# Assessing Area under the Curve as an Alternative to Latent Growth Curve Modeling for Repeated Measures Zero-Inflated Poisson Data: A Simulation Study

## Abstract

**:**

## 1. Introduction

_{1}) multiplied by the sum of the time intervals is subtracted from the AUC equation to account for the baseline level. Note also that, for equal time intervals, the summation is the number of time points. This second AUC equation can permit scores below zero, as individuals may use less than they did at baseline. As such, it may be a better way to assess behavioral change even if it is not an area per se.

_{i}is the i

^{th}interval between consecutive time points.

## 2. Methods

#### 2.1. ZIP LGCM

#### 2.2. AUC

## 3. Results

_{2}on the intercept. Power decreased particularly for the binary model part and for sample sizes 100 and below, with power values no higher than 0.348 for the binary part growth factor (effect of X

_{2}on slope; n = 100) and 0.205 for the binary part growth factor (effect of X

_{1}on slope; n = 50).

#### 3.1. Area under the Curve

#### 3.2. Case Examples

## 4. Discussions

#### 4.1. Limitations and Conclusions

#### 4.2. Software

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

Abbreviation | Definition |

GEE | General Estimating Equation |

LGCM | Latent Growth Curve Model |

ZIP | Zero-Inflated Poisson |

SEM | Structural Equation Modeling |

AUC | Area Under the Curve |

AUC—g | Area Under the Curve with respect to ground |

AUC—i | Area Under the Curve with respect to the increase |

ROC | Receiver Operating Characteristic |

## References

- Liang, K.-Y.; Zeger, S.L. Longitudinal data analysis using generalized linear models. Biometrika
**1986**, 73, 13–22. [Google Scholar] [CrossRef] - Robins, J.M.; Rotnitzky, A.; Zhao, L.P. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J. Am. Stat. Assoc.
**1995**, 90, 106–121. [Google Scholar] [CrossRef] - Sarvi, F.; Moghimbeigi, A.; Mahjub, H. GEE-based zero-inflated generalized Poisson model for clustered over or under-dispersed count data. J. Stat. Comput. Simul.
**2019**, 89, 2711–2732. [Google Scholar] [CrossRef] - Yang, C.; Diao, L.; Cook, R.J. Adaptive response-dependent two-phase designs: Some results on robustness and efficiency. Stat. Med.
**2022**, 41, 4403–4425. [Google Scholar] [CrossRef] - Morrell, C.H.; Pearson, J.D.; Brant, L.J.; Gordon-Salant, S. Construction of hearing percentiles in women with non-constant variance from the linear mixed-effects model. Stat. Med.
**1997**, 16, 2475–2488. [Google Scholar] [CrossRef] - Feldman, B.J.; Masyn, K.E.; Conger, R.D. New approaches to studying problem behaviors: A comparison of methods for modeling longitudinal, categorical adolescent drinking data. Dev. Psychol.
**2009**, 45, 652–676. [Google Scholar] [CrossRef][Green Version] - Mehta, P.D.; Neale, M.C.; Flay, B.R. Squeezing interval change from ordinal panel data: Latent growth curves with ordinal outcomes. Psychol. Methods
**2004**, 9, 301–333. [Google Scholar] [CrossRef] - Hogg, R.; McKean, J.; Craig, A. Introduction to Mathematical Statistics, 6th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Homish, G.G.; Edwards, E.P.; Eiden, R.D.; Leonard, K.E. Analyzing family data: A GEE approach for substance use researchers. Addict. Behav.
**2010**, 35, 558–563. [Google Scholar] [CrossRef][Green Version] - Sellers, K.F.; Raim, A. A flexible zero-inflated model to address data dispersion. Comput. Stat. Data Anal.
**2016**, 99, 68–80. [Google Scholar] [CrossRef] - Winkelmann, R.; Zimmermann, K.F. Count data models for demographic data∗. Math. Popul. Stud.
**1994**, 4, 205–221. [Google Scholar] [CrossRef][Green Version] - Beckett, S.; Jee, J.; Ncube, T.; Pompilus, S.; Washington, Q.; Singh, A.; Pal, N. Zero-inflated Poisson (ZIP) distribution: Parameter estimation and applications to model data from natural calamities. Involv. A J. Math.
**2014**, 7, 751–767. [Google Scholar] [CrossRef] - Grimm, K.J.; Stegmann, G. Modeling change trajectories with count and zero-inflated outcomes: Challenges and recommendations. Addict. Behav.
**2019**, 94, 4–15. [Google Scholar] [CrossRef] - Vel, K.; Bharathiar University; Tha, C. Estimation of Zero-Inflation Parameter in Zero-Inflated Poisson Model. Int. J. Math. Trends Technol.
**2018**, 56, 135–140. [Google Scholar] [CrossRef] - Hua, H.E.; Wan, T.A.N.G.; Wenjuan, W.A.N.G.; Crits-Christoph, P. Structural zeroes and zero-inflated models. Shanghai Arch. Psychiatry
**2014**, 26, 236. [Google Scholar] - Liu, H. Growth Curve Models for Zero-Inflated Count Data: An Application to Smoking Behavior. Struct. Equ. Model. A Multidiscip. J.
**2007**, 14, 247–279. [Google Scholar] [CrossRef] - Olsen, M.K.; Schafer, J.L. A Two-Part Random-Effects Model for Semicontinuous Longitudinal Data. J. Am. Stat. Assoc.
**2001**, 96, 730–745. [Google Scholar] [CrossRef] - Colder, C.R.; Frndak, S.; Lengua, L.J.; Read, J.P.; Hawk, L.W.; Wieczorek, W.F. Internalizing and Externalizing Problem Behavior: A Test of a Latent Variable Interaction Predicting a Two-Part Growth Model of Adolescent Substance Use. J. Abnorm. Child Psychol.
**2018**, 46, 319–330. [Google Scholar] [CrossRef] - Henry, K.L.; Tran, T.P.; Agbeke, D.V.; Lee, H.; Williford, A.; Dziak, J.J. Two-Part Models for Father–Child Relationship Variables: Presence in the Child’s Life and Quality of the Relationship Conditional on Some Presence. J. Soc. Soc. Work. Res.
**2022**, 13, 409–430. [Google Scholar] [CrossRef] - Petras, H.; Nieuwbeerta, P.; Piquero, A.R. Participation and Frequency during Criminal Careers across the Life Span*. Criminology
**2010**, 48, 607–637. [Google Scholar] [CrossRef] - Fekedulegn, D.B.; Andrew, M.E.; Burchfiel, C.M.; Violanti, J.M.; Hartley, T.A.; Charles, L.E.; Miller, D.B. Area Under the Curve and Other Summary Indicators of Repeated Waking Cortisol Measurements. Psychosom. Med.
**2007**, 69, 651–659. [Google Scholar] [CrossRef][Green Version] - McCanlies, E.; Leppma, M.; Mnatsakanova, A.; Allison, P.; Fekedulegn, D.; Andrew, M.; Violanti, J. Associations of burnout with awakening and diurnal cortisol among police officers. Compr. Psychoneuroendocrinol.
**2020**, 4, 100016. [Google Scholar] [CrossRef] - Jain, S.; Bharathi, D. Receiver Operating Characteristic Curve Analysis and its Application in Dentistry. J. Adv. Med. Dent. Sci. Res.
**2020**, 8, 152–155. [Google Scholar] - Mandrekar, J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol.
**2010**, 5, 1315–1316. [Google Scholar] [CrossRef] [PubMed][Green Version] - Tafiadis, D.; Chronopoulos, S.K.; Kosma, E.I.; Voniati, L.; Raptis, V.; Siafaka, V.; Ziavra, N. Using Receiver Operating Characteristic Curve to Define the Cutoff Points of Voice Handicap Index Applied to Young Adult Male Smokers. J. Voice
**2018**, 32, 443–448. [Google Scholar] [CrossRef] [PubMed] - Campbell, R.L.; Cloutier, R.; Bynion, T.M.; Nguyen, A.; Blumenthal, H.; Feldner, M.T.; Leen-Feldner, E.W. Greater adolescent tiredness is related to more emotional arousal during a hyperventilation task: An area under the curve approach. J. Adolesc.
**2021**, 90, 45–52. [Google Scholar] [CrossRef] [PubMed] - Jordan, K.H.; Long, D.L.; Mcgwin, G., Jr.; Childers, N.K. Average area under the curve: An alternative method for quantifying the dental caries experience in longitudinal studies. Community Dent. Oral Epidemiol.
**2019**, 47, 441–447. [Google Scholar] [CrossRef] [PubMed] - Pruessner, J.C.; Kirschbaum, C.; Meinlschmid, G.; Hellhammer, D.H. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology
**2003**, 28, 916–931. [Google Scholar] [CrossRef] [PubMed] - Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 8th ed.; Los Angeles, 1998–2017; Available online: https://www.statmodel.com/download/usersguide/MplusUserGuideVer_8.pdf (accessed on 27 January 2023).
- Duncan, T.E.; Duncan, S.C. An introduction to latent growth curve modeling. Behav. Ther.
**2004**, 35, 333–363. [Google Scholar] [CrossRef] - Rodriguez, D. Research Methods. In Dubuque, IA; Kendall Hunt Publishing Company: Dubuque, IA, USA, 2021. [Google Scholar]
- Rodriguez, D. Core Statistics: Practical Knowledge for the Health Sciences; Kendall Hunt Publishing Company: Dubuque, IA, USA, 2020. [Google Scholar]

