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Abstract: Clinical trials often collect intermediate or surrogate endpoints other than their true
endpoint of interest. It is important that the treatment effect on the surrogate endpoint accurately
predicts the treatment effect on the true endpoint. There are settings in which the proposed surrogate
endpoint is positively correlated with the true endpoint, but the treatment has opposite effects on the
surrogate and true endpoints, a phenomenon labeled “surrogate paradox”. Covariate information
may be useful in predicting an individual’s risk of surrogate paradox. In this work, we propose
methods for incorporating covariates into measures of assessing the risk of surrogate paradox using
the meta-analytic causal association framework. The measures calculate the probability that a
treatment will have opposite effects on the surrogate and true endpoints and determine the size
of a positive treatment effect on the surrogate endpoint that would reduce the risk of a negative
treatment effect on the true endpoint as a function of covariates, allowing the effects of covariates on
the surrogate and true endpoint to vary across trials.

Keywords: surrogate markers; surrogate endpoints; meta-analysis; causal association; covariate
information

1. Introduction

Clinical trials often collect intermediate, or surrogate, endpoints other than their true
endpoint of interest. Surrogate endpoints are chosen because they occur more frequently,
are easier to measure, or occur more proximally to the treatment time. The use of surrogate
endpoints can result in a reduction in the required sample size for a trial, leading to shorter
trial duration, as well as reduced costs of conducting clinical trials. A good surrogate
endpoint is one that accurately reflects the effect of a given treatment on the true endpoint
of interest while incurring lower cost or taking less time to measure. Some examples of
surrogate endpoints include tumor progression as a surrogate endpoint for cancer-specific
mortality, or CD4 counts in blood as a surrogate endpoint for AIDS mortality.

There exist several approaches for evaluating the strength of proposed surrogate
endpoints. The first formalized approach for surrogate endpoint validation was presented
by Prentice in 1989, who suggested that, among other criteria, a good surrogate should be
highly correlated with the true endpoint [1]. He provided a method to test the surrogate by
including it in a regression model of the true endpoint with the treatment and checking
if it would eliminate the coefficient of the treatment association with the true endpoint of
interest [1]. Later work pointed out that this approach does not allow for causal claims
about surrogate efficacy since it ignores the potential of confounders between the surrogate
endpoint and true endpoint. Confounding is possible despite randomization, since the
surrogate endpoint is measured after treatment [2].

Since then, there have been several approaches proposed to evaluate surrogates in
a causal inference framework when data are available on a single trial in which both
outcomes are measured. These methods can be categorized into two major types: “causal
effects” and “causal association” [2–4]. The causal effects paradigm uses the potential
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outcomes framework, which considers all the outcomes that would be potentially observed
if the treatment and placebo were both applied to each subject (a combination of the
observed outcomes and counterfactual outcomes if a subject were assigned to the opposite
treatment that they actually received) [5]. Once the potential outcomes are defined, we
consider both treatment and surrogate endpoints to be separately manipulable and create
potential outcomes based on all possible combinations of potential outcomes [2]. This
allows the estimation of the total effect of treatment as the sum of direct effects of the
treatment on the true endpoint and indirect effects of the treatment that go through the
surrogate endpoint. An ideal surrogate would capture the majority of the indirect effect of
the treatment on the true outcome of interest, leaving little direct effect of the treatment.
In the causal association framework, only the treatment and not the surrogate is considered
manipulable. To account for the fact that the surrogate endpoint is measured after treatment,
the causal association framework conditions on the joint counterfactual values of the
surrogate endpoint under both the treatment and the control. Both the causal effects and
causal association approaches use models that are not entirely identifiable, since we never
completely observe the counterfactual distribution. There is an alternate causal association
approach, presented by Buyse et al. in 2000, in the meta-analytic setting, where data are
available on multiple trials of the same treatment and surrogate combination [6]. This
approach leverages data from multiple randomized trials to assess the effectiveness of a
surrogate endpoint, allowing all parameters to be identified from the observed data [6].
This is the setting we consider in this paper.

The goal of measuring the validity of a surrogate is to make sure that a surrogate
endpoint accurately captures the effect of the treatment on the true endpoint of interest.
There have been several examples of surrogate endpoints that are positively associated
with both the treatment and the true endpoint of interest but have not accurately predicted
the treatment effect on the true endpoint. One notable example is in the development of a
drug to fight ventricular arrhythmias, which were considered to be a surrogate for cardiac-
related deaths. The drug was found to lower ventricular arrhythmias, and ventricular
arrhythmias were positively associated with cardiac deaths, leading to the approval of
the drug in clinical trials. Subsequent follow-up trials found that the drug was associated
with a significantly increased risk of cardiac death [7]. The phenomenon is labeled the
“surrogate paradox” [8]. The surrogate paradox occurs when the treatment has beneficial
effects on the surrogate outcome, and the surrogate outcome is positively associated with
the true outcome, yet the overall effect of the treatment on the true outcome is negative,
leading to incorrect conclusions that can be potentially dangerous to public health. It
has been shown that testing the efficacy of a surrogate endpoint under either the causal
association or causal effects framework is not enough to fully preclude the risk of observing
the surrogate paradox [8]. There are several situations in which the surrogate paradox
may be observed [9]. The first is when a direct effect between the treatment and the true
outcome runs in the opposite direction of the indirect effect of the treatment through the
surrogate. The second is when there is uncaptured confounding between the surrogate
and true endpoints. The third is when the effect of the treatment on the surrogate and
true endpoints are different on the individual level, meaning that the positive effect of
the treatment is experienced on the surrogate endpoint for some patients and on the true
endpoint for a different set of patients. In his paper, Vanderweele discusses means of
assessing the risk of surrogate paradox and concludes that the meta-analytic approach [6]
is the most effective, since it studies the efficacy of a surrogate measure over multiple trials.
Elliott et al. proposed measures to assess the risk of surrogate paradox in the meta-analytic
causal association framework [10].

Treatments may have different effects on different patient subpopulations, and there is
the possibility that some subpopulations in a study may be at a different risks of experienc-
ing the surrogate paradox. To consider this possibility, in this paper, we propose extensions
to the measures of surrogate paradox risk proposed by Elliott et al. [10] that incorporate
covariate information. Without considering covariate information when measuring the
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risk of surrogate paradox, there is the possibility that a new trial in a new population with
different covariate distribution than past studies could expose those patients to a higher risk
of surrogate paradox than what was expected. Incorporating covariate information may
allow us to identify groups that are at particular risk of experiencing the surrogate paradox
and help design future trials that make use of that surrogate. In the following sections,
we describe the Buyse et al. meta-analytic causal association setting [11], the proposed
surrogacy paradox risk measures from Elliott et al. [10], and then propose methods for
incorporating covariate information.

2. Background

For surrogate marker Sij and outcome measure Tij, where i = 1, . . . , N indexes the
trials, and j = 1, . . . ni indexes the subjects in the ith trial, Buyse et al. [6] considered the
following distributions:

Sij = αS + βSZij + aSi + bSi Zij + εSij (1)

Tij = αT + βTZij + aTi + bTi Zij + εTij (2)

where Zij ∈ 0, 1 is an indicator of treatment assignment, and(
εSij

εTij

)
∼ N2

((
0
0

)
, σ =

(
σss σst

σtt

))
,

and random effects
aSi
aTi
bSi
bTi

 ∼ N4




0
0
0
0

, D =


dss dst dsa dsb

dtt dta dtb
daa dab

dbb


.

From this distribution, we can calculate the causal effect of a treatment Z on the
surrogate marