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Abstract: The properties of non-parametric kernel estimators for probability density function
from two special classes are investigated. Each class is parametrized with distribution smoothness
parameter. One of the classes was introduced by Rosenblatt, another one is introduced in this paper.
For the case of the known smoothness parameter, the rates of mean square convergence of optimal
(on the bandwidth) density estimators are found. For the case of unknown smoothness parameter,
the estimation procedure of the parameter is developed and almost surely convergency is proved.
The convergence rates in the almost sure sense of these estimators are obtained. Adaptive estimators
of densities from the given class on the basis of the constructed smoothness parameter estimators are
presented. It is shown in examples how parameters of the adaptive density estimation procedures
can be chosen. Non-asymptotic and asymptotic properties of these estimators are investigated.
Specifically, the upper bounds for the mean square error of the adaptive density estimators for a fixed
sample size are found and their strong consistency is proved. The convergence of these estimators in
the almost sure sense is established. Simulation results illustrate the realization of the asymptotic
behavior when the sample size grows large.

Keywords: non-parametric kernel density estimators; adaptive density estimators; mean square and
almost surely convergence; rate of convergence; smoothness class
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1. Introduction

Let X1, . . . , Xn be independent identically distributed random variables (i.i.d. r.v.’s)
having a probability density function f . In the typical non-parametric set-up, nothing is
assumed about f except that it possesses a certain degree of smoothness, e.g., that it has r
continuous derivatives.

Estimating f via kernel smoothing is a sixty year old problem; M. Rosenblatt who was
one of its originators discusses the subject’s history and evolution in the monograph [1].
For some point x, the kernel smoothed estimator of f (x) is defined by

fn,h(x) =
1
n

n

∑
j=1

1
h

K
( x− Xj

h

)
(1)

where the kernel K(·) is a bounded function satisfying
∫

K(x)dx = 1 and
∫

K2(x)dx < ∞,
and the positive bandwidth parameter h is a decreasing function of the sample size n.

If K(·) has finite moments up to q-th order, and moments of order up to q− 1 equal
to zero, then q is called the ‘order’ of the kernel K(·). Since the unknown function f is
assumed to have r continuous derivatives, it typically follows that
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Var( fn,h(x)) =
C f ,K(x)

hn
+ o
(

1
hn

)
,

and
Bias( fn,h(x)) = c f ,K(x)hk + o(hk),

where k = min(q, r), and C f ,K(x), c f ,K(x) are bounded functions depending on K(·) as well
as f and its derivatives, cf. [1] p. 8.

The idea of choosing a kernel of order q bigger (or equal) than r in order to ensure the
Bias( fn,h(x)) to be O(hr) dates back to the early 1960s in work of [2,3]; recent references on
higher-order kernels include the following: [4–10]. Note that since r is typically unknown
and can be arbitrarily large, it is possible to use kernels of infinite order that achieve the
minimal bias condition Bias( fn,h(x)) = O(hr) for any r; Ref. [11] gives many properties of
kernels of infinite order. In this paper we will employ a particularly useful class of infinite
order kernels namely the flat-top family; see [12] for a general definition.

It is a well-known fact that optimal bandwidth selection is perhaps the most crucial
issue in such non-parametric smoothing problems; see [13], as well as the book [14]. The
goal typically is minimization of the large-sample mean squared error (MSE) of fn,h(x).
However, to perform this minimization, the practitioner needs to know the degree of
smoothness r, as well as the constants C f ,K(x) and c f ,K(x). Using an infinite order kernel
and focusing just on optimizing the order of magnitude of the large-sample MSE, it is
apparent that the optimal bandwidth h must be asymptotically of order n−1/(2r+1); this
yields a large-sample MSE of order n−2r/(2r+1).

A generalization of the above scenario is possible using a degree of smoothness r that
has another sense, and that is not necessarily an integer. Let [r] denote the integer part
of r, and define γ = r− [r]; then, one may assume that f has [r] continuous derivatives,
and that the [r]th derivative satisfies a Lipschitz condition of order γ. Interestingly, even
in this case where f is assumed to belong to the Hölder class of degree r (the derivative
of the density function of the order r satisfies the Lipschitz condition) the MSE–optimal
bandwidth h is still of order n−1/(2r+1) and again yields a large-sample MSE of the order
n−2r/(2r+1) (see, e.g., [15–18] among others).

The problem of course is that, as previously mentioned, the underlying degree of
smoothness r is typically unknown. In Section 4 of the paper at hand, we develop an
estimator rn of r and prove its strong consistency; this is perhaps the first such result in
the literature. In order to construct our estimator rn, we operate under a class of functions
that is slightly more general than the aforementioned Hölder class; this class of functions is
formally defined in Section 2 via Equation (3) or (4).

Under such a condition on the tails of the characteristic function we are able to show
in Section 3 that the optimized MSE of f̂n(x) is again of order n−2r/(2r+1) for possibly
non-integer r; this is true, for example, when the characteristic function φ(s) has tails of
order O(1/|s|r+1), see Example 2.

Furthermore, in Section 5 we develop an adaptive estimator f̂n(x) that achieves the
optimal MSE rate of n−2r/(2r+1) within a logarithmic factor despite the fact that r is un-
known, see Examples after Theorem 3. Similar effect arises in the adaptive estimation
problem of the densities from the Hölder class; see [18–20]. It should pointed that problems
of asymptotic adaptive optimal density estimations from another classes have also been
considered in the literature; see, e.g., [14,21–23].

The construction of f̂n(x) is rather technical; it uses the new estimator rn, and it is
inspired from the construction of sequential estimates although we are in a fixed n, non-
sequential setting. As the major theoretical result of our paper, we are able to prove a
non-asymptotic upper bound for the MSE of f̂n(x) that satisfies the above mentioned
optimal rate. Section 6 contains some simulation results showing the performance of
the new estimator f̂n(x) in practice. All proofs are deferred to Section 7, while Section 8
contains our conclusions and suggestions for future work.
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2. Problem Set-Up and Basic Assumptions

Let X1, . . . , Xn be i.i.d. having a probability density function f . Denote φ(s) =∫
eisx f (x)dx the characteristic function of f and the sample characteristic function φn(s) =

1
n

n

∑
k=1

eisXk . For some finite r > 0, define two families F+
r and Fr of bounded, i.e.,

∃ 0 < f < ∞ : sup
y∈R1

f (y) ≤ f , (2)

and continuous functions f satisfying one of the following conditions, respectively:∫
|s|r|φ(s)|ds < ∞,

∫
|s|r+ε|φ(s)|ds = ∞, for all ε > 0, (3)

∫
|s|r−ε|φ(s)|ds < ∞,

∫
|s|r|φ(s)|ds = ∞, for all 0 < ε < r. (4)

In other words, F+
r is the family of functions (introduced by M. Rosenblatt) satisfying

(2) and (3), while Fr is the family of functions (introduced in this paper) satisfying (2)
and (4). It should be noted that the new class Fr is a little bit more wide that the classical
class F+

r .
In addition, define the family F+

r,m (respectively, Fr,m) as the family of functions f that
belong to F+

r (respectively, Fr) but with f being such that its characteristic function |φ(s)|
has monotonously decreasing tails.

Consider the class Ξ of non-parametric kernel smoothed estimators fn,h(x) of f (x) as
given in Equation (1). Note that we can alternatively express fn,h(x) in terms of the Fourier
transform of kernel K(·), i.e.,

fn,h(x) =
1
n

n

∑
j=1

1
h

K
( x− Xj

h

)
=

1
2π

∫
λ(s, h)φn(s)e−isxds (5)

where
λ(s, h) =

∫
K
( x

h

)
eisxdx.

In this paper, we will employ the family of flat-top infinite order kernels, i.e., we will let the
function λ(s, h) be of the form

λc(s, h) =


1 if |s| ≤ 1/h,
g(s, h) if 1/h < |s| ≤ c/h,
0 if |s| ≥ c/h,

where c is a fixed number in [1, ∞) chosen by the practitioner, and g(s, h) is some properly
chosen continuous, real-valued function satisfying g(s, h) = g(−s, h), g(s, 1) = g(s/h, h),
and |g(s, h)| ≤ 1, for any s, with g(1/h, h) = 1, and g(c/h, h) = 0; see [12,24–26] for more
details on the above flat-top family of kernels.

Define g′h(s, h) the partial derivative of the function g(s, h) with respect to the band-
width h. We will also assume that for some c0 > 0

lim
h→0

sup
1/h<|s|<c/h

|g′h(s, h)|/|s| < c0. (6)

Denote for every 0 ≤ γ < r the functions

δγ(h) =
∫

1/h<|s|<c/h

|s|r−γ|φ(s)|ds, when h > 0, and δγ(0) = 0.
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From (3) and (5) it follows that δγ(h) = o(1) as h→ 0 for f ∈ F+
r and γ = 0, as well

as for f ∈ Fr and 0 < γ < r. In other cases δγ(h) = ∞.
Define the following classes F r = F+

r ∪ Fr and F r,m = F+
r,m ∪ Fr,m.

The main aim of the paper is the estimation of the parameter r of these classes and
adaptive estimation of densities from the class F r with the unknown parameter r.

3. Asymptotic Mean Square Optimal Estimation

The mean square error (MSE) u2
f ( fn,h) = E f ( fn,h(x) − f (x))2 of the estimators

fn,h(x) ∈ Ξ, f ∈ F r has the following form:

u2
f ( fn,h) = U2

f (h, c)− 1
n

(∫
K(v) f (x− hv)dv

)2
, (7)

where U2
f (h, c) is the principal term of the MSE,

U2
f (h, c) =

L1 f (x)
nh

+

 1
2π

∫
1/h<|s|<c/h

(1− g(s, h))φ(s)e−isxds


2

,

L1 =
∫

K2(v)dv. Thus, in particular, sup
f∈F r

∣∣∣∣∫ K(v) f (x− hv)dv
∣∣∣∣ < ∞.

To minimize the principal term U2
f (h, c) by h we set its first derivative with respect

to h to zero which gives the following equality for the optimal (in the mean square sense)
value h0 = h0(n) :∫

1/h0<|s|<c/h0

(g(s, h0)− 1)φ(s)e−isxds · {cφ(c/h0)e−
icx
h0 + cφ(−c/h0)e

icx
h0

+(h0)2
∫

1/h0<|s|<c/h0

g′h(s, h0)φ(s)e−isxds} = 2π2L1 f (x)
n

. (8)

From the definition of the class of kernels for cases δγ(h) < ∞ we have∣∣∣∣∣∣∣
∫

1/h<|s|<c/h

(g(s, h)− 1)φ(s)e−isxds

∣∣∣∣∣∣∣ ≤ 2hr−γδγ(h)

and for h small enough, according to (6)∣∣∣∣∣∣∣
∫

1/h<|s|<c/h

g′h(s, h)φ(s)e−isxds

∣∣∣∣∣∣∣ ≤ c0hr−1−γδγ(h).

Then, by the definition of the class F r,m, as h small enough, denoting

c1(γ) =
r + 1− γ

2(cr+1−γ − 1)
, we have

δγ(h) ≥
c/h∫

1/h

|s|r−γds · [ inf
1/h<s<c/h

|φ(s)|+ inf
1/h<s<c/h

|φ(−s)|]

≥ (c1(γ))
−1h−(r+1−γ)[|φ(c/h)|+ |φ(−c/h)|].
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Thus, for h << 1,

|φ(c/h)|+ |φ(−c/h)| ≤ c1(γ)hr+1−γδγ(h)

and from (8) it follows

(h0)2r+1−2γδ2
γ(h

0) ≥ π2L1 f (x)
(c0 + c1(γ))n

.

Define the number h0
1 = h0

1(n) from the equality

(h0
1)

2r+1−2γδ2
γ(h

0
1) =

π2L1 f (x)
(c0 + c1(γ))n

. (9)

It is obvious, that 0 < h0
1 ≤ h0 and (h0

1)
2r+1−2γδ2

γ(h0
1) ≤ (h0)2r+1−2γδ2

γ(h0).
Then, from (7) and (9), for every f ∈ F r,m and f 0

n = fn,h0 as n→ ∞, we have

u2
f ( f 0

n) ≤ u2
f ( fn,h0

1
) ≤ L1 f (x)

nh0
1

+
1

π2 (h
0
1)

2r−2γ
δ2

γ(h
0
1)

= Cγ ·
δ

2
2r+1−2γ
γ (h0

1)

n
2r−2γ

2r+1−2γ

, (10)

where

Cγ = L
2r−2γ

2r+1−2γ

1 (x)
(

1 +
π2

c0 + c1(γ)

)(
c0 + c1(γ)

π2

) 1
2r+1−2γ

.

In such a way we have proved the following theorem, which gives the rates of conver-
gence of the random quantities f 0

n(x) and fn,h0
1
(x). We can loosely call f 0

n(x) and fn,h0
1
(x)

‘estimators’ although it is clear that these functions can not be considered as estimators
in the usual sense in view of the dependence of the bandwidths h0 and h0

1 on unknown
parameters r and f (x). Nevertheless, this theorem can be used for the construction of bona
fide adaptive estimators with the optimal and suboptimal converges rates; see Examples 1
and 2, as well as Section 5.3 in what follows.

Theorem 1. Let f (x) > 0. Then, for the asymptotically optimal (with respect to bandwidth h)
in the MSE sense ‘estimator’ f 0

n(x) of the function f ∈ F r and for the ‘estimator’ fn,h0
1
(x) of

f ∈ F r,m the following limit relations, as n→ ∞, hold

1◦. sup
f∈F r

∣∣∣∣inf
h

u2
f ( fn,h)−U2

f (h
0, c)

∣∣∣∣ = O
(

1
n

)
;

2◦. for every f ∈ F r,m with γ = 0 if f ∈ F+
r,m and every 0 < γ < r if f ∈ Fr,m

u2
f ( f 0

n) ≤ u2
f ( fn,h0

1
) ≤ Cγ ·

δ
2

2r+1−2γ
γ (h0

1)

n
2r−2γ

2r+1−2γ

, n ≥ 1.

Remark 1. The definition (9) of h0
1 is essentially simpler than the definition (8) of the optimal

bandwidth h0. From Theorem 1 it follows that the (slightly) suboptimal ‘estimator’ fn,h0
1

can be
successfully used instead.

It should be noted that the parameter γ is chosen by the practitioner here and that
γ = 0 if f ∈ F+

r,m but 0 < γ < r if f ∈ Fr,m in which case we want to choose γ close to 0.
We shall write in the sequel ϕ(s) ≈ ψ(s) as s→ ∞ instead of the limit relations

0 < lim
s→∞

ϕ(s)
ψ(s)

≤ lim
s→∞

ϕ(s)
ψ(s)

< ∞.
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Example 1. Consider an estimation problem of the function f ∈ F+
r,m, satisfying the following

additional condition

|φ(s)| ≈ 1

|s|r+1 ln1+ϕ |s|
as |s| → ∞, ϕ > 0,

using the kernel estimator ( fn,h(x)) ∈ Ξ.
By making use of (9) and (10) we find the rate of convergence of the MSE u2

f ( f 0
n) and u2

f ( fn,h0
1
).

To this end we calculate

δ0(h) =
∫

1/h<|s|<c/h

|s|r|φ(s)|ds ≈ 1
(ln h−1)ϕ

− 1
(ln h−1 + ln c)ϕ

≈ 1
(ln2 h−1)1+ϕ

.

It is easy to verify that f 0
n , fn,h0

1
∈ Ξ. Thus, from (9), as n→ ∞,

h0
1 ≈ (nγn)

− 1
2r+1 ,

where γn ≈ ln−2(1+ϕ) n, n→ ∞ is a solution of the equation

γn[ln n + ln γn]
2(1+ϕ) = 1.

Therefore, as n→ ∞, we have

h0
1 ≈

(
ln2(1+ϕ) n

n

) 1
2r+1

and u2
f ( fn,h0

1
) = O

(
1

n2r ln2(1+ϕ) n

) 1
2r+1

.

Consider the piecewise linear flat-top kernel λLIN
c (s, h), introduced by [25] (see [26] as well):

λLIN
c (s, h) =

c
c− 1

(
1− h

c
|s|
)+

− 1
c− 1

(1− h|s|)+,

where (x)+ = max(x, 0) is the positive part function.
Then, from (8) we obtain

{φ(c/h0)e−
icx
h0 + φ(−c/h0)e

icx
h0 }2 ≈ 1

n

and, for n large enough

|φ(c/h0)|2 + |φ(−c/h0)|2 ≥ C
n

.

Thus, similarly to h0
1, as n→ ∞, for f ∈ Fr we find

h0 ≈
(

ln2(1+ϕ) n
n

) 1
2(r+1)

and

u2
f ( f 0

n) = O
(

1

n2r+1 ln2(1+ϕ) n

) 1
2(r+1)

= o
(

u2
f ( fn,h0

1
)
)

.

Example 2. Consider an estimation problem of the function f ∈ Fr,m, satisfying the following
additional condition:

|φ(s)| ≈ 1
|s|r+1 as |s| → ∞,

using the kernel estimator ( fn,h(x)) ∈ Ξ.
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Using (9) and (10) we will find the rate of convergence of the MSE u2
f ( f 0

n) and u2
f ( fn,h0

1
). To

this end, we calculate
δγ(h) =

∫
1/h<|s|<c/h

|s|r−γ|φ(s)|ds ≈ hγ.

It is easy to verify that f 0
n , fn,h0

1
∈ Ξ. Thus, from (9), as n→ ∞,

h0
1 ≈ n−

1
2r+1 .

Therefore, we have

u2
f ( fn,h0

1
) = O

(
1

n
2r

2r+1

)
, n→ ∞.

Similarly to Example 1 as n→ ∞, for f ∈ Fr we find

h0 ≈ 1

n
1

2(r+1)

and

u2
f ( f 0

n) = O

(
1

n
2r+1

2(r+1)

)
= o

(
u2

f ( fn,h0
1
)
)

.

4. Estimation of the Degree of Smoothness r

Define the functions

Φα(A, B) =
∫

A<|s|<B

|s|α|φ(s)|ds, Φα = Φα(0, ∞),

Φn,α(A, B) =
∫

A<|s|<B

|s|α|φn(s)|ds, Φn,α = Φn,α(0, ∞).

Let (δn)n≥1 and (ρn)n≥1 be two given sequences of positive numbers chosen by the
practitioner such that δn → 0 and ρn → ∞ as n → ∞. The sequence (δn) represents the
‘grid’-size in our search of the correct exponent r, while (ρn) represents an upper bound
that limits this search.