**Figure 2.**Histograms for the three area under the curve (AUC) measures for the N = 50 simulation. (Panel

**A**): AUC—i; (Panel

**B**): AUC—g; (Panel

**C**): LN AUC—g.

**Figure 3.**Observed values across three time points (observed trajectories; Panel

**A**) and calculated AUC values (Panel

**B**) for individual 10 from the N = 50 simulated data.

**Figure 4.**Observed values across three time points (observed trajectories; Panel

**A**) and calculated AUC values (Panel

**B**) for individual 18 from the N = 50 simulated data.

**Table 1.**Descriptive statistics and ZIP parameters for all four waves for the different sample sizes *.

N | Wave | Minimum | Maximum | Mean | SD | λ | π |
---|---|---|---|---|---|---|---|

500 | Time 1 | 0 | 83 | 1.93 | 7.419 | 29.45 | 0.93 |

Time 2 | 0 | 107 | 2.06 | 8.064 | 32.78 | 0.94 | |

Time 3 | 0 | 475 | 2.54 | 21.662 | 186.28 | 0.99 | |

Time 4 | 0 | 206 | 2.57 | 14.417 | 82.45 | 0.97 | |

250 | Time 1 | 0 | 83 | 2.17 | 8.341 | 33.23 | 0.93 |

Time 2 | 0 | 106 | 2.31 | 8.636 | 33.60 | 0.93 | |

Time 3 | 0 | 38 | 1.73 | 5.153 | 16.08 | 0.89 | |

Time 4 | 0 | 206 | 3.26 | 18.248 | 104.71 | 0.97 | |

100 | Time 1 | 0 | 63 | 2.15 | 8.964 | 38.524 | 0.94 |

Time 2 | 0 | 43 | 2.04 | 5.605 | 16.440 | 0.88 | |

Time 3 | 0 | 38 | 2.00 | 5.944 | 18.666 | 0.89 | |

Time 4 | 0 | 206 | 4.27 | 22.431 | 121.104 | 0.96 | |

50 | Time 1 | 0 | 63 | 2.14 | 9.165 | 40.391 | 0.95 |

Time 2 | 0 | 43 | 2.60 | 7.100 | 20.989 | 0.95 | |

Time 3 | 0 | 32 | 1.36 | 4.681 | 16.472 | 0.92 | |

Time 4 | 0 | 206 | 6.90 | 31.403 | 148.820 | 0.95 |

Count Intercept ^{1} | Binary Intercept ^{2} | Count Trend ^{3} | Binary Trend ^{4} | ||||||
---|---|---|---|---|---|---|---|---|---|

n | Measures ^{5} | X_{1} | X_{2} | X_{1} | X_{2} | X_{1} | X_{2} | X_{1} | X_{2} |

