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Abstract: Researchers interested in the assessment of substance use trajectories, and predictors of
change, have several data analysis options. These include, among others, generalized estimating
equations and latent growth curve modeling. One difficulty in the assessment of substance use,
however, is the nature of the variables studied. Although counting instances of use (e.g., the number
of cigarettes smoked per day) would seem to be the best option, such data present difficulties in
that the distribution of these variables is not likely normal. Count variables often follow a Poisson
distribution, and when dealing with substance use in the general population, there is a preponderance
of zeros (representing not using). As such, substance use counts may approximate a zero-inflated
Poisson distribution. Unfortunately, analyses with zero-inflated Poisson random variables are not
easily accommodated in many types of software and may be beyond access to most researchers. As
such, an easier method would benefit researchers interested in assessing substance use change. The
purpose of this study is to assess the area under the curve as an option when dealing with repeated
measures data and contrast it to one popular method of longitudinal data analysis, latent growth
curve modeling. Using a Monte Carlo simulation study with varying sample sizes, we found that
the area under the curve performed well with different sample sizes and compared favorably to the
performance of latent growth curve modeling, particularly when dealing with smaller sample sizes.
The area under the curve may be a simpler alternative for researchers, especially when dealing with
smaller sample sizes.

Keywords: latent growth curve modeling; area under the curve; Monte Carlo simulation study;
substance use; zero-inflated Poisson distribution; longitudinal data

1. Introduction

Researchers have a variety of options to capture substance use (e.g., smoking com-
bustible cigarettes or vaping) when having repeated measures (longitudinal data). Popular
choices include ordinal (i.e., increasing levels of use) or binary (uses versus does not use)
discrete variables. While using ordinal and binary discrete variables is simple for readers
to conceptualize, their use for researchers interested in assessing behavior change requires
understanding more complicated data analysis methods with varying assumptions and, in
some cases, having specialized software. Two popular approaches to conducting repeated
measures analysis are generalized estimating equations (GEE) and linear mixed-effects
models. GEE models repeated measures variables with various distributions, including nor-
mal and negative binomial random variables, when data are missing completely at random
(MCAR), although the lack of a likelihood function precludes model comparisons. [1–3]
Researchers specify the link function and the correlation structure to obtain population
parameter estimates. Extensions of GEE can include missing data that are not MCAR [2,4].
Linear mixed-effects models account for the correlation among clusters of data, such as
within person (repeated measures in which the data are clustered within the person), and
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the assessment of fixed and random effects [5]. Although GEE, linear mixed-effects models,
and other extensions of generalized linear models can be conducted in most conventional
statistical computer packages (e.g., SPSS and SAS), other popular options such as latent
growth curve modeling (LGCM) require specialized software, especially when the data are
discrete. Further, discrete binary variables may mask finer changes in substance use over
time, such as when progressing from smoking weekly to daily. Ordinal variables, while
providing a finer differentiation of use over time than binary variables, can involve a large
number of response patterns, with the number of response patterns increasing with each
additional level and repeated measure [6,7].

Perhaps the most natural way to assess substance use is to count the number of
occurrences of use per unit time (e.g., combustible cigarettes smoked per day, the number
of times vaping electronic cigarettes per week, or the number of drinks of alcohol per
month). Such data are also discrete but are likely to follow a Poisson distribution, Poisson
(λ). The Poisson distribution defines the probability of the number of events occurring
within a certain space (e.g., time or area), where λ is the average number of events per time
(or area) unit [8]. The situation is complicated, however, when measuring substance use
within the general population, as the majority of individuals likely do not use the substance
of interest [6,9]. As such, there is a preponderance of zeros in the data, representing an
absence of the behavior of interest. The preponderance of zeros can increase the ratio
of variance to mean, an index of dispersion, resulting in overdispersion [10,11]. This is
problematic, as the Poisson distribution assumes that the mean and variance are equal (λ).
As such, when the count data include a large number of zeros, the distribution may be
better defined by a zero-inflated Poisson (ZIP) distribution (Equation (1)) [12–14]. Note
that if K (the count of events) is greater than zero in Equation (1), the ZIP distribution, ZIP
(π, λ), is Poisson (λ), where π is the probability of structural zeros (known absence of the
behavior) and λ is the rate parameter (expected number of events per unit time) [15].