Define the following sets of non-random sequences

C+ = {(An, Bn, δn)n≥1 : An → ∞, 0 < An < Bn → ∞, δn → 0 as n→ ∞;

for some m0 ≥ 2, ∑
n≥1

B2m0($n+1+δn)
n

nm0
< ∞; Φr+ε(An, Bn)→ ∞, ∀ε > 0},

C = {(An, Bn, δn)n≥1 : An → ∞, 0 < An < Bn → ∞, δn → 0 as n→ ∞;

for some m0 ≥ 2, ∑
n≥1

B2m0($n+1+δn)
n

nm0
< ∞; Φr(An, Bn)→ ∞}.

Remark 2. Formally, the definition of sets C+, C and, as follows of estimators r+n and rn, as well of
sets C∗+, C∗ defined below depend on the unknown function Φα(A, B). At the same time, the set C+
(and, as follows, the estimator r+n and the set C∗+) can be defined independently of Φα(A, B).

Indeed, denote αs = |s|r+1|φ(s)| and
– let f ∈ F+

r .
Then for every ε > 0

lim
s→∞

sε/2αs = ∞ and lim
s→∞

αs · log s < ∞.
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Thus (An, Bn, δn) ∈ C+ for appropriate chosen (δn) and An = O(B1/2
n ) because (consider

for simplification the case An > 0)

Φr+ε(An, Bn) =
∫ Bn

An
|s|r+ε|φ(s)|ds =

∫ Bn

An
sε−1αsds =

∫ Bn

0
sε−1αsds−

∫ An

0
sε−1αsds

≥ C1

∫ Bn

0
sε/2−1ds− C2

∫ An

0
sε−1 log−1 sds ∼ Bε/2

n − Aε
n log−1 An

+
∫ An

0
sε−1 log−2 sds→ ∞.

According to the definition of the class Fr it is impossible to find elements of the set C
independently of the function to be estimated without usage of an a priori information about f .
Consider one simple example.

– Let f ∈ Fr.
Suppose, e.g., in addition that

lim
s→∞

log s · 1
s

∫ s

0
|u|r+1|φ(u)|du > 0.

Then (An, Bn, δn) ∈ C for appropriate chosen (δn) and An = o(Bn) because

Φr(An, Bn) =
∫ Bn

An
sr|φ(s)|ds =

∫ Bn

An
s−1d

∫ s

0
αududs =

1
s

∫ s

0
αudu |Bn

An

+
∫ Bn

An
s−2

∫ s

0
αududs ≥ C

∫ Bn

An

1
s log s

ds ≥ C log log Bn → ∞.

Another examples are in Example 3 (see also Remark 3 and Example 4).

For an arbitrary given H > 0 chosen by the practitioner, define the estimators (r+n )n≥1
and (rn)n≥1 of the parameter r in (3) and (4) as follows

r+n = min[$n, (δn · inf{k ≥ 1 : Φn,(k+1)δn(An, Bn) ≥ H, (An, Bn, δn) ∈ C+})]. (11)

rn = min[$n, (δn · inf{k ≥ 1 : Φn,kδn(An, Bn) ≥ H, (An, Bn, δn) ∈ C})]. (12)

Example 3. For the functions φ(·) from Examples 1 and 2, we can use the definitions (11) and (12)
with the following choices:

Bn = ln n, $n = ρ
ln n

ln ln n
, ρ ∈ (0, (2m0)

−1),

arbitrary δn → 0 and An = o(Bn), as n→ ∞. Indeed, for f ∈ F+
r,m and every ε > 0 (Example 1),

Φr+ε(An, Bn) =
∫

An<|s|<Bn

|s|r+ε|φ(s)|ds ≈ Bε
n

lnϕ Bn
− Aε

n
lnϕ An

≈ lnε n
lnϕ ln n

→ ∞

and for f ∈ Fr,m (Example 2),

Φr(An, Bn) =
∫

An<|s|<Bn

|s|r|φ(s)|ds ≈ ln
Bn

An
→ ∞

and, as follows, the classes C+ and C are not empty.
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Define
Jn,α =

∫
An<|s|<Bn

|s|α|φn(s)− φ(s)|ds, α > 0, n ≥ 1.

Lemma 1. Let (An, Bn, δn) ∈ C+ ∪ C. Then, for every α > 0, m ≥ 1 and n ≥ 1 there exist
positive numbers Cα,m such that

sup
f∈F r

E f J2m
n,α ≤ Cα,m

B2m(α+1)
n

nm (13)

and for every f ∈ F r
Jn,$n+δn = o(1) Pf − a.s.

Define the sets C∗+ and C∗ of non-random sequences (An, Bn, δn)n≥1

C∗+ = {(An, Bn, δn) ∈ C+ : lim
n→∞

Φr+δn(An, Bn) = ∞},

C∗ = {(An, Bn, δn) ∈ C : lim
n→∞

Φr−δn(An, Bn) = 0}.

Remark 3. It can be directly verified that under the conditions of Remark 2 the sequences
(An, Bn, δn) ∈ C∗+ if An = O(B1/2

n ) and δ−1
n = o(log Bn), as well as (An, Bn, δn) ∈ C∗ if

An = o(Bn) and

δn = o
(

log log log Bn

log Bn

)
.

Moreover, under the conditions of Example 3.1, (An, Bn, δn) ∈ C∗+ if we put

δn = δ · ln ln ln(n + 1)
ln ln(n + 1)

, δ > ϕ.

Example 4. Consider the functions φ(·) from Examples 1, 2 and suppose, that the smooth parameter
r ≤ R for some known number R. Then the sequences (An, Bn, δn) ∈ C∗+ ∪ C∗ if we put

Bn = nb, 0 < b <
m0 − 1

4(R + 1)
, An = o(Bn), $n = R,

δn = δ · ln ln(n + 1)
ln(n + 1)

, δb > ϕ.

Theorem 2. The estimators r+n and rn, defined in (11) and (12), respectively, with ρn → ∞ have
the following properties

1◦

(a) if f ∈ F+
r and (An, Bn, δn) ∈ C+, then

lim
n→∞

r+n = r Pf − a.s.

(b) if f ∈ Fr and (An, Bn, δn) ∈ C, then

lim
n→∞

rn = r Pf − a.s.

2◦

(a) if f ∈ F+
r and for some δn → 0 the sequences (An, Bn, δn) ∈ C∗+, then

lim
n→∞

δ−1
n (r+n − r) = 0 Pf − a.s.
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(b) if f ∈ Fr and for some δn → 0 the sequences (An, Bn, δn) ∈ C∗, then

lim
n→∞

δ−1
n (rn − r) = 0 Pf − a.s.

5. Adaptive Estimation of the Functions f ∈ F r

The purpose of this section is the construction and investigation of an adaptive estima-
tor of the function f ∈ F r with unknown r, which can either serve as the main estimator
(since it achieves the optimal rate of convergence within F r) or can serve as a ’pilot’ esti-
mator to be used in (8) and (9) for the construction of an adaptive optimal and suboptimal
bandwidths ĥ0 and ĥ0

1.

5.1. Adaptive MSE–Optimal Estimation

We define an adaptive estimator of f ∈ F r as follows

f̂n(x) =
1
n

n

∑
j=1

Λj−1
(

x− Xj
)
=

1
2πn

n

∑
j=1

∫
λj−1(s)e

−is(x−Xj)ds, (14)

where Λj−1(z) =
1

ĥj−1
K

(
z

ĥj−1

)
=

1
2π

∫
λj−1(s)e−iszds is the smoothing kernel, and

λj−1(s) = λc(s, ĥj−1); the required bandwidths are defined by

ĥj = (j + 1)−
1

1+2r(j) , j ≥ 1,

where r(j) = r+j if f ∈ F+
r and r(j) = rj if f ∈ Fr; recall that the estimators r+j and rj are

defined in (11) and (12), respectively.

From the definition of r(j) it follows, that ĥj ≤ hj, j ≥ 1, where hj = (j + 1)
− 1

1+2$j .
Note, that hj ≤ 1 and hj → 0 if the following additional condition

lim
j→∞

$j

ln j
= 0 (15)

on the sequence ($j) defined in the beginning of Section 4 holds.
Denote

n1 =

{
sup{n ≥ 1 : Φr(An, Bn) > H − 1} if f ∈ F+

r ,
sup{n ≥ 1 : Φr−δn(An, Bn) > H − 1} if f ∈ Fr,

n2 =

{
sup{n ≥ 1 : Φr+δn(An, Bn) < H + 1} if f ∈ F+

r ,
sup{n ≥ 1 : Φr(An, Bn) < H + 1} if f ∈ Fr,

where the constant H first used in (11) and (12). Define the following sequences for j ≥ 0,
0 ≤ γ ≤ r,

hj = (j + 1)−
1

1+2r−2γ , h∗j = (j + 1)
− 1

1+2(r−γ−δj+1) ,

h̃j = (j + 1)
− 1

1+2(r−γ+δj+1) and ∆γ(h) =
∫

|s|>h−1

|s|r−γ|φ(s)|ds,

as well as the constants

C1 = f ·
∫

K2(u)du, C̃1 = C1(
n1

∑
j=1

j + Cr,2m0 ∑
j>n1

B4m0(r+1)
j

j2m0−1 ), C̃2(γ) = f
2
+ C2(γ),
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C2(γ) =
1

4π2

 n2

∑
j=1

h
2r−2γ
j−1 ∆2

γ(hj−1) + Cr+1,m0 ∑
j>n2

h
2r−2γ
j−1 ∆2

γ(hj−1)
B

2m0(r+1+δj)

j

nm0


and the function

Ψγ(n) =
C1

n2

n

∑
j=1

1
h∗j−1

+
1

4π2n

n

∑
j=1

h̃2r−2γ
j−1 ∆2

γ(h̃j−1).

Note that the summability of the series in the definitions of the constants C̃1 and C2(γ)
follows from the corresponding demand in the definition of the classes C+ and C.

Main properties of constructed estimators are stated in the following theorem.

Theorem 3. Let the sequences (An, Bn, δn) in the definition of the estimator r+n belong to the set
C∗+ and in the definition of the estimator rn to the set C∗ and the condition (15) is fulfilled.

Let γ = 0 if f ∈ F+
r and γ ∈ (0, r) if f ∈ Fr. Then, for every f ∈ F r and n ≥ 1 the

estimator (14) has the following properties:

1◦. u2
f ( f̂n) ≤ Ψγ(n) +

C̃1

n2 +
C̃2(γ)

n
;

2◦. the estimator f̂n is strongly consistent: lim
n→∞

f̂n(x) = f (x) Pf − a.s.

Example 1. (Examples 1 and 4 revisited, f ∈ F+
r ) In this case

1
n2

n

∑
j=1

1
h∗j−1

=
1
n2

n

∑
j=1

1
hj−1

· (ln j)
2δ

(1+2r)2 ≈ 1
nhn
· (ln n)

2δ
(1+2r)2

and
1
n

n

∑
j=1

h̃2r
j−1∆2

0(h̃j−1) ≈
1
n

n

∑
j=1

h2r
j−1 · (ln j)

4rδ
(1+2r)2

−2ϕ
.

Thus, under the following conditions

m0 > 16R(R + 1) + 1, 4R < b <
m0 − 1

4(R + 1)
,

ϕ

b
< δ <

ϕ

4R

we have, as n→ ∞,
1
n

n

∑
j=1

h̃2r
j−1∆2

0(h̃j−1) = o

(
1
n2

n

∑
j=1

1
h∗j−1

)
and, as follows,

Ψ0(n) ≈
1

nhn
· (ln n)

2δ
(1+2r)2 ≈ 1

n
2r

1+2r
· (ln n)

2δ
(1+2r)2 .

Then, according to Theorem 2, in this case the rate of convergence of adaptive density
estimators of f ∈ F+

r differs from the rate of non-adaptive estimators in [26] on the extra
log-factor only.

For the functions f ∈ Fr and γ ∈ (0, min(r, 1)) from Examples 2 and 4, it is easy to
verify, that

Ψγ(n) ≈
1

n
2(r−γ)

1+2(r−γ)

(ln n)
δ

1+2(r−γ) as n→ ∞.

5.2. A Symmetric Estimator

Noting that the construction of the estimator f̂n(x) depends on the order by which
the data X1, . . . , Xn are employed, a simple improvement is immediately available. Let
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X[1] ≤ X[2] ≤ · · · ≤ X[n] be the order statistics that are a sufficient statistic in the case of
our i.i.d. sample X1, . . . , Xn. Hence, by the Rao–Blackwell theorem, the estimator

E( f̂n(x)|X[1], · · · , X[n]) (16)

will have smaller (or, at least, not larger) MSE than f̂n(x).
Unfortunately, the estimator (16) is difficult to compute. However, it is possible to

construct a simple estimator that captures the same idea. To do this, consider all distinct
permutations of the data X1, . . . , Xn, and order them in some fashion so that X(k)

1 , . . . , X(k)
n

is the kth permutation. For unifying presentation, the 1st permutation will be the original
data X1, . . . , Xn. Because of the continuity of the r.v.s X1, . . . , Xn, the number of such
permutations is n! with probability one.

So let f̂ (k)n (x) be the estimator f̂n(x) as computed from the kth permutation X(k)
1 , . . . , X(k)

n ,

i.e., Equation (14) with X(k)
1 , . . . , X(k)

n instead of X1, . . . , Xn.
Finally, let b ≤ n! be a positive integer (possibly depending on n), and let

f̄n,b(x) =
1
b

b

∑
k=1

f̂ (k)n (x). (17)

Theorem 4. For any choice of b(≤ n!), we have MSE( f̄n,b(x)) ≤ MSE( f̂n(x)).

Ideally, the practitioner would use a high value of b—even b = n! if the latter is com-
putationally feasible. However, even moderate values of b would give some improvement;
in this case, the b permutations to be included in the construction of f̄n,b(x) might be picked
randomly as in resampling/subsampling methods—see e.g., [27].

5.3. Adaptive Optimal Bandwidth

Define

L(h, φ) =
∫

1/h<|s|<c/h

(g(s, h)− 1)φ(s)e−isxds · {cφ(c/h)e−
icx
h + cφ(−c/h)e

icx
h

+h2
∫

1/h<|s|<c/h

g′h(s, h)φ(s)e−isxds}.

According to (8) the optimal bandwidth h0 is defined from the equality

L(h0, φ) =
2π2L1 f (x)

n
.

Thus, it is natural to define the adaptive (to the unknown parameter r and the function
f (x)) optimal bandwidth ĥ0 from the equality

L(ĥ0, φn) =
2π2L1 f̄n,b(x)

n
,

where the adaptive estimator f̄n,b(x) is defined in (17).
It is hoped that the bandwidths h0 and ĥ0 have similar asymptotic properties in view

of the fact that, according to Theorems 3 and 4 the function

nΨ−1/2(n)[L(h0, φ)−L(ĥ0, φn)]

is bounded in probability.
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6. Simulation Results

In this section we provide results of a simulation study regarding the estimators
introduced in Section 3.

Two flat-top kernels have been used in the simulation. The first one has the piecewise
linear kernel characteristic function introduced in [26], i.e.,

λ(s) =


1, |s| ≤ 1,
(c− |s|)/(c− 1), 1 < |s| < c,
0, |s| ≥ c.

The piecewise linear characteristic function and corresponding kernel are shown in
Figure 1.

The second case refers to the infinitely differentiable flat-top kernel characteristic
function defined in [28], i.e.,

λ(s) =


1, |s| ≤ c,
exp
[
−b exp

[
−b/(|s| − c)2]/(|s| − 1)2], c < |s| < 1,

0, |s| ≥ 1.

The characteristic function and kernel of the second case are shown in Figure 2.
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Figure 1. Piecewise linear characteristic function (left) and corresponding kernel (right), c = 1.5.
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Figure 2. Infinitely differentiable flat-top characteristic function (left) and corresponding kernel
(right), c = 0.05, b = 1.

We examine kernel density estimators of triangular, exponential, Laplace, and gamma
(with various shape parameter) distributions. Figures 3–5 illustrate the estimator MSE as a
function of the sample size.
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Figure 3. MSE of kernel estimators multiplied by n3/4 as a function of the sample size n for the
triangle density function. (a) MSE of estimator with piecewise linear kernel characteristic function.
(b) MSE of estimator with infinitely differentiable flat-top kernel characteristic function.
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Figure 4. MSE of kernel estimators (with piecewise linear kernel characteristic function) as a function
of the sample size n. (a) Laplace density function (r = 1, MSE multiplied by n3/4). (b) Gamma density
function (k = 3, r = 2, MSE multiplied by n5/6).
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Figure 5. MSE of kernel estimators (with piecewise linear kernel characteristic function) as a function
of the sample size n. (a) Gamma distribution shape parameter k = 4, r = 3 (MSE multiplied by n7/8).
(b) Gamma distribution shape parameter k = 6, r = 5 (MSE multiplied by n11/12).

Using notation C(x) = {0, x < 0; 1, x ≥ 0} for Heaviside step function, the triangular
density function is defined as f (x) = ((λ− |x|)/λ2)C(λ− x)C(λ + x) having character-
istic function φ(s) = 2(1− cos(λs))/(λs)2. Laplace density f (x) = λ/2 exp(−λ|x|) has
characteristic function φ(s) = λ2/(λ2 + s2), gamma density f (x) = λkxk−1e−λx/Γ(k) has
characteristic function φ(s) = λk/(λ− is)k.
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In all cases we choose scale parameter λ to have variation equals to 1, and consider
estimation of density function f (x) at point x = 1.

All the above-mentioned characteristic functions φ(s) satisfy condition (4) for r = 1
(triangular and Laplace), and r = k− 1 (gamma, k > 1); therefore, all distributions belong
to the family Fr with corresponding value of r. In addition, all φ(s) meet the requirements
of Example 2. Thus, the bandwidth can be taken in the form h = O(n−1/(2(r+1))) and the
expected convergence rate of the kernel estimator MSE is n−(2r+1)/(2(r+1)).

The main goal of the simulation study is investigation of the MSE behavior for the
kernel estimator with the growth of sample size. We generate sequences of 150 samples for
sample size from 25 to 2000 with step 25, and for some distributions for sample size from
2000 to 20,000 with step 100 or 200. Then, for each sample size we calculate the estimator
MSE multiplied by n−(2r+1)/(2(r+1)) and expect visual stabilization of the sequence of
resulting values with growth of n.

Typical examples of the simulation results are presented at Figure 3 (for r = 1), Figure 4
(for r = 1 and r = 2), and Figure 5 (for r = 3 and r = 5). The expected stabilization of the
scaled MSE is observed in all cases. Moreover, increasing r causes enlargement of sample
size that is needed to achieve limiting asymptotic behavior. For r = 1 and r = 2 we can see
stabilization starting from n ≈ 500, for r = 3 it starts from n ≈ 1500, while for r = 5 the
asymptotic behavior is observed to start from sample size n ≈ 15,000.

7. Technical Proofs
7.1. Proof of Lemma 1

First we note that for every m ≥ 1 and n ≥ 1 there exist positive numbers κm such that

sup
f∈F r

E f |φn(s)− φ(s)|2m ≤ κm

nm .

These inequalities follow from the Burkholder inequality (see, for example, [29]) for the

martingale (
n
∑

k=1
(eisXk − φ(s)),FX

n ),FX
n = σ{X1, . . . , Xn} and finiteness of the function φ(·).

Using this and Hölder’s inequalities we can estimate

sup
f∈F r

E f J2m
n,α = sup

f∈F r

E f

 ∫
An<|s|<Bn

|s|α|φn(s)− φ(s)|ds


2m

≤

 ∫
An<|s|<Bn

|s|
2mα

2m−1 ds


2m−1

·
∫

An<|s|<Bn

sup
f∈F r

E f |φn(s)− φ(s)|2mds ≤ Cα,mB2m(α+1)
n

nm .

From the Borel–Cantelli lemma and the assumed summability of the right-hand side
of (13) for m = m0, α = $n + δn and f ∈ F r follows the second assertion of Lemma 1.

7.2. Proof of Theorem 2

We prove now the statements 1◦ (a) and 2◦ (a) of Theorem 1. First, we show for n large
enough the inequalities

r+n < $n Pf − a.s. (18)

To this end, according to the definition of the estimator r+n , it is enough to establish for
some α > r the limiting relation

lim
n→∞

Φn,α(An, Bn) = ∞ Pf − a.s.,
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which follows from the definition of the class C+ and Lemma 1:

Φn,α(An, Bn) = Φn,α(An, Bn)−Φα(An, Bn) + Φα(An, Bn)

≥ Φα(An, Bn)− Jn,α → ∞ Pf − a.s.

From (18) and by the definition of the estimator r+n , for n large enough, we have

Φn,r+n +δn
(An, Bn) ≥ H.

Thus,
lim

n→∞
Φr+n +δn

(An, Bn) ≥ lim
n→∞

Φn,r+n +δn
(An, Bn)

− lim
n→∞

Jn,$n+δn ≥ H Pf − a.s. (19)

Analogously,
lim

n→∞
Φr+n

(An, Bn) ≤ H Pf − a.s. (20)

From (19) and (20) it follows, that for any ε > 0 and δ > 0 for n large enough

r− ε− δ < r+n < r + ε Pf − a.s.

and the assertion 1(a) of Theorem 2 is proved.
From the definitions of the estimator r+n , class C∗+, Chebyshev’s inequality and (13),

for m ≥ 1, n > n1 and f ∈ F+
r we have

Pf (r+n−1 < r− δn−1) ≤ Pf (Φn,r(An, Bn) ≥ H) ≤ Pf (Jn,r ≥ H −Φr(An, Bn))

≤
E f J2m

n,r

(H −Φr(An, Bn))2m ≤
Cr,mB2m(r+1)

n
nm . (21)

Similar to (21) for n > n2 and m ≥ 1 we obtain

Pf (r+n−1 > r + δn−1) ≤ Pf (Φn,r+δn(An, Bn) < H) = Pf (Φr+δn(An, Bn)− H ≤ Jn,r+δn)

≤
E f J2m

n,r+δn

(Φr+δn(An, Bn)− H)2m ≤
Cr+1,mB2m(r+1+δn)

n

nm (22)

and, as follows, for f ∈ F+
r ,

Pf (δ
−1
n |r+n − r| ≥ 1) ≤ 2Cr+1,mB2m(r+1+δn)

n

nm . (23)

From the Borel–Cantelli lemma and the assumed summability of the right hand side
in (23) for m ≥ m0 follows the assertion 2(a) of Theorem 2.

The other statements of Theorem 2 for the estimator rn can be proved analogically.

7.3. Proof of Theorem 3

Consider the deviation of the estimator (14) in the following form:

f̂n(x)− f (x) = I1(n) + I2(n), (24)

where
I1(n) = f̂n(x)− f̃n(x), I2(n) = f̃n(x)− f (x),

f̃n(x) =
1
n

n

∑
j=1

∫
K(z) f (x− ĥj−1z)dz =

1
2πn

n

∑
j=1

∫
λj−1(s)φ(s)e−isxds.
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Now we estimate second moments of I1(n) and I2(n). Denote FX
j = σ{X1, . . . , Xj}.

For f ∈ F r we have

E f I2
1 (n) =

1
n2 E f

(
n

∑
j=1

1
ĥj−1

[
K

(
x− Xj

ĥj−1

)
− ĥj−1

∫
K(z) f (x− ĥj−1z)dz

])2

=
1
n2 E f

n

∑
j=1

1
ĥ2

j−1

E f

[K

(
x− Xj

ĥj−1

)
− ĥj−1

∫
K(z) f (x− ĥj−1z)dz

]2

|FX
j−1


=

1
n2 E f

n

∑
j=1

1
ĥj−1

∫
[K(u)− ĥj−1

∫
K(z) f (x− ĥj−1z)dz]2 f (x− ĥj−1u)du

≤ C1

n2

n

∑
j=1

E f
1

ĥj−1
+

f
2

n
≤ C1

n2

n

∑
j=1

1
h∗j−1

+
C1

n2

n

∑
j=1

jPf (r(j) < r− δj) +
f

2

n
.

From (21) for m = 2m0 we obtain

E f I2
1 (n) ≤

C1

n2

n

∑
j=1

1
h∗j−1

+
C1

n2

n1

∑
j=1

j +
C1Cr,2m0

n2 ∑
j>n1

jB4m0(r+1)
j

j2m0
+

f
2

n

=
C1

n2

n

∑
j=1

1
h∗j−1

+
C̃1

n2 +
f

2

n
. (25)

Further, by the definition of the function f̃ (x), the Cauchy–Bunyakovskii–Schwarz
inequality and from (22) we have

E f I2
2 (n) =

1
4π2n2 E f

 n

∑
j=1

∫
|s|≥ĥ−1

j−1

(λj−1(s)− 1)φ(s)e−isxds


2

≤ 1
4π2n ∑

j≥1
E f

 ∫
|s|≥ĥ−1

j−1

|φ(s)|ds


2

≤ 1
4π2n

n

∑
j=1

E f ĥ2r−2γ
j−1 ·

 ∫
|s|≥ĥ−1

j−1

|s|r−γ|φ(s)|ds


2

=
1

4π2n

n

∑
j=1

E f ĥ2r−2γ
j−1 ∆2

γ(ĥj−1) ≤
1

4π2n

[
n

∑
j=1

h̃2r−2γ
j−1 ∆2

γ(h̃j−1) +
n2

∑
j=1

h
2r−2γ
j−1 ∆2

γ(hj−1)

+ ∑
j>n2

h
2r−2γ
j−1 ∆2

γ(hj−1)Pf (r(j) > r− γ + δj)

]
≤ 1

4π2n

[
n

∑
j=1

h̃2r−2γ
j−1 ∆2

γ(h̃j−1)

+
n2

∑
j=1

h
2r−2γ
j−1 ∆2

γ(hj−1) + Cr+1,m0 ∑
j>n2

h
2r−2γ
j−1 ∆2

γ(hj−1)
B

2m0(r+1+δj)

j

nm0


≤ 1

4π2n

n

∑
j=1

h̃2r−2γ
j−1 ∆2

γ(h̃j−1) +
C2

n
. (26)

From (24)–(26) follows the first assertion of Theorem 3.
For the proof of the second assertion we estimate first, for some integer m > 1 the rate

of convergence of the moment E f I2m
1 (n).
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Let α1, . . . , αm be non-negative integers and denote

K̃j(x) = K

(
x− Xj

ĥj−1

)
− ĥj−1

∫
K(z) f (x− ĥj−1z)dz,

K j(x) =
∫
[K(u)− ĥj−1

∫
K(z) f (x− ĥj−1z)dz]2 f (x− ĥj−1u)du.

By the Burkholder inequality for the martingale
n
∑

j=1

1
ĥj−1

K̃j(x) we have

E f I2m
1 (n) =

1
n2m E f

(
n

∑
j=1

1
ĥj−1

K̃j(x)

)2m

≤ C
n2m E f

(
n

∑
j=1

1
ĥ2

j−1

K̃2
j (x)

)m

≤ C
n2m ∑

α1+...+αm=m
∑

1≤j1<...<jm≤n
E f

1
ĥ2

j1−1 · . . . · ĥ2
jm−1

K̃2
j1(x) · . . . · K̃2

jm(x)

≤ C
n2m ∑

α1+...+αm=m
∑

1≤j1<...<jm≤n
E f

K̃2
j1
(x) · . . . · K̃2

jm−1
(x) · K jm(x)

ĥ2
j1−1 · . . . · ĥ2

jm−1−1 · h∗jm−1

≤ C
n2m ∑

α1+...+αm=m
∑

1≤j1<...<jm≤n
E f

1
ĥ2

j1−1 · . . . · ĥ2
jm−2−1 · h∗jm−1−1 · h∗jm−1

·K̃2
j1(x) · . . . · K̃2

jm−2
(x) · K jm−1(x) ≤ . . . ≤ C

n2m

(
n

∑
j=1

1
h∗j−1

)m

.

By the definition of h∗j for some 0 < r∗ < r − γ and j∗ < ∞, h∗j ≥ n−
1

1+2r∗ and,
as follows

E f I2m
1 (n) = O

(
n−

2mr∗
1+2r∗

)
as n→ ∞.

Thus
2mr∗

1 + 2r∗
> 1 for m >

1 + 2r∗
2r∗

and by the Borel–Cantelli lemma, as n→ ∞,

I1(n)→ 0 Pf − a.s. (27)

Further,

|I2(n)| ≤
1

4π2n

n

∑
j=1

ĥr
j−1|∆γ(ĥj−1)|

and, as follows, as n→ ∞,
I2(n)→ 0 Pf − a.s. (28)

From (27) and (28) follows the second assertion of Theorem 3.

7.4. Proof of Theorem 4

Note that the distribution of f̂ (k)n (x) is the same as that of f̂ (j)
n (x) for all k, j. Hence,

E f̄n,b(x) = E f̂n(x). Now |Cov( f̂ (k)n (x), f̂ (j)
n (x))| ≤ Var( f̂ (1)n (x)) by the Cauchy–Schwarz

inequality and the fact that Var( f̂ (k)n (x)) = Var( f̂ (j)
n (x)). Thus,

Var( f̄n,b(x)) =
1
b2

b

∑
k=1

b

∑
j=1

Cov( f̂ (k)n (x), f̂ (j)
n (x)) ≤ Var( f̂ (1)n (x))

and the theorem is proven.
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8. Conclusions

Non-parametric kernel estimation crucially depends on the bandwidth choice which,
in turn, depends on the smoothness of the underlying function. Focusing on estimating
a probability density function, we define a smoothness class and propose a data-based
estimator of the underlying degree of smoothness. The convergence rates in the almost
sure sense of the proposed estimators are obtained. Adaptive estimators of densities from
the given class on the basis of the constructed smoothness parameter estimators are also
presented, and their consistency is established. Simulation results illustrate the realization
of the asymptotic behavior when the sample size grows large.

Recently, there has been an increasing interest in nonparametric estimation with
dependent data both in terms of theory as well as applications; see, e.g., [15,30–33]. With
respect to probability density estimation, many asymptotic results remain true when
moving from i.i.d. data to data that are weakly dependent. For example, the estimator
variance, bias and MSE have the same asymptotic expansions as in the i.i.d. case subject to
some limitations on the allowed bandwidth rate; fortunately, the optimal bandwidth rate
of n−1/5 is in the allowed range—see [34,35].

Consequently, it is conjectured that our proposed estimator of smoothness—as well as
resulting data-based bandwidth choice and probability density estimator—will retain their
validity even when the data are weakly dependent. Future work may confirm this conjec-
ture especially since working with dependent data can be quite intricate. For example, [36]
extended the results of [34] from the realm of linear time series to strong-mixing process.
In so doing, Remark 5 of [36] pointed to a nontrivial error in the work of [34] which is
directly relevant to optimal bandwidth choice.
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