 10.49]

It can be observed that most world records were close to the MPSP and were within
the prediction intervals. An exception was the record ran by Florence Griffith-Joyner in
1988. It was considerably smaller than the MPSP and the lower bound of the statistical
prediction intervals. Moreover, such an exceptional record had a strong effect on the
statistical prediction of subsequent record values.

By using the same procedure in other running events and an analogous approach for
upper records in throwing and jumping events with underlying Pareto distributions, where
the distributional assumption was approximately met, we derived the results shown in
Table 4.

Table 4. World records (until 2022), maximum product of spacings predictor and 90% prediction
interval I2/I′2 for the next record based on the previous records for various athletic events.

Women Men

Event Record r MPSP Prediction Interval Record r MPSP Prediction Interval

100 m 10.49 10 10.41 [10.22, 10.49] 9.58 13 9.53 [9.40, 9.58]
100/110 m hurdles 12.12 9 12.04 [11.83, 12.12] 12.80 9 12.71 [12.50, 12.80]
200 m 21.34 9 21.15 [20.68, 21.33] 19.19 5 18.90 [18.03, 19.18]
400 m 47.60 12 47.25 [46.42, 47.58] 43.03 4 42.46 [40.53, 43.00]
800 m 1:53.28 2 1:50.06 [1:32.74, 1:53.11] 1:40.91 7 1:40.20 [1:38.29, 1:40.87]
1500 m 3:50.07 3 3:45.61 [3:28.01, 3:49.84] 3:26.00 8 3:24.55 [3:20.77, 3:25.92]
10,000 m 29:01.03 9 28:40.22 [27:48.19, 28:59.95] 26:11.00 13 26:02.20 [25:41.55, 26:10.55]
Marathon 2:14:04 2 2:06:45 [1:30:47, 2:13:41] 2:01:09 8 2:00:11 [1:57:40, 2:01:06]
Shot put 22.63 26 22.81 [22.64, 23.19] 23.37 16 23.56 [23.38, 24.01]
Javelin throw 72.28 3 78.70 [72.60, 111.95] 98.48 8 101.07 [98.61, 108.23]
Discus throw 76.80 17 77.56 [76.84, 79.31] 74.08 12 74.89 [74.12, 76.88]
Long jump 7.52 14 7.57 [7.52, 7.70] 8.95 9 9.06 [8.96, 9.36]
High jump 2.09 13 2.10 [2.09, 2.13] 2.45 22 2.46 [2.45, 2.48]

Obviously, the number of world records was small in the women’s 800 m, 1500 m,
marathon and javelin throw. Therefore, the predictions in Table 4 may differ from the actual
next record. Moreover, the respective prediction intervals were quite large. For example,
the lower bound for the next marathon record was nonsatisfying.

However, in the men’s marathon, the lower bound was smaller than two hours as
well. The number of records was r = 8, so the prediction interval was expected to be
quite reasonable having a lower bound below the two-hour mark. In October 2019, the
world record holder Eliud Kipchoge broke this mark under special conditions regarding,
for example, the course, wherefore it was not considered an actual world record.

In general, prediction intervals tend to be large, if the number of observed records
is fairly small. Thus, in such a real data situation, the prediction interval may not be of
practical use (see Table 4).

In addition to the analysis of athletic events, we applied point and interval prediction
to data from American football. A possible data set could result from the NFL Combine
with its athletics disciplines.
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However, we focused on data resulting from actual football games in the NFL. To combine
most relevant metrics in the analysis of a player’s performance on the field, we considered
so-called fantasy football points (see, e.g., https://fantasy.nfl.com/research/scoringleaders,
accessed on 2 March 2021). These fantasy points are calculated according to the points per
reception (PPR) scoring scheme (see Table 5 and the glossary at https://www.pro-football-
reference.com, accessed on 14 January 2020), for each game separately. Many providers of
football data additionally offer fantasy points of players that are added up to a full season
performance. Here, we focus on single game performances.

Table 5. List of points given in fantasy football’s PPR scoring.

Event Score

Passing 1 point per 25 yards
Passing touchdowns 4 points
Interceptions thrown −2 points

Rushing/receiving yards 1 point per 10 yards
Receptions 1 point

Touchdowns 6 points
2-Point conversions 2 points

Fumbles lost −2 points

Related to these data of fantasy football points, we may define world records in
American football. When measured by means of the PPR scheme, the respective world
record performance (as of December 2019) by quarterback Michael Vick was composed of
333 passing yards, 4 passing touchdowns, 80 rushing yards and 2 rushing touchdowns in a
single game, which yielded

333
25

+ 4× 4 +
80
10

+ 2× 6 = 49.32 fantasy points.