pr(X = k) =

{
π + (1 − π)e−λ, f or k = 0

(1 − π) λke−λ

k! , f or k = (1, 2, 3, . . .).
(1)

To account for data with a ZIP distribution, researchers conducting longitudinal
data analysis (repeated measures data analysis) can model change in two parts, one for
nonengagement in the behavior (binary, yes or no), and a second for use (count times
engaging in the behavior). Structural equation modeling (SEM) provides modeling options
for ZIP data [16]. Essentially, the modeling divides the sample into two parts, with those
who do not engage in the behavior and those who progress to engagement, calculating the
probability of engagement over time as well as progression in use [17]. One interesting
application of this in SEM is two-part modeling [18–20]. An alternative to the LGCM tested
here is to consolidate the repeated measures data into a single variable by calculating the
area under the curve (AUC) defined by the repeated measures.

Individuals taking advanced mathematics are familiar with the AUC. In calculus,
the AUC is the outcome of integration over some range of values, or a summation of
polygons within consecutive intervals (e.g., trapezoid rule). Although used frequently
in research dealing with biological markers such as daily cortisol [21,22] and receiver
operating characteristic (ROC) curves to identify cut points [23–25], the AUC has only
recently been employed in other research areas (e.g., dentistry and sleep research) [26,27].
Two equations were proposed for modeling AUC in longitudinal data analysis [28]. The
first (Equation (2)) calculates the area under the curve with respect to the ground (AUC—g).
This measure calculates the area between the curve (trajectory for longitudinal data) and
the x-axis (absence of behavior). Note that the subscripts for the y and x variables represent
time points, with 1 representing baseline. The second equation (Equation (3)) calculates the
area under the curve with respect to baseline. This is also known as the AUC with respect
to the increase (AUC—i). Note that the initial y (outcome; y1) multiplied by the sum of the
time intervals is subtracted from the AUC equation to account for the baseline level. Note
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also that, for equal time intervals, the summation is the number of time points. This second
AUC equation can permit scores below zero, as individuals may use less than they did at
baseline. As such, it may be a better way to assess behavioral change even if it is not an
area per se.

AUCGround =

[
(y2 + y1)

2
× (x2 − x1)

]
+

[
(y3 + y2)

2
× (x3 − x2)

]
. (2)

AUCIncrease =

{[
(y2 + y1)

2
× (x2 − x1)

]
+

[
(y3 + y2)

2
× (x3 − x2)

]}
− y1∑3

i=1 ti, (3)

where ti is the ith interval between consecutive time points.
The purpose of the present study is to assess the performance of the AUC—g and

AUC—i models in a prototypical repeated measures analysis design involving predictors
of change in substance use across time. We discuss differences in results, comparing our
AUC models to a ZIP latent growth curve model with Monte Carlo-simulated data.

2. Methods
2.1. ZIP LGCM

We generated four separate Monte Carlo models with sample sizes of 500, 250, 100,
and 50 and 5000 replications each. Mplus statistical software (statmodel.com) provides users
with examples of different modeling methods in its user’s guide [29], including LGCM
with ZIP variables. In addition to the examples, Mplus includes Monte Carlo counterparts
to each example. The example chosen was 6.7 (Chapter 6), as it provided the framework
for modeling the data of interest—repeated measures of substance use counts. This model
was adapted, however, to include two predictor variables, each with a mean of zero and a
standard deviation of 1.0. As our ultimate aim was to compare AUC models to an LGCM
defined by repeated measures of ZIP random variables, we assessed the simulated variables
to ensure they followed the desired ZIP distribution.

LGCM is a latent (unobserved) variable modeling procedure used to assess trajectories
across repeated measures of some variable [30]. Besides assessing the nature of trajectories,
most researchers are interested in the effects of theoretically relevant predictor variables
on markers of change. In LGCM, one models the effect of putative predictor variables
on continuous latent variables representing the baseline level (i.e., intercept) and trend
(e.g., linear or quadratic) representing repeated measures variables [30]. In this way, one
can control for the impact of the predictor variables on the initial level and assess whether
they impact the rate of change from baseline.

Unlike LGCM with normal or even categorical random variables, in the case of ZIP
data, there are two parts in the LGCM analysis, one part modeling no use versus use
(1 = no use, 0 = use) with categorical latent variables and the other part modeling use
(number of instances; count data) with continuous latent variables. We based our LGCM
on four repeated measures, as using four time points is common in the assessment of
adolescent substance use, with at least one measurement point per year of high school, and
our primary population of interest is adolescents.

Regarding the population model for our Monte Carlo simulation, we used the follow-
ing population parameter values. For the count part of the model (those using a substance),
the population intercept mean was set at 0.2 with a variance of 0.4, indicating low initial
use. With respect to growth, we set the linear trend factor to 0.05, indicating a 0.05 increase
in use for each year increase in high school. The trend factor variance was constrained to
equal zero. With respect to the binary inflation part of the model (0 = used, 1 = did not use),
the intercept factor mean was constrained to zero, with the variance equal to 1. For the
inflation slope, the mean was −0.2, with the variance constrained to 0. Thus, we modeled a
decreased likelihood of not using over time, with slow growth among users.

With respect to the two putative predictor variables, we used positive and negative
values; as in real-world situations, we could have both positive and negative effects on
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the intercept and trend. We began with a set of parameter estimates that resulted in high
power (≥0.80) in the n = 500 scenario to see how the model would perform with lower
sample sizes. We chose 0.80 for power as that is a standard value when calculating sample
sizes for grant applications in the health sciences [31]. We set the effect of the first and
second variables to 1.0 and −1.0 on the count intercept and slope, respectively. For the
inflation model part, the effect of the first and second variables on the intercept factor was
set to 0.5 and −0.5, respectively. For the trend factor, we set the population parameter
value to 0.35 and −0.35 for the first and second variables, respectively. We saved the data
generated with the Monte Carlo simulation for use in assessing the efficacy of the AUC
linear regression model.

2.2. AUC

In the next stage, we used the data generated in our LGCM simulations to compute
the two AUC variables (AUC—i and AUC—g). We then used these variables as depen-
dent variables in linear regression models in Mplus, with our two Monte Carlo-generated
predictor variables as independent variables in our regression models. We used Mplus
to run our multiple regression analysis models because Mplus permits saving parameter
estimates from all analyses for Monte Carlo simulations. This permits researchers to assess
bias, coverage, and power for their analyses [See 29]. As such, we ran Monte Carlo simu-
lations using the parameter estimates from our regression analysis models to assess the
performance of our AUC regression models with varying sample sizes, focusing on bias,
coverage, and power.

The data generated in the ZIP LGCM Monte Carlo simulation were also exported to
SPSS statistical software to explore the data using basic descriptive statistics and charts
(e.g., histograms). To assess the results of our simulation, we also calculated ZIP parameters
lambda (Equation (4)) and pi (Equation (5)) using the method of moments estimation
(MME) [12].

λMME =
−
x +

s2

−
x
− 1. (4)

πMME =
(s2 − −

x)
−
x

2
+ (s2 − −

x)
. (5)

3. Results

Descriptive statistics for each of the four Monte Carlo-generated variables for the
different sample sizes appear in Table 1. The table is partitioned into four parts, one part
for each sample size (i.e., 500, 250, 100, and 50), and six columns. Within each part are four
rows, one for each time point. The six columns provide information on the sample size, the
time point, the mean, the standard deviation, and the λ and π from Equations (4) and (5),
respectively. The results suggest that the average use increased over time. The rate (λ)
was highest in the third or fourth time point, depending upon the sample size, with the
probability of structural zeros (π) remaining relatively constant across time and sample size.

Table 2 presents the results of the Monte Carlo analyses of the ZIP LGCMs for the
different sample sizes, using 5000 replications, as presented in the Mplus Monte Carlo
output [29]. The four columns represent the latent variables; they are endogenous variables
in the LGCM. The rows represent summary values from the four different simulations (one
simulation each for an n of 500, 250, 100, and 50). The first and second rows within each
simulation present the average of the estimates from the 5000 replications and the percent
bias, respectively. The third row is the mean square error (MSE). The last two rows contain
the 95% coverage and power values. For the 95% coverage, by the empirical rule, we expect
that 95% of all estimates fall within ±1.96 standard deviations of the mean [32].
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Table 1. Descriptive statistics and ZIP parameters for all four waves for the different sample sizes *.

N Wave Minimum Maximum Mean SD λ π

500

Time 1 0 83 1.93 7.419 29.45 0.93
Time 2 0 107 2.06 8.064 32.78 0.94
Time 3 0 475 2.54 21.662 186.28 0.99
Time 4 0 206 2.57 14.417 82.45 0.97

250

Time 1 0 83 2.17 8.341 33.23 0.93
Time 2 0 106 2.31 8.636 33.60 0.93
Time 3 0 38 1.73 5.153 16.08 0.89
Time 4 0 206 3.26 18.248 104.71 0.97

100

Time 1 0 63 2.15 8.964 38.524 0.94
Time 2 0 43 2.04 5.605 16.440 0.88
Time 3 0 38 2.00 5.944 18.666 0.89
Time 4 0 206 4.27 22.431 121.104 0.96

50

Time 1 0 63 2.14 9.165 40.391 0.95
Time 2 0 43 2.60 7.100 20.989 0.95
Time 3 0 32 1.36 4.681 16.472 0.92
Time 4 0 206 6.90 31.403 148.820 0.95

* Means and variances are used to calculate the ZIP parameters π and λ.

Table 2. Monte Carlo results of LGCM.

Count Intercept 1 Binary Intercept 2 Count Trend 3 Binary Trend 4

n Measures 5 X1 X2 X1 X2 X1 X2 X1 X2

500

Average 1.0009 −0.9993 0.5091 −0.509 0.0998 −0.1002 0.3545 −0.3537
%Bias 0.09 −0.07 1.82 0.018 −0.2 0.2 1.2857 1.0571
MSE 0.0032 0.0032 0.0331 0.331 0.0005 0.0005 0.106 0.011

Coverage 0.942 0.943 0.95 0.946 0.93 0.931 0.952 0.943
Power 1.00 1.00 0.829 0.846 0.992 0.992 0.939 0.933

250

Average 1.0022 −0.9996 0.5257 −0.5203 0.1001 −0.1007 0.3595 −0.3609
%Bias 0.22 −0.04 5.14 4.06 0.1 0.7 2.7143 3.1143
MSE 0.0066 0.0067 0.0738 0.0732 0.001 0.0011 0.0229 0.0237

Coverage 0.934 0.939 0.943 0.949 0.924 0.925 0.948 0.945
Power 1.0 1.0 0.524 0.514 0.882 0.888 0.691 0.692

100

Average 1.0039 −1.004 0.5705 −0.5599 0.1013 −0.1015 0.3804 −0.3846
%Bias 0.39 0.4 14.1 11.98 1.3 1.5 8.6857 9.8857
MSE 0.0193 0.0187 0.2371 0.2274 0.0034 0.0032 0.0735 0.0737

Coverage 0.922 0.923 0.942 0.95 0.901 0.905 0.936 0.943
Power 1 1 0.203 0.189 0.543 0.543 0.347 0.348

50

Average 1.0131 −1.0123 5.2436 −3.6967 0.1007 −0.102 −0.1756 −0.18
%Bias 1.31 1.23 948.72 639.34 0.7 2.00 −150.171 −48.571
MSE 0.0494 0.0473 25461.42 7943.048 0.0093 0.0092 1909.731 409.3025

Coverage 0.893 0.9 0.935 0.937 0.886 0.886 0.923 0.921
Power 0.986 0.985 0.112 0.111 0.334 0.343 0.205 0.204

1 Intercept factor for count part; 2 intercept factor for the binary part; 3 linear trend factor for the count part;
4 linear trend factor for the binary part; 5 X1 and X2 are the two continuous predictor variables.

Percent bias values are lower for the parameter estimates in the count model part than
the binary use model part for all sample sizes. As the sample size decreases, the percent
bias increases, peaking with n = 50, especially for the binary model part with bias as high
as 949%. MSE is higher for the binary than the count model parts, increasing inversely with
sample size, peaking at 7943.048 with n = 50 for the effect of variable X2 on the intercept.
Power decreased particularly for the binary model part and for sample sizes 100 and below,
with power values no higher than 0.348 for the binary part growth factor (effect of X2 on
slope; n = 100) and 0.205 for the binary part growth factor (effect of X1 on slope; n = 50).
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3.1. Area under the Curve

Table 3 presents descriptive statistics for the two AUC measures, along with the natural
log-transformed AUC—g measure. Means, standard deviations, skewness, kurtosis, the
median, and the interquartile range (IQR) are also shown. These values suggest that both
measures are not normally distributed. To assess this possibility, we also ran Kolmogorov–
Smirnov (Lilliefors significance correction) and Shapiro–Wilk tests of normality. For all
four sample sizes, the results suggest non-normal data (p < 0.001). Even with the natural
log-transformed AUC—g variable, the results suggest non-normality, p < 0.001.

Table 3. Descriptive statistics for the AUC variables.

n AUC Measure Mean SD Skewness Kurtosis Median IQR 1

500
AUC—i 1.061 25.589 12.146 240.570 0.00 2.00
AUC—g 6.857 26.907 12.565 196.822 1.50 4.50

LN AUC—g 1.11 1.13 1.089 1.067 0.916

250
AUC—i 0.24 16.343 −3.515 45.006 0.00 2.50
AUC—g 6.756 20.107 7.818 77.213 1.50 5.00

LN AUC—g 1.158 1.135 0.991 0.709 0.916 1.79

100
AUC—i 0.8 20.416 −3.714 38.084 0.00 2.50
AUC—g 7.25 18.484 4.754 26.398 1.50 4.50

LN AUC—g 1.164 1.181 1.087 0.708 0.916 1.70

50
AUC—i 2.06 15.441 22.673 8.48 0.00 4.13
AUC—g 8.48 23.780 18.467 1.105 1.250 4.13

LN AUC—g 1.105 1.251 1.340 1.535 0.805 1.63
1 IQR; interquartile range.

Table 4 presents the results of the linear Monte Carlo estimations run with 500, 250, 100,
and 50 participants with natural log-transformed AUC—g and AUC—i as the dependent
variables. We natural log-transformed AUC—g as an analysis of the descriptive statistics
indicated divergence from normality. By contrast, we did not transform AUC—i because it
contained negative values, precluding taking its natural log. For AUC—g, bias and the MSE
remain low for all models, with bias never exceeding 0.41% and the MSE never exceeding
0.02. As expected, and by design, power is 1 for the n = 500 model but never decreases
below 0.80 (n = 50 model). Coverage never decreased below 0.93 regardless of sample size.

With AUC—i as the dependent variable, for the largest sample size (n = 500), bias did
not exceed 2%. However, there was much instability in parameter estimation in this model.
Indeed, as the sample size decreased, bias varied, being highest for n = 250 and n = 50 and
reaching a high of 71% (n = 250). MSE increased inversely with sample size, particularly
for n = 100 and n = 50, reaching a high of 4.76 with n = 50. Power was low throughout,
never exceeding 0.31. Coverage was adequate and never decreased below 0.928.

3.2. Case Examples

To better understand the difference between analyzing our data with the area under
the curve and latent growth curve modeling, we selected two cases and plotted their values
based on the AUC measures and LGCM (Figures 1–4). Figure 1 presents the estimated and
observed values for substance use based on the ZIP LGCM. Although the lines are clearly
different, the estimated trajectory shows growth from time 1 to time 4, akin to the observed
change. Figure 2 presents the concomitant AUC histograms for AUC—i, AUC—g, and LN
AUC—g. There is a distinct difference between panels B and C, with greater variability
evident in panel C than B, suggesting that the natural log-transformed AUC—g performed
better than the raw AUC—g score.



Stats 2023, 6 360

Table 4. Monte Carlo simulation regression results for AUC—g and AUC—i.

AUC—g 1 AUC—i

n Measures X1 X2 X1 X2

500 Average 0.3282 −0.4147 0.9069 −1.4914
Bias −0.243 −0.072 −2.274 −0.441
MSE 0.0021 0.0018 1.3694 1.1977

Coverage 0.945 0.95 0.946 0.95
Power 1 1 0.134 0.283

250 Average 0.2924 −0.4504 −0.5813 0.0029
Bias −0.205 0.0889 1.6259 −71
MSE 0.0045 0.004 1.1947 1.0654

Coverage 0.947 0.948 0.947 0.948
Power 0.991 1 0.091 0.051

100 Average 0.3167 −0.4294 −2.9642 −2.0807
Bias −0.409 −0.14 0.8918 −0.54
MSE 0.0115 0.01 4.448 3.8672

Coverage 0.941 0.944 0.941 0.944
Power 0.845 0.986 0.313 0.195

50 Average 0.4064 −0.4795 0.1414 −1.385
Bias −0.392 0.1044 −14.303 0.581
MSE 0.0226 0.021 4.7604 4.4243

Coverage 0.936 0.929 0.936 0.928
Power 0.802 0.924 0.069 0.125

1 Natural log-transformed.
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Figure 1. Observed and estimated trajectories from the ZIP LGCM for the N = 50 simulation.

Figure 3A presents the observed counts across the four time points for simulated
participant 10. Figure 3B presents the concomitant AUC figures (bar charts for AUC—i,
AUC—g, and LN (AUC—g)). Figure 4B presents the same charts for simulated participant
18. A notable difference is seen in the AUC—i bar in Figure 3B. Given the decline in use
from time 2 onward and the participant having zero use in the final two time points, the
AUC—i value is negative (see Equation (3) to understand the calculation of this AUC
measure). The same is not evident for simulated participant 118 (Figure 4). Although there
is also a large decline in use, there was an increase in use from baseline to the third time
point. Further, given that there is only one time point with no substance use (time point 4)
and the nature of the equation for calculating this AUC measure (Equation (3)), this value
is positive.
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4. Discussions

The results of our simulation study suggest that the area under the curve (AUC) may
be a viable alternative for researchers dealing with count data with a preponderance of
zeros, even when the sample size is limited. However, our results suggest that the AUC’s
efficacy depends upon which method is employed in its calculation. We used two equations
to calculate the AUC (Equations (2) and (3)). Equation (2) calculates the AUC with respect
to the ground. It is the more traditional calculation of the AUC. Equation (3) calculates the
area with respect to the baseline. As the product of the baseline level and time is subtracted
from the AUC calculation, this measure is better interpreted as an indicator of change
than area. Indeed, negative values are possible, as values can decrease below the baseline
level, particularly if one reduces or quits a substance (e.g., quits or cuts down vaping). As
such, further studies are necessary to validate this AUC measure as an efficacious indicator
of change.

A key finding of this study is that bias was low and power was high when using
AUC—g, even with small samples (n = 50). Although the nature of the parameters differs
when comparing LGCM and AUC—g, it is notable that the ZIP LGCM simulation with
the smallest sample size resulted in high bias and low power estimates, meaning that this
method may be less than ideal when dealing with zero-inflated data and a small sample
size. This is critical when researchers lack the resources needed to collect large samples.
Further, the use of methods such as LGCM requires specialized software, which can be
expensive or difficult to code when free. By contrast, AUC calculations are simple to
program into existing software and require simple coding.

4.1. Limitations and Conclusions

The results of this study must be viewed with respect to its limitations. First, we
only assessed ZIP random variables. Although common in substance use research, the
performance of the two AUC variables may differ with other types of non-normal random
variables encountered in substance use research. Second, the simulated data were generated
using a ZIP latent growth curve model (LGCM) and then employed in a regression analysis
to generate parameter estimates for the AUC simulations. Using other methods to simulate
the data may lead to different results. Third, different population parameters for the initial
simulations may generate different patterns of simulated substance use variables.

With these limitations in mind, the results of this study provide some preliminary
data regarding the efficacy of the AUC when dealing with zero-inflated Poisson (ZIP) data.
Future research must compare AUC models to other analysis strategies when dealing with
repeated measures of substance use count data beyond LGCM, including GEE. Further,
researchers must assess the AUC for other variable types beyond ZIP data. In addition, re-
searchers should assess the distributional properties of the two AUC variables, particularly
when dealing with diverse types of repeated measures variables (e.g., ZIP versus exponen-
tial), and explore other equations that may perform better particularly when accounting for
declining use instead of merely subtracting baseline use as in the AUC-i equation.

4.2. Software

Mplus software is not freely available, although one can download a demo version that
permits six dependent variables and two independent variables, (https://www.statmodel.
com/demo.shtml (accessed on 16 February 2023).
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Abbreviations

Abbreviation Definition
GEE General Estimating Equation
LGCM Latent Growth Curve Model
ZIP Zero-Inflated Poisson
SEM Structural Equation Modeling
AUC Area Under the Curve
AUC—g Area Under the Curve with respect to ground
AUC—i Area Under the Curve with respect to the increase
ROC Receiver Operating Characteristic
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