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Abstract: A phylogenetic regression model that incorporates the network structure allowing the
reticulation event to study trait evolution is proposed. The parameter estimation is achieved through
the maximum likelihood approach, where an algorithm is developed by taking a phylogenetic
network in eNewick format as the input to build up the variance–covariance matrix. The model
is applied to study the common sunflower, Helianthus annuus, by investigating its traits used to
respond to drought conditions. Results show that our model provides acceptable estimates of the
parameters, where most of the traits analyzed were found to have a significant correlation with
drought tolerance.
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1. Introduction

Hybridizations among closely related species have frequently occurred in nature. Un-
der Mayr’s biological species concept, hybrid species can be defined as organisms formed
by cross-fertilization between individuals of different species [1,2]. Hybrid speciation
occurs in at least two ways: allopolyploid speciation and diploid (homoploid) hybrid
speciation. While allopolyploidy is hybrid speciation between two species resulting in a
new species that has the complete diploid chromosome complement of both its parents,
diploid hybrid speciation results from a normal sexual event in which each gamete has a
haploid complement of the nuclear chromosomes from its parent, but gametes that form
the zygote come from different species [3]. This means that, in hybrid speciation, the new
species may have the same number of chromosomes as its parent (diploid hybridization)
or the sum of the number of chromosomes of its parents (polyploid hybridization).

Phylogenetic comparative methods (PCMs) are commonly applied to study correlated
trait evolution; most methods were developed by incorporating a phylogenetic tree to
represent the affinity among a group of related species [4–6]. However, if evolution involved
ancient hybridizations, then we cannot simply use the phylogeny to represent the affinity
among species, but instead should use the phylogenetic network (which is a directed
acyclic graph, coupled with time constraints). Currently, in the literature, we can observe
the development of statistical methods using phylogenetic networks to investigate trait
evolution including the hybridization process [7–10]. Note that approaches to phylogenetic
analysis typically involve constructing networks using molecular data [11,12], while our
approach employs the given phylogenetic network with known topology and branch
lengths to study the evolution of traits.

The objective of our research is to examine the evolution of traits in both hybrid
and non-hybrid species, specifically through the lens of reticulation evolution. This phe-
nomenon involves the merging of genetic material from different species, resulting in the
creation of hybrid offspring that exhibit a unique combination of traits inherited from
their parents. Our study aims to investigate the implications of reticulation evolution for
correlated trait evolution in a linear regression framework.
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The paper is organized as follows. In Section 2, we model the hybrid on the given
phylogenetic network and create a phylogenetic regression model to analyze trait data that
account for the hybrid information. In Section 3, a heuristic algorithm is proposed to build
the variance–covariance matrix given a phylogenetic network and we propose a maximum
likelihood framework for parameter estimation. In Section 4, the novel regression model
is applied to study the drought tolerance of sunflowers. The discussion for this work is
provided in Section 5, and the conclusions are given in Section 6.

2. Model
2.1. Relation between the Hybrid and Its Parents

Figure 1 displays a phylogenetic network that illustrates the connection between three
species—X, R, and Y. Species R is a hybrid of species X and Y, and it came into existence
at a specific time, t = t1. The root node O served as the ancestor for the three species. The
purpose of the network is to show the relationships between the species.

Figure 1. A three-taxa phylogenetic network. The hybrid species R of X and Y on the tips of the
network was formed at t = t1.

To model trait evolution with hybridization, we treat the hybrid node on the phyloge-
netic network by allowing a burst of new variation at the hybridization event. We achieve
this by incorporating a hybridization parameter τ. Consider that the trait of the hybrid
species is defined in the log scale [7,8] via log R = γ log X + (1− γ) log Y + log τ, where γ
is the proportion of the hybrid trait inherited from parent X (i.e., 1− γ is the proportion of
the hybrid trait inherited from parent Y), and τ is denoted as the hybridization parameter
that is designed to model an increase in the variance of the hybrid species.

In raw scale modeling, the relation can be expressed by exponentiation to obtain
R = τXγY1−γ. For a setting, we use γ = 0.5, where the hybrid was assumed to be
inherited equally from both parents. The arithmetic–geometric inequality establishes that
R = τ

√
XY ≤ τ

2 (X + Y). As τ typically ranges between (0, ∞), it follows that τ
2 shares

this range with τ. Because the quantitative phenotypic traits are inherently non-negative,
the inequality of arithmetic and geometric means condition is met. By incorporating a
model that permits variation in the hybrid’s variance to be computed from an additive
operation on X, Y through τ, we establish the relationship between the hybrid species R
and its parent organisms X and Y in Equation (1):

R = τ(X + Y). (1)

By incorporating this additive structure, below, we provide an approach to modeling
hybrid trait evolution. In Equation (1), the affinity among species at time t in the phyloge-
netic network can be derived as follows. For any other species Z, the affinity between Z
and R is

Cov(R, Z) = Cov(τ(X + Y), Z) = τ{Cov(X, Z) + Cov(Y, Z)} (2)
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In particular, when Z = R, we have

Var(R) = Var(τ(X + Y)) = τ2{Var(X) + Var(Y) + 2Cov(X, Y)}. (3)

Given a phylogenetic network N of n taxa, one can use Equations (2) and (3) to derive
the corresponding similarity matrix Gτ,n = [gτ,ij], where gτ,ij, i, j = 1, 2, · · · , n describe the
affinities between taxa i and j, possibly with hybrid species.

Below, we use the Brownian motion (BM) in modeling trait evolution [5,13,14] with
the definition in Equation (1) to construct the model and variance–covariance matrix for a
group of related species in Section 2.2.

2.2. Covariance Matrix under the Brownian Motion Model

Under the assumption of the BM process for trait evolution[15], we can define
X := Xt, Y := Yt as stochastic variables with Xt = X0 + σxεX

t , Yt = Y0 + σxεY
t , where

X0 = Y0 is the ancestral value at the root of the tree, σx and σy are parameters of the rate of
evolution, and εX

t and εY
t are the Brownian motion variables with E[εX

t ] = E[εY
t ] = 0 and

Var[εX
t ] = Var[εY

t ] = t for trait X and Y, respectively.
Given the network with a known topology and branch length (times) as shown in Figure 1,

we have Var(X) := Var(Xt1+t2) = σ2(t1 + t2), Var(Y) := Var(Yt1+t2) = σ2(t1 + t2), and
Cov(X, Y) = 0 as X and Y are independent. Since the hybrid R is produced at time
t = t1, the variation in the hybrid R is decomposed into two parts: one comes from its
parent at t1 and the other comes from its evolution from t1 to t1 + t2. Hence, we have
Var(R) := Var(Rt1+t2) = Var(Rt1) + Var(R[t1,t1+t2]

) = Var(τ(Xt1 + Yt1)) + σ2(t1 + t2 −
t1) = τ2{Var(Xt1) + Var(Yt1) + 2Cov(Xt1 , Yt1)} + σ2t2 = τ2σ2(t1 + t1 + 2 · 0) + σ2t2 =
(2τ2t1 + t2)σ

2.
Since evolution on different branches occurs independently, the covariation between

the hybrid and its parents is Cov(Y, R) = Cov(X, R) = Cov(Xt1 , Rt1) = Cov(Xt1 , τ(Xt1 +
Yt1)) = τ[Cov(Xt1 , Xt1) + Cov(Xt1 , Yt1)] = τ[Var(Xt1) + 0] = τσ2t1. Therefore, with
Equations (1)–(3), the corresponding similarity matrix Gτ,3 is obtained as in Figure 1.

Gτ,3 =


X R Y

X t1 + t2 τt1 0
R τt1 t2 + 2τ2t1 τt1
Y 0 τt1 t1 + t2

. (4)

Previous work has explained trait evolution in a logarithmic scale, using different
parameter notations for the hybrid vigor [7–9], while we use τ. However, it is worth noting
that both of these prior methods do account for the hybrid effect. Our proposed approach
offers an alternative method of constructing the variance–covariance matrix, which differs
from the methods used in the literature. We must acknowledge that our method has a
limitation in its ability to handle gene flow, as it can only account for reticulation events.
This limitation has been discussed in the literature [8].

2.3. Stepwise Procedure for Constructing the Variance–Covariance Matrix

In this study, we present a novel method for constructing the variance–covariance
matrix using a matrix multiplication technique. The proposed approach involves a three-
step process, as illustrated in Figure 2.
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Figure 2. Evolution scenario for 3-taxa phylogenetic network containing a reticular hybridiza-
tion event.

Figure 2 describes an evolutionary scenario for a phylogenetic network with three taxa,
which involves a reticular hybridization event. The scenario consists of three main steps:

1. Step 1: the root O speciates into two distinct taxa denoted as Xt1 and Yt1.
2. Step 2: a hybrid species, denoted as R, is produced as a result of hybridization between

X and Y at a specific time point, denoted as t1.
3. Step 3: after t = t1, the three species X, R, and Y continue to evolve without undergo-

ing any further speciation or hybridization, ultimately reaching the current time point
of t = t1 + t2.

Note that this calculation of the covariance matrix is a three-step process [16], with both
steps able to be described using matrix operations.

First, in step 1 in Figure 2, a speciation at the root yields two species X, Y at t1 with the
covariance in Equation (5):

G2 =

(X Y
X t1 0
Y 0 t1

)
. (5)

Next, in step 2, there is the instantaneous hybridization event at time t1. This can be
accomplished mathematically by multiplying the previous 2-by-2 matrix describing the
variance G2 in Equation (5) in X and Y by a 3× 2 path matrix K2,τ on the left and Kt

2,τ on
the right:

G2,τ = K2,τG2Kt
2,τ =


X R Y

X t1 + t2 τt1 0
R τt1 2τ2t1 τt1
Y 0 τt1 t1 + t2

, (6)

where K2,τ is shown in Equation (7)

K2,τ =


X Y

X 1 0
R τ τ
Y 0 1

. (7)
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Finally , the last step is elongation by adding t2I3, where I3 is the 3-by-3 identity matrix.
The corresponding covariance structure is shown in Equation (8):

G3,τ =


X R Y

X t1 + t2 τt1 0
R τt1 2τ2t1 + t2 τt1
Y 0 τt1 t1 + t2

. (8)

Alternatively, standard speciation events, as depicted in Figure 3, can be analyzed
using analogous matrix operations.

Figure 3. A phylogenetic tree of 3 taxa. X, Z, Y are taxa; O is the root. X and Z share the same branch
length on t1. Y is independent with both X and Z.

The instantaneous speciation event shown in Figure 3 at time t1 is accomplished by
multiplying on the left and on the right by the transpose of the matrix:

K2,τ=1 =


X Y

X 1 0
Z 1 1
Y 0 1

. (9)

For the tree case with only speciation, as shown in Figure 3, one can construct the
similarity matrix G3 in Equation (10):

G3 = K2,τ=1G2Kt
2,τ=1 =


X Z Y

X t1 + t2 t1 0
Z t1 t1 + t2 0
Y 0 0 t1 + t2

. (10)

These operations can be generalized to the k existing species case whenever the k + 1
taxon arises by hybridization or speciation. Since the form of K changes depending on
whether the hybridization of speciation is involved, we adopt the following notation: let Kj
denote the (j + 1) by j matrix obtained from the j by j identity matrix by inserting a row
with a one in column j and zeros elsewhere, where column j denotes the taxon involved in
the speciation event. Let Kj,τ denote the (j + 1) by j matrix obtained from the j by j identity
matrix by inserting a row with τ in columns i and j and zeros elsewhere, where columns i
and j denote the taxa involved in the hybridization event. Then, the adjustment from time
t1 + · · ·+ tj−1 to time tj is as given in Equation (11):

Gj,τ = Kj−1Gj−1,τKt
j−1 + tjIj, (11)

where, for hybridization, Kj−1 = Kj−1,τ , and for speciation, Kj−1 = Kj−1,τ=1, which sets
τ = 1, as is evident from Equation (9) when we compare it with Equation (7).
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Our proposed methodology can indeed handle a general ultrametric phylogenetic
network with an arbitrary number of hybrid nodes, as later demonstrated in the case study
with 13 species and 3 hybrid species in Section 4, as well as the six-taxa network with
two hybrids presented in Appendix A.2.

2.4. The Statistical Model and Likelihood Function

Under the regression model framework, let Y = (y1, y2, ..., yn)t be the trait values for
n species, some of which are possibly old hybrids. Let X = [1, X1, X2, · · · , Xp] be the n× k
design matrix from the covariate trait, where 1 = (1, 1, · · · , 1)t ∈ Rn is the vector of 1s,
and we have

Y ∼ Xβ + ε, where ε ∼ N (0, σ2Gτ). (12)

Let θ = (τ, σ, β), and the negative log-likelihood function given the traits Y, X and
network N is

− log L(θ|Y, X,N) = n
2

log(2π) +
n
2

log σ2 +
1
2

log |Gτ |+
1

2σ2 (Y− Xβ)tG−1
τ (Y− Xβ). (13)

The least-square estimate is shown in Equation (14):

β̂ = (X tG−1
τ X)−1X tG−1

τ Y. (14)

As the model assumes a Gaussian process distribution, the estimation of model
parameters can be conducted through maximum likelihood inference, utilizing the Nelder–
Mead optimization method in the R software [17]. One of the Nelder–Mead optimization’s
primary benefits is that it can be utilized in a variety of problem settings, without requiring
knowledge of the objective function’s derivatives. In our specific likelihood function, the
covariance matrix contains embedded parameters denoted by τ.

We use maximum likelihood analysis to estimate the hybridized parameter τ by
optimizing the negative log-likelihood function, where |Gτ | is the determinant of Gτ .
We set the bound for τ as [0, 10] for the purpose of optimization. We use the golden
section method to search for the maximum likelihood estimator (MLE) of the negative
log-likelihood function for the Brownian motion model.

Let J(τ, σ) ≡ − log L(τ, σ|β, Y, X,N). By taking the partial differentiation of J(τ, σ)
with respect to τ and σ, the Hessian matrix can be obtained:

H(τ∗, σ∗) =
∂2 J(τ, σ)

∂τ∂σ

∣∣∣∣∣
(τ,σ)=(τ∗ ,σ∗)

= Σ−1
τ∗ ,σ∗ , (15)

which is useful to compute the variance of parameters τ, σ for further inference.
For the Gaussian random variable (here, the Brownian motion), the second derivatives

of the objective function are constant for (τ, σ) because the objective function is a quadratic
function (τ, σ). Therefore, the Hessian matrix can be computed without obtaining the mean
vector (τ∗, σ∗). We apply the R function hessian [18] to compute the Hessian matrix.

It is known that under regularity conditions (smoothness of the likelihood
function) [19], the estimator β̂ (by iterating a finite number of times) is asymptotically

distributed as
√

n(β̂− β)
d−→ N (0, V) where n is the taxa size and σ2X tG−1

τ X converge
to V in probability. It is assumed that the response variable Y is continuous and that
the error terms ε are normally distributed with a mean of 0 and a covariance matrix of
σ2Gτ , which means that the Brownian motion assumption is applied to each tip variable
yi in the response trait vectors Y. The predictor variables Xi are non-stochastic and fixed.
Based on these assumptions, the likelihood of the linear regression model is given by an
equation, Equation (13), and in order to show that this equation meets the regularity condi-
tions, several properties must be satisfied. The likelihood function must be well-defined,
non-negative, continuous in β and σ2Gτ , and differentiable with respect to β, σ2, and τ
separately. These properties are satisfied because the likelihood function is a product of
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non-negative terms, the exponential function is always positive, and the sum of continuous
functions is continuous. Additionally, the derivatives of the likelihood function with respect
to β and σ2 are continuous. However, we note to the reader that the regularity condition’s
likelihood function in Equation (13) depends on a certain range of the parameters τ for the
network models proposed here and in the literature [7,8]. The derivative of the likelihood
function with respect to τ involves the inverse of the covariance matrix G−1

τ , which depends
on the network structure. First, Gτ is symmetric as a covariance matrix. If Gτ is a positive
definite matrix, the derivative of the likelihood with respect to τ will be continuous. The
inference can be used to infer the regression effect pending the condition of the τ. In the
empirical analysis, we verify the positive definite property of the Gτ .

According to Varga and Nabben [20] and Nabben and Varga [21], if the covariance ma-
trix Gτ is an ultrametric matrix, meaning that it satisfies certain mathematical inequalities
(i.e., Gτ [i, i] > max{Gτ [i, k], k 6= i} for all i = 1, 2, · · · , n, Gτ [i, j] ≥ min{Gτ [i, k], Gτ [k, j})
for all i, j, and k), then the derivative of the likelihood function with respect to τ will be
continuous. This is because ultrametricity implies the stronger condition of the triangle
inequality, which ensures that the matrix is always positive definite and has no negative
eigenvalues. To ensure that all regularity conditions are met, it would be ideal to determine
the parameter space for τ that would make Gτ ultrametric before analysis. However, this
strict condition depends on the given network and cannot be solved analytically in general.
For example, in the case of a three-taxon network, as shown in Equation (8), the parameter
space for τ would need to be constrained to τ ∈ {τ : (t1 + t2) > τt1; 2τ2t1 + t2 > τt1} to
meet the ultrametric condition.

3. Algorithm and Inference

An extended Newick format (eNewick) uses unique syntax to represent a given
phylogenetic network in linear form [22]. A phylogenetic network can be transformed into
a phylogenetic tree with some replicated nodes, adequately tagged according to the hybrid
nodes, and then traversing the resulting phylogenetic network in postorder to obtain the
eNewick description of the phylogenetic network. We modified their representation in the
function newick2phylog in the ade4 package [23] in the R software to obtain the eNewick
format. The function Newick2phylog [23] in the ade4 package of the R software program
was designed to read in phylogenies in Newick format and return an array with three
columns, where the first column contains the ancestral nodes and the second and third
columns have the two descendants of the corresponding ancestor. Note that the number
of rows (ancestors) in this array is n − 1 + 2k as a hybrid node requires two incoming
ancestors while a species node only has one ancestor. The root is also included in the count.
To provide an example, in a n = 3 taxa network with one hybrid (k = 1), as in Figure 1 ,
we have the number of rows equal to 4, which is calculated as 3− 1 + 2× 1. This is also
shown in the following Table 1.

Table 1. Ancestral–descendant relationship corresponding to Figure 1.

Rows Parent Descendant 1 Descendant 2

1 O Xt1 Yt1
2 Xt1 X Rt1
3 Yt1 Y Rt1
4 Rt1 R R

The algorithm can generate the covariance matrix Gn,τ by starting from the root,
adding a new node in each step, and terminating until the desired matrix of n species
is built. For the tree case, each descendant has a unique ancestor. For the node with
the reticulated event, the function reads a descendant such as a hybrid species with two
ancestors; in one of the ancestral rows, the descendant will be listed by name, and in the
other row, the descendant will have a _1 attached to the end of the name. After determining
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the ancestral–descendant relationships, we find the times from the root at which speciation
events or hybridization events occur: t1, t1 + t2, t1 + t2 + t3, · · · , etc. Note that there are
n − 1 branches, and we build the phylogenetic similarity matrix Gn,τ up from the root.
For times t < t1, there are two species present whose evolution is independent given the
root. The relationship matrix up until t1 is thus a 2× 2 diagonal matrix with t on the
diagonal. For each event, we adjust the similarity matrix according to Equation (11) for
the Brownian motion model as follows to generate the variance–covariance matrix Gn,τ
for n tips by starting with the root, adding a new node at each speciation or hybridization
event, and terminating when the process reaches the tips. A concrete example with detailed
illustration is provided in Appendix A.2.

Our proposed methodology uses a feasible generalized least-squares approach to
estimate the model parameters τ and σ, as well as the regression parameter β, through a
joint estimation approach. An alternating search procedure is utilized to simultaneously
obtain the estimate for β̂ and the covariance by maximizing the likelihood of the model pa-
rameters and minimizing the squared residuals of the regression parameters, as illustrated
in Algorithm 1.

Algorithm 1 Procedure for Parameter Estimation.

Require: Predictive traits X = [X1, X2, · · · , Xp], and Y, network N.

Ensure: Regression estimator β̂, hybrid vigor estimator τ̂, and rate estimator σ̂.

1: Get ordinary least-square estimates β̂0 = (X tX)−1X tY, σ̂0 =
√

n−p
n ε̂t ε̂ where

ε̂ = Y− X β̂0, p is the number of covariates.

2: Set τ0 = 0.1.

3: Use the tree traversal algorithm with Equation (11) to construct the variance–covariance

matrix Gτ .

4: Compute `0 = − log L(τ0, σ̂0|β̂0, Y, X,N)
5: Apply the Nelder–Mead method to search the maximum likelihood τ̂ and σ̂ and let

`1 = − log L(τ̂, σ̂|β̂0, Y, X,N) in Equation (13).

6: Use τ̂ to compute the GLS estimate β̂′ = (X tG−1
τ̂ X)−1X tG−1

τ̂ Y.

7: if ||β̂′ − β̂0||2 < 10−5

8: return τ̂, σ̂, β̂′.

9: else

10: if `1 < `0

11: set τ0 = τ̂, σ0 = σ̂.

12: Set `10 = − log L(τ̂, σ̂|β̂0, Y, X,N) and `11 = − log L(τ̂, σ̂|β̂′, Y, X,N)
13: if `11 < `10

14: Set β̂0 = β̂′ and go to step 4.

15: else Go to step 4.

4. Empirical Analysis

Hybridization is common in nature, with at least 25% of plant species showing hy-
bridization. Sunflowers are an example of a species that has adapted to a wide range of
environmental conditions, including soil types, temperature, and salinity. Studies show
that hybridization frequently occurs among sunflowers, resulting in genetically hybrid
species. Sunflowers have various uses, including traditional Chinese medicine, edible oil,
and soil phytoremediation [24]. The family of Helianthus is the subject of ongoing research
on the adaptation of hybrid species to their environment. Sunflowers, in particular, have
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adapted to tolerate drought and salty conditions in their habitats with lower precipitation
levels. Selective sweeps in sunflowers have revealed candidate genes for adaptation to
drought and salt tolerance [25]. Studies have also shown that sunflowers vary in their
tolerance to drought [26].

The study focused on exploring the correlation between traits and drought tolerance,
with soil moisture, precipitation, and rainfall in the area considered as possible factors that
affect the response variable, Y. The precipitation data used as the covariates were collected
from the WorldClim database [27,28]. The geographical data of the longitude and latitude
of sunflowers were collected from the Global Biodiversity Information Facility (GBIF)
database [29], and the R package raster [30,31] was used to download the corresponding
data for analysis. To further investigate sunflowers’ adaptation to drought tolerance condi-
tions, a phylogenetic regression method was proposed, which can analyze trait data from
both hybrid and typical species in the evolutionary mechanism. This method was applied
to study a group of common sunflowers, Helianthus annuus, using data from the efloras
database [32]. The collected traits include the plant height, petiole, pedicel, hemispherical
bract, bract, stalk, leaf, ray flower, disk, corolla, and calyx achene of sunflowers. The predic-
tor variable used in the study was the annual precipitation amount measured in various
locations, which was obtained using the raster package from the WorldClim database. For
example, the precipitation data for uncommon species located at 38.68 latitude degrees and
−110.54 longitude degrees were obtained with a setting resolution of 0.5 minutes.

The presented data in Table 2 showcase the response traits of sunflowers, including
various characteristics such as annuals, petioles, peduncles, involucres, phyllaries, paleae
laminae, ray florets, disc florets, corollas, cypselae, and pappi. The covariate trait in
question is the annual precipitation (AnnPrec), which represents the yearly precipitation
levels at the location of the observed sunflowers.

Table 2. Sunflowers and their traits. Each column represents a sunflower species, while each row
records the trait collected from the database.

Praecox Debilis Neglectus Petiolaris Anomalus Deserticol Paradoxus Annuus Argophyllus Bolanderi Exilis

AnnPrec 1796.71 978.25 148.00 384.80 393.25 154.00 229.00 459.62 695.25 444.67 829.00
Annuals 95.00 7.00 27.50 15.50 34.50 7.25 21.00 13.50 35.00 5.50 2.90
Petioles 1.35 115.00 4.00 29.50 16.00 25.00 7.75 17.50 15.50 30.00 4.75
Peduncles 2.85 1.85 140.00 9.50 25.00 12.00 30.00 9.50 34.00 26.00 150.00
Involucres 6.25 4.50 3.00 120.00 3.00 9.50 17.00 19.50 6.00 17.50 20.00
Phyllaries 75.00 5.25 3.75 2.25 42.50 3.10 6.50 23.50 17.00 7.50 27.50
Paleae 9.50 25.00 7.15 6.80 3.25 25.00 3.50 2.00 19.00 17.00 8.50
Laminae 20.00 10.00 25.00 5.75 4.50 2.05 165.00 3.75 15.00 17.50 20.00
Ray florets 8.50 25.00 16.00 50.00 5.25 3.50 2.70 200.00 11.00 11.00 27.50
Disc florets 25.00 10.00 37.50 23.50 150.00 6.50 4.50 2.75 200.00 6.00 5.00
Corollas 25.00 27.50 10.50 25.00 17.50 150.00 7.00 5.00 2.35 105.00 2.50
Cypselae 8.00 21.00 14.00 10.00 17.00 14.50 75.00 6.00 4.00 2.35 65.00
Pappi 1.60 8.00 17.50 14.50 9.75 17.00 11.50 50.00 5.00 3.25 2.20

This dataset offers valuable insights into the relationship between the response traits
of sunflowers and the annual precipitation levels in their growing location. Such findings
could have significant implications for plant breeding and cultivation in regions with
varying levels of precipitation. As such, a thorough analysis of the presented data can
provide critical information that can contribute to the development of more robust and
resilient plant species in the future. In light of this, further investigation and exploration of
the data presented in Table 2 are warranted, as they may reveal essential correlations and
trends that can deepen our understanding of sunflowers and their responses to varying
levels of precipitation.

The network in Figure 4 is a modification from [33], where 11 sunflowers species are
given at the genus level.
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Figure 4. Sunflower network regraphed from [33]. Species on the tip from the leftmost (labeled with
the number 1) to the rightmost (labeled with the number 1) are 1. praecox, 2. debilis, 3. neglectus,
4. petiolaris, 5. anomalus, 6. deserticola, 7. paradoxus, 8. annuus, 9. argophyllus, 10. bolanderi, and
11. exilis, where deserticola, anomalus, and paradoxus are hybrids from petiolaris and annuus. The
eNewick format is (1 : 0, ((2 : 0.84, ((3 : 0.23, 4 : 0.23)16 : 0.55, (5 : 0.32, (6 : 0.15, (7 : 0.15)13)12 : 0.18 :
0.16)17 : 0.45)20 : 0.06)21 : 0.1, (((13, 8 : 0.15 : 0.35)14 : 0.2, 9 : 0.35)18, (10 : 0.16, 11 : 0.16)15)19 :
0.43)22 : 0.06)23 : 0.

To investigate whether precipitation has a significant impact on traits, it is necessary to
check whether the regression slope is zero, represented by the null hypothesis H0 : β1 = 0.
The results of the analysis using the phylogenetic regression model are presented in Table 3.
The table reports GLS estimates for β, along with its 95% confidence interval, as well as
estimates for the rate parameter σ and the hybrid parameter τ.

Table 3. The table provides estimates and corresponding standard errors for the hybrid effect (τ̂),
the rate of evolution (σ̂), and the slope (β̂) for each of the 12 response traits of sunflowers under a
network relationship. The slope estimate represents the effect of precipitation on the particular trait,
with a positive value indicating a positive relationship and a negative value indicating a negative
relationship. The 95% confidence interval (CI) for the slope estimate provides a range of plausible
values for the true effect of precipitation on the trait.

Response Trait τ̂ (seτ̂) σ̂ (seσ̂) β̂1 (CI) Significant?

Annuals 0.841(0.07) 0.133(0.087) 0.243(0.038, 0.449) Yes
Petioles 0.787(0.157) 0.106(0.069) −0.091(−0.22, 0.038) No
Peduncles 0.801(0.176) 0.157(0.103) 0.451(0.165, 0.737) Yes
Involucres 1.068(0.038) 0.038(0.025) 0.123(0.106, 0.141) Yes
Phyllaries 0.937(0.042) 0.048(0.031) 0.068(0.041, 0.096) Yes
Paleae 1.005(0.035) 0.026(0.017) −0.086(−0.094, −0.079) Yes
Laminae 1.031(0.055) 0.061(0.04) −0.019(−0.064, 0.026) No
Ray florets 0.812(0.046) 0.057(0.037) −0.038(−0.076, −0.001) Yes
Disc florets 0.779(0.056) 0.106(0.069) −0.006(−0.137, 0.124) No
Corollas 1.065(0.052) 0.032(0.021) 0.048(0.036, 0.06) Yes
Cypselae 1.221(0.11) 0.053(0.034) 0.071(0.038, 0.105) Yes
Pappi 1.149(0.159) 0.051(0.033) −0.019(−0.05, 0.012) No
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Table 3 provides the estimates of hybrid effect τ̂, rate of evolution σ̂, and slope β̂, along
with their corresponding standard errors for different response traits in a study. The table
also provides information about whether the slope estimate is statistically significant or not
(significant set to Yes or No) at the 5% significance level.

For example, for the response trait “Annuals”, the hybrid effect estimate is τ̂ = 0.841
with a standard error of 0.07, indicating that the response of annuals has moderate hybrid
weakness among sunflower species. The rate of evolution estimate is σ̂ = 0.133 with a
standard error of 0.087, indicating that the evolutionary rate of annuals is relatively slow.
The slope estimate is β̂ = 0.243 with a 95% CI of (0.038, 0.449), suggesting that precipitation
has a significant positive effect on the trait. The significance of the effect is indicated by
the “Significant?” column, which shows “Yes” for a significant effect based on the 95%
confidence interval of the slope estimate.

Similarly, the second-to-last row for the response trait Cypselae indicates that the
hybrid effect estimate τ̂ is 1.221 (hybrid vigor) with standard error 0.11, the rate of evolution
estimate σ is 0.053 with standard error 0.034, and the slope estimate β̂ is 0.071 with a 95%
confidence interval (0.038, 0.105). Additionally, the slope estimate is statistically significant
(significance set to Yes) for this trait.

In summary, the table provides estimates and corresponding standard errors for the
hybrid effect, rate of evolution, and slope, along with their significance levels for different
response traits in a study. These estimates can be used to make inferences about the rela-
tionship between the variables being studied and the response traits under consideration.

We further evaluate the correlations among the parameter estimates τ̂, σ̂, and β̂1 using
the 12 sunflower trait datasets; there is a moderate positive correlation (0.73) between
the rate of evolution (σ) and the regression slope (b1), suggesting that an increase in the
rate of evolution is associated with an increase in the magnitude of the regression slope.
There is a moderate negative correlation (−0.66) between the rate of evolution (σ) and the
hybrid effect parameter (τ), suggesting that an increase in the rate of evolution is associated
with a decrease in the magnitude of the hybrid effect parameter. There is a weak negative
correlation (−0.19) between the regression slope (b1) and the hybrid effect parameter (τ),
suggesting that there is a weak relationship between these variables, and as the hybrid
effect parameter increases, the regression slope tends to decrease, but the relationship is
not particularly strong.

We performed a benchmark analysis to evaluate the proposed methodology. The
baseline model used for comparison is a simple linear regression model. Another model
used for comparison is the tree model, which assumes a Brownian motion model [34]. These
models were used for the benchmark analysis of our network model. While the existing
methodology may not be directly comparable, the analysis still provides insights into
baseline estimation and allows us to compare the performance of the proposed methodology
with existing baselines. The result is shown in Table 4. The first row of the table compares
the performance of the tree model and linear regression model using the “Annuals” trait.
The tree model has a benchmark ratio of 1.006, indicating that its RMSE is 0.6% higher
than that of the linear regression model. Similarly, the network model has a benchmark
ratio of 1.077, which means that its RMSE is 7.7% higher than that of the linear regression
model. The results indicate that the tree model has slightly poorer performance compared
to the linear regression model, while the network model performs even worse than the
linear regression model. This is expected because the network model is more complex.
However, despite the larger RMSE values obtained from the network model, the values are
still reasonable when compared to the baseline model.
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Table 4. The benchmark analysis involves the use of 12 traits, with RMSE1 computed via a simple
linear regression baseline model, RMSE2 computed via the tree model [34], and RMSE3 computed
via the proposed network model. The fourth and fifth columns of the table present the benchmark
ratio for each model.

RMSE1 RMSE2 RMSE3 RMSE2
RMSE1

RMSE3
RMSE1

Annuals 0.608 0.612 0.655 1.006 1.077
Petioles 0.558 0.559 0.565 1.002 1.013
Peduncles 0.718 0.727 0.730 1.013 1.017
Involucres 0.227 0.234 0.246 1.033 1.087
Phyllaries 0.276 0.276 0.277 1.001 1.005
Paleae 0.164 0.165 0.171 1.009 1.046
Laminae 0.250 0.267 0.265 1.065 1.059
Ray.florets 0.307 0.308 0.357 1.004 1.162
Disc.florets 0.665 0.676 0.768 1.017 1.154
Corollas 0.125 0.128 0.147 1.020 1.175
Cypselae 0.213 0.219 0.332 1.026 1.555
Pappi 0.175 0.183 0.239 1.046 1.367

5. Discussion

The model utilized to examine trait values in phylogenetic networks through hy-
bridization modeling is of fundamental importance and represents an essential tool in the
analysis of this type of data. There is room for improvement by using more appropriate
representations for the hybrid R based on its parents X and Y to find suitable functions
R = f (τ, X, Y), which would allow us to model events such as horizontal gene transfers or
recombination that are biologically different from hybridization and can affect trait values.

We acknowledge that the covariance structure Gτ is complex, which creates diffi-
culties in demonstrating the positive definiteness of the Hessian matrix of the likelihood
function. This makes it challenging to ensure that the likelihood is jointly convex in all
parameters. However, our regression model meets certain conditions, including having
a well-defined likelihood function and satisfying the assumption of non-singularity. Our
empirical analysis confirms that our method achieves the global maximum within its do-
main. This is supported by the fact that Gτ̂ is positive definite for each dataset, as detailed
in Appendix A.1.3.

In order to enhance the current model’s capability to analyze phylogenetic network
data, several future research avenues could be pursued. Firstly, the model could be
extended to include more complex evolutionary processes, such as the Ornstein–Uhlenbeck
(OU) model [35] or the early burst model [36]. The OU model could be implemented by
introducing a force parameter α to the covariance matrix construction, and the optimization
process would require a multidimensional search. For instance, if implementing the
OU process [35], one would need to take the non-independent increment condition into
account to construct the covariance matrix. One can also consider implementing non-
Gaussian processes [37] in the network for trait evolution. Secondly, the algorithm could
be generalized to handle the hard polytomy by analyzing multifurcating phylogenetic
networks for regression analysis [38].

It is also worthwhile to take into account situations in which characteristics may
conform to probability distributions beyond the normal distribution and to evaluate the
resilience of our proposed methodology when the assumption of normality is not met. In
particular, researchers should examine model misspecification problems [39] and study the
consequences of non-normal distributions on the efficacy of the model, as has been done in
previous studies [40].

Incorporating more parameters into the model would enable a more functional role of
interaction with the hybrid parameters, particularly in the context of richer models such
as the OU and early burst models. Furthermore, future work could explore the integra-
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tion of discrete character evolution or the joint analysis of both discrete and continuous
characters [41,42], as well as extend the proposed approach to accommodate diverse types
of trait distributions. The development of such extensions would contribute to a better
understanding of the evolution of biological traits, and may have practical applications in
fields such as conservation biology and agriculture [43].

6. Conclusions

A phylogenetic regression model that incorporates a network structure to examine
trait evolution in the context of reticulation events is proposed. Maximum likelihood
estimation is utilized to estimate parameters, and an algorithm is developed to build the
variance–covariance matrix using a phylogenetic network in eNewick format as input. This
model is applied to investigate the response of common sunflower, Helianthus annuus,
traits to drought conditions.

Parameter estimation is conducted through maximum likelihood, a widely used
method in evolutionary biology, which allows for the estimation of model parameters
that maximize the probability of the observed data. Additionally, an algorithm is devel-
oped to build the variance–covariance matrix, a crucial component of the model, using a
phylogenetic network in eNewick format as input.

Overall, the proposed model and associated methods offer a novel approach to study-
ing trait evolution in the context of reticulation events. By applying the model to the
common sunflower and investigating its response to drought conditions, new insights can
be gained into the evolutionary patterns of this important species.
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Appendix A

Appendix A.1. Script and Data files

All files in the manuscript can be accessed at http://tonyjhwueng.info/phyreghyb
(accessed on 10 March 2023).

Appendix A.1.1. Model

1. BM: http://tonyjhwueng.info/phyreghyb/bmhydRegV3.r (accessed on 10 March
2023).

Appendix A.1.2. Sunflower Precipitation Dataset

The data for each sunflower can be accessed by executing the R script at the follow-
ing link:

1. Precipitation data script: http://tonyjhwueng.info/phyreghyb/worldclim (accessed
on 10 March 2023).

http://tonyjhwueng.info/phyreghyb
http://tonyjhwueng.info/phyreghyb/bmhydRegV3.r
http://tonyjhwueng.info/phyreghyb/worldclim
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Appendix A.1.3. Figures and Tables

1 Figure 1: http://tonyjhwueng.info/phyreghyb/3taxanetwork.pptx (accessed on 10
March 2023).

2 Figure 2: http://tonyjhwueng.info/phyreghyb/3taxanetworkstep.pptx (accessed on
10 March 2023).

3 Figure 3: http://tonyjhwueng.info/phyreghyb/3taxatree.pptx (accessed on 10 March
2023).

4 Figure 4: http://tonyjhwueng.info/phyreghyb/sfnet.pptx (accessed on 10 March
2023).

5 Figure A1: http://tonyjhwueng.info/phyreghyb/sixtaxanetwork.pptx (accessed on
10 March 2023).

6 Table 2: http://tonyjhwueng.info/phyreghyb/precdatatolatex.html (accessed on 10
March 2023).

7 Table 3: http://tonyjhwueng.info/phyreghyb/RegSunflower.html (accessed on 10
March 2023).

8 Positive definite of Gτ̂ : https://tonyjhwueng.info/phyreghyb/pdultracheck.html
(accessed on 10 March 2023).

9 Table 4: https://tonyjhwueng.info/phyreghyb/AnnPrecAllResponseTrait.html (ac-
cessed on 10 March 2023).

Appendix A.2. Demonstration of Algorithm under Brownian Motion Model

Consider the phylogenetic network given in Figure A1. There are 6 extant taxa,
2 hybridization events, and 9 ancestral nodes in the network.

Figure A1. A six-taxa phylogenetic network where 2, 3, and 5 are the hybrid descendants. The
eNewick format for the network topology is ((1, ((2, 3)7)12)11, ((12, (4, (5)9)8)13, (9, 6)10)14)15.

The ancestral–descendant data gathered from the eNewick2phylog function and mod-
ified are shown as follows:

Ancestor [15] [14] [12] [11] [13] [9] [8] [10] [7]
Descendants [11,14] [13,10] [7] [1],[12] [12,8] [5] [4,9] [9,6] [2,3]

http://tonyjhwueng.info/phyreghyb/3taxanetwork.pptx
http://tonyjhwueng.info/phyreghyb/3taxanetworkstep.pptx
http://tonyjhwueng.info/phyreghyb/3taxatree.pptx
http://tonyjhwueng.info/phyreghyb/sfnet.pptx
http://tonyjhwueng.info/phyreghyb/sixtaxanetwork.pptx
http://tonyjhwueng.info/phyreghyb/precdatatolatex.html
http://tonyjhwueng.info/phyreghyb/RegSunflower.html
https://tonyjhwueng.info/phyreghyb/pdultracheck.html
https://tonyjhwueng.info/phyreghyb/AnnPrecAllResponseTrait.html
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From this, we can determine the event times and which times lead to which descen-
dants as follows:

Node [1] [2] [3] [4] [5] [6] [7] [8]
Length t3 + t4 + t5 t5 t5 t4 + t5 t4 + t5 t4 + t5 t3 + t4 t3

Node [9] [10] [11] [12] [13] [14] [15]
Length 0 t2 + t3 t1 + t2 0 t2 t1 0

We also identify the sequence of temporary similarity matrices built up from the root
to the tips in terms of the nodes at each event (speciation or hybridization):

[15]→ [11, 14]→ [11, 13, 10]→ [11, 12, 13, 10]→ [1, 7, 8, 10]

→ [1, 7, 8, 9, 10]→ [1, 7, 4, 5, 6]→ [1, 2, 3, 4, 5, 6].

This sequence contains information for speciation and hybridization events where
the speciation replaces the ancestor node with the corresponding two descendants (e.g.,
for speciation, [15] is replaced by [11, 14]). For hybridization, the hybrid node is inserted
between its parents (e.g., [11, 13, 14] → [11, 12, 13, 14] indicates that [12] is hybrid and is
inserted between [11] and [13]).

For the first similarity matrix, we obviously have

G2 =

( 11 14
11 t1 0
14 − t1

)
. (A1)

Going from [11,14]→ [11,13,10] involves a straightforward speciation event and the
new similarity matrix becomes

G3 =


11 13 10

11 t1 + t2 0 0
13 − t1 + t2 t1
10 − − t1 + t2

. (A2)

Going from [11,13,10]→ [11,12,13,10] involves a hybridization. The variance for the
hybrid [12] can be calculated from G3 with the following formula: Var([12]) = Var(τ([11] +
[13])) = τ2{Var([11]) + Var([13]) + 2Cov([11], [13])}.

Moreover, the covariance between the hybrid species [12] and other species can be ob-
tained by following the formula: Cov([12], Z) = Cov(τ([11] + [13]), Z) = τ{Cov([11], Z) +
Cov([13], Z)}, Z = 11, 13, 10. All other elements in G4,τ can be tracked from G3 because
they are identical. Therefore, the covariance for species [11], [12], [13], and [10] at t = t1 + t2 is

G4,τ =


11 12 13 10

11 t1 + t2 τ(t1 + t2) 0 0
12 − 2τ2(t1 + t2) τ(t1 + t2) τt1
13 − − t1 + t2 t1
10 − − − t1 + t2

.

We elongate from [11,12,13,10]→[1,7,8,10] to obtain

G′4,τ =


1 7 8 10

1 t1 + t2 + t3 τ(t1 + t2) 0 0
7 − t3 + 2τ2(t1 + t2) τ(t1 + t2) τt1
8 − − t1 + t2 + t3 t1
10 − − − t1 + t2 + t3

. (A3)
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The next event from [1,7,8,10]→ [1,7,8,9,10] is another hybridization. The 5× 5 matrix
G5,τ for species [1, 7, 8, 9, 10] is constructed by inserting the hybrid [9] between its parents
[8] and [10].

G5,τ =



1 7 8 9 10
1 t1 + t2 + t3 τ(t1 + t2) 0 0 0
7 − t3 + 2τ2(t1 + t2) τ(t1 + t2) τ2(2t1 + t2) τt1
8 − − t1 + t2 + t3 τ(2t1 + t2 + t3) t1
9 − − − τ2(3t1 + 2t2 + 2t3) τ(2t1 + t2 + t3)
10 − − − − t1 + t2 + t3

. (A4)

We elongate from [1,7,8,9,10] to [1,7,4,5,6] to obtain

G′5,τ =



1 7 4 5 6

1
4

∑
k=1

tk τ ∑2
k=1 tk 0 0 0

7 − ∑4
k=3 tk + 2τ2 ∑2

k=1 tk τ ∑2
k=1 tk τ2(2t1 + t2) τt1

4 − −
4

∑
k=1

tk τ(2t1 + ∑3
k=2 tk) t1

5 − − − t4 + τ2(3t1 + 2 ∑3
k=2 tk) τ(2t1 + ∑3

k=2 tk)

6 − − − −
4

∑
k=1

tk


, (A5)

where
4

∑
k=1

tk = t1 + t2 + t3 + t4.

The final step from [1,7,4,5,6]→ [1,2,3,4,5,6] involves a speciation event. The final
similarity matrix G6,τ is given as

G6,τ =



1 2 3 4 5 6
1 ∑5

k=1 tk τ ∑2
k=1 tk τ ∑2

k=1 tk 0 0 0
2 − 2τ2 ∑2

k=1 tk + ∑3
k=1 tk 2τ2 ∑2

k=1 tk + ∑4
k=3 tk τ ∑2

k=1 tk τ2(2t1 + t2) τt1
3 − − 2τ2 ∑2

k=1 tk + ∑5
k=3 tk τ ∑2

k=1 tk τ2(2t1 + t2) τt1
4 − − − ∑5

k=1 tk τ(2t1 + ∑3
k=2 tk) t1

5 − − − − τ2(3t1 + 2 ∑3
k=2 tk) + ∑5

k=4 tk τ(2t1 + ∑3
k=2 tk)

6 − − − − − ∑5
k=1 tk

, (A6)

If we assign branch lengths by setting t1 = 0.1, t2 = 0.25, t3 = 0.15, t4 = 0.2, t5 = 0.3,
the eNewick format with branch lengths input into the R program will be as follows. Input:
network = c(“((1 : 0.65, ((2 : 0.3, 3 : 0.3)7 : 0.35)12 : 0)11 : 0.35, ((12 : 0, (4 : 0.5, (5 : 0.5)9 :
0)8 : 0.15)13 : 0.25, (9 : 0, 6 : 0.5)10 : 0.4)14 : 0.1)15 : 0”).

Output: The similarity matrix for the species [1, 2, 3, 4, 5, 6] on the tips of the tree is

G6,τ =



1 2 3 4 5 6
1 1 0.175 0.175 0 0 0
2 − 0.825 0.525 0.175 0.1125 0.05
3 − − 0.825 0.175 0.1125 0.05
4 − − − 1 0.3 0.1
5 − − − − 0.8 0.3
6 − − − − − 1

. (A7)

It can be seen that the covariance matrix is a 6 by 6 matrix where the upper diagonal is
shown due to its symmetry.
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