We distinguished between the skill positions quarterback, wide receiver, running back
and tight end. Other players such as linemen, defense players and special teams were not
included in the analysis. The points of kickers and whole defense teams were measured in
the standard scoring scheme as well, but they followed a discrete distribution and were
therefore not considered here.

We determined the sequences of records for quarterbacks, wide receivers, running
backs and tight ends as the basis for point and interval prediction. The underlying game
data are provided at https://www.pro-football-reference.com (accessed on 14 January 2020,
publicly available until 2020) and cover each game of the regular seasons from 2000 to
2019. The fantasy football points were rounded to one digit for quarterbacks as well. The
Pareto assumption could be justified by comparing the histogram and the estimated density
function as above. Only for the tight end’s points did a Pareto distribution not seem to
be reasonable. Since there were just two records in the wide receiver’s data, we did not
compute predictions for this position either. The progressions of the world records and the
corresponding predictions can be found in Tables 6 and 7.

Table 6. World records (2000–2019), maximum product of spacings predictor and (approximate) 90%
prediction intervals I′1, I′2 and I′3 for the next record based on the previous records for the fantasy
points of quarterbacks.

s Player Team Records MPSP I′1 I′2 I′3
1 Cade McNown CHI 34.3
2 Trent Green STL 36.3 42.0 [34.7, 1621.4] [34.7, 63.0]
3 Peyton Manning IND 37.4 41.3 [36.4, 106.5] [36.5, 89.4] [36.5, 53.6]
4 Trent Green KAN 37.9 41.2 [37.5, 50.5] [37.6, 61.4] [37.6, 49.9]
5 Michael Vick ATL 38.2 40.9 [38.0, 45.0] [38.0, 53.1] [38.0, 47.5]
6 Daunte Culpepper MIN 41.8 40.6 [38.3, 43.1] [38.3, 49.3] [38.3, 46.0]
7 Michael Vick PHI 49.3 44.7 [41.9, 49.2] [41.9, 54.2] [41.9, 51.1]
8 53.4 [49.5, 62.4] [49.5, 66.7] [49.5, 62.8]

https://fantasy.nfl.com/research/scoringleaders#researchScoringLeaders=researchScoringLeaders%2C%2Fresearch%2Fscoringleaders%253Fposition%253DO%2526sort%253Dpts%2526statCategory%253Dstats%2526statSeason%253D2020%2526statType%253DweekStats%2526statWeek%253D1%2Creplace
https://www.pro-football-reference.com/play-index/pgl_finder.cgi?request=1&match=game&year_min=2000&year_max=2019&season_start=1&season_end=-1&pos%5B%5D=QB&pos%5B%5D=WR&pos%5B%5D=RB&pos%5B%5D=TE&is_starter=E&game_type=R&career_game_num_min=1&career_game_num_max=400&qb_start_num_min=1&qb_start_num_max=400&game_num_min=0&game_num_max=99&week_num_min=0&week_num_max=99&c5val=1.0&order_by=fantasy_points_ppr
https://www.pro-football-reference.com/play-index/pgl_finder.cgi?request=1&match=game&year_min=2000&year_max=2019&season_start=1&season_end=-1&pos%5B%5D=QB&pos%5B%5D=WR&pos%5B%5D=RB&pos%5B%5D=TE&is_starter=E&game_type=R&career_game_num_min=1&career_game_num_max=400&qb_start_num_min=1&qb_start_num_max=400&game_num_min=0&game_num_max=99&week_num_min=0&week_num_max=99&c5val=1.0&order_by=fantasy_points_ppr
https://www.pro-football-reference.com/play-index/pgl_finder.cgi?request=1&match=game&year_min=2000&year_max=2019&season_start=1&season_end=-1&pos%5B%5D=QB&pos%5B%5D=WR&pos%5B%5D=RB&pos%5B%5D=TE&is_starter=E&game_type=R&career_game_num_min=1&career_game_num_max=400&qb_start_num_min=1&qb_start_num_max=400&game_num_min=0&game_num_max=99&week_num_min=0&week_num_max=99&c5val=1.0&order_by=fantasy_points_ppr


Stats 2023, 6 145

Table 7. World records (2000–2019), maximum product of spacings predictor and (approximate) 90%
prediction intervals I′1, I′2 and I′3 for the next record based on the previous records for the fantasy
points of running backs.

s Player Team Records MPSP I′1 I′2 I′3
1 Duce Staley PHI 36.2
2 Marshall Faulk STL 44.9 43.7 [36.6, 1284.9] [36.6, 63.6]
3 Marshall Faulk STL 45.6 54.9 [45.4, 2688.2] [45.4, 182.1] [45.4, 82.1]
4 Fred Taylor JAX 51.8 52.4 [45.9, 101.6] [45.9, 93.5] [45.9, 69.3]
5 Shaun Alexander SEA 56.1 59.4 [52.1, 95.7] [52.2, 95.2] [52.2, 78.0]
6 Clinton Portis DEN 57.4 63.6 [56.4, 91.4] [56.5, 93.8] [56.5, 81.6]
7 Jamaal Charles KAN 59.5 64.0 [57.7, 83.8] [57.7, 87.4] [57.7, 79.4]
8 65.6 [59.8, 82.1] [59.8, 85.8] [59.8, 79.8]

Using box score statistics such as fantasy points to measure a player’s performance has
been discussed intensively, since it does not weight the yardage made by its effectiveness
in a drive. Four yards at third and three are regarded as valuable as four yards at third and
five, although the outcome of the play is different.

4. Discussion

We developed and applied point and interval prediction based on a sequence of lower
or upper record values to various data sets from athletics and American football to come
up with predictions of future record values. In the examples, these predicted values were
successively compared with actual subsequent record values. Several prediction methods
were discussed and results for lower record values were established, which were used,
e.g., for analyzing data from running disciplines in athletics. The procedure as well as the
results can also be applied to other sports disciplines. In the model of common record
values, we assumed that the considered record values were smallest or largest observations
of a sequence of independent and identically distributed random variables. In particular,
this assumption of underlying identical distributions presumed that the athletes were
able to perform on the same level. In order to approximately meet the assumption of
identical distribution, we only considered results better than some threshold interpreted in
such a way that we considered just top athletes and top performances. Here, we applied
power function distributions with respect to lower record values and Pareto distributions
with respect to upper record values, which often are seen to have a reasonable fit to the
data. Of course, there are disciplines mentioned in this article, where the distributional
assumptions are not really justified, such as in women’s 800 m and in tight end’s fantasy
points. Moreover, certain dependencies within sports data cannot be avoided. For example,
some sportspersons in athletics broke a record more than once and therefore, their names
occur several times in the list of records. These results cannot be regarded as independent.
However, if there are many people involved in a list of records, independence may be
assumed at least approximately. Furthermore, in sports such as American football, there
are dependencies among a team or between competitors. Despite some possible criticism
on the model of common record values in sports applications, the prediction methods
performed quite well. Most world records and point predictions lay within the respective
prediction intervals. Prominent exceptions are, e.g., the records of Florence Griffith-Joyner
in the women’s 100 m and Bob Beamon’s world record in the men’s long jump. Such
exceptional performances were much better than expected and had a strong influence on
statistical predictions.

5. Conclusions

Based on successive upper or lower record values in a sequence of independent and
identically distributed random variables with an underlying Pareto distribution and a
power function distribution, respectively, we obtained explicit statistical methods for point
prediction and interval prediction. In this article, the procedures were derived in the case
of lower records. Prediction intervals were compared by the criterion of expected lengths,
and percentages of coverage were tabulated. The results were illustrated via real data
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sets from several athletics disciplines and American football. The forecasting of records
has been considered in the literature before, mainly by means of extreme value theory,
whereas we focused on statistical prediction methods to come up with point and interval
predictions. When applied to the data sets, the model assumptions of independence and
identical distribution of random variables as well as the specification of the underlying
distribution have to be discussed in view of the developments in the respective sports
disciplines and the prediction results. This may lead one to consider other underlying
distributions providing a better fit as well as to refine the record model by incorporating
a possible trend in the data over time. A heuristic approach to take into account a trend
in the underlying data could be to estimate this trend, to rescale the original data ahead
of prediction and then to modify the prediction results accordingly. Prediction within a
thorough statistical model will be the subject matter of our further research.
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