500 | Average | 1.0009 | −0.9993 | 0.5091 | −0.509 | 0.0998 | −0.1002 | 0.3545 | −0.3537 |

%Bias | 0.09 | −0.07 | 1.82 | 0.018 | −0.2 | 0.2 | 1.2857 | 1.0571 | |

MSE | 0.0032 | 0.0032 | 0.0331 | 0.331 | 0.0005 | 0.0005 | 0.106 | 0.011 | |

Coverage | 0.942 | 0.943 | 0.95 | 0.946 | 0.93 | 0.931 | 0.952 | 0.943 | |

Power | 1.00 | 1.00 | 0.829 | 0.846 | 0.992 | 0.992 | 0.939 | 0.933 | |

250 | Average | 1.0022 | −0.9996 | 0.5257 | −0.5203 | 0.1001 | −0.1007 | 0.3595 | −0.3609 |

%Bias | 0.22 | −0.04 | 5.14 | 4.06 | 0.1 | 0.7 | 2.7143 | 3.1143 | |

MSE | 0.0066 | 0.0067 | 0.0738 | 0.0732 | 0.001 | 0.0011 | 0.0229 | 0.0237 | |

Coverage | 0.934 | 0.939 | 0.943 | 0.949 | 0.924 | 0.925 | 0.948 | 0.945 | |

Power | 1.0 | 1.0 | 0.524 | 0.514 | 0.882 | 0.888 | 0.691 | 0.692 | |

100 | Average | 1.0039 | −1.004 | 0.5705 | −0.5599 | 0.1013 | −0.1015 | 0.3804 | −0.3846 |

%Bias | 0.39 | 0.4 | 14.1 | 11.98 | 1.3 | 1.5 | 8.6857 | 9.8857 | |

MSE | 0.0193 | 0.0187 | 0.2371 | 0.2274 | 0.0034 | 0.0032 | 0.0735 | 0.0737 | |

Coverage | 0.922 | 0.923 | 0.942 | 0.95 | 0.901 | 0.905 | 0.936 | 0.943 | |

Power | 1 | 1 | 0.203 | 0.189 | 0.543 | 0.543 | 0.347 | 0.348 | |

50 | Average | 1.0131 | −1.0123 | 5.2436 | −3.6967 | 0.1007 | −0.102 | −0.1756 | −0.18 |

%Bias | 1.31 | 1.23 | 948.72 | 639.34 | 0.7 | 2.00 | −150.171 | −48.571 | |

MSE | 0.0494 | 0.0473 | 25461.42 | 7943.048 | 0.0093 | 0.0092 | 1909.731 | 409.3025 | |

Coverage | 0.893 | 0.9 | 0.935 | 0.937 | 0.886 | 0.886 | 0.923 | 0.921 | |

Power | 0.986 | 0.985 | 0.112 | 0.111 | 0.334 | 0.343 | 0.205 | 0.204 |

^{1}Intercept factor for count part;

^{2}intercept factor for the binary part;

^{3}linear trend factor for the count part;

^{4}linear trend factor for the binary part;

^{5}X

_{1}and X

_{2}are the two continuous predictor variables.

n | AUC Measure | Mean | SD | Skewness | Kurtosis | Median | IQR ^{1} |
---|---|---|---|---|---|---|---|

500 | AUC—i | 1.061 | 25.589 | 12.146 | 240.570 | 0.00 | 2.00 |

AUC—g | 6.857 | 26.907 | 12.565 | 196.822 | 1.50 | 4.50 | |

LN AUC—g | 1.11 | 1.13 | 1.089 | 1.067 | 0.916 | ||

250 | AUC—i | 0.24 | 16.343 | −3.515 | 45.006 | 0.00 | 2.50 |

AUC—g | 6.756 | 20.107 | 7.818 | 77.213 | 1.50 | 5.00 | |

LN AUC—g | 1.158 | 1.135 | 0.991 | 0.709 | 0.916 | 1.79 | |

100 | AUC—i | 0.8 | 20.416 | −3.714 | 38.084 | 0.00 | 2.50 |

AUC—g | 7.25 | 18.484 | 4.754 | 26.398 | 1.50 | 4.50 | |

LN AUC—g | 1.164 | 1.181 | 1.087 | 0.708 | 0.916 | 1.70 | |

50 | AUC—i | 2.06 | 15.441 | 22.673 | 8.48 | 0.00 | 4.13 |

AUC—g | 8.48 | 23.780 | 18.467 | 1.105 | 1.250 | 4.13 | |

LN AUC—g | 1.105 | 1.251 | 1.340 | 1.535 | 0.805 | 1.63 |

^{1}IQR; interquartile range.

AUC—g ^{1} | AUC—i | ||||
---|---|---|---|---|---|

n | Measures | X_{1} | X_{2} | X_{1} | X_{2} |

500 | Average | 0.3282 | −0.4147 | 0.9069 | −1.4914 |

Bias | −0.243 | −0.072 | −2.274 | −0.441 | |

MSE | 0.0021 | 0.0018 | 1.3694 | 1.1977 | |

Coverage | 0.945 | 0.95 | 0.946 | 0.95 | |

Power | 1 | 1 | 0.134 | 0.283 | |

250 | Average | 0.2924 | −0.4504 | −0.5813 | 0.0029 |

Bias | −0.205 | 0.0889 | 1.6259 | −71 | |

MSE | 0.0045 | 0.004 | 1.1947 | 1.0654 | |

Coverage | 0.947 | 0.948 | 0.947 | 0.948 | |

Power | 0.991 | 1 | 0.091 | 0.051 | |

100 | Average | 0.3167 | −0.4294 | −2.9642 | −2.0807 |

Bias | −0.409 | −0.14 | 0.8918 | −0.54 | |

MSE | 0.0115 | 0.01 | 4.448 | 3.8672 | |

Coverage | 0.941 | 0.944 | 0.941 | 0.944 | |

Power | 0.845 | 0.986 | 0.313 | 0.195 | |

50 | Average | 0.4064 | −0.4795 | 0.1414 | −1.385 |

Bias | −0.392 | 0.1044 | −14.303 | 0.581 | |

MSE | 0.0226 | 0.021 | 4.7604 | 4.4243 | |

Coverage | 0.936 | 0.929 | 0.936 | 0.928 | |

Power | 0.802 | 0.924 | 0.069 | 0.125 |

^{1}Natural log-transformed.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rodriguez, D.
Assessing Area under the Curve as an Alternative to Latent Growth Curve Modeling for Repeated Measures Zero-Inflated Poisson Data: A Simulation Study. *Stats* **2023**, *6*, 354-364.
https://doi.org/10.3390/stats6010022

**AMA Style**

Rodriguez D.
Assessing Area under the Curve as an Alternative to Latent Growth Curve Modeling for Repeated Measures Zero-Inflated Poisson Data: A Simulation Study. *Stats*. 2023; 6(1):354-364.
https://doi.org/10.3390/stats6010022

**Chicago/Turabian Style**

Rodriguez, Daniel.
2023. "Assessing Area under the Curve as an Alternative to Latent Growth Curve Modeling for Repeated Measures Zero-Inflated Poisson Data: A Simulation Study" *Stats* 6, no. 1: 354-364.
https://doi.org/10.3390/stats6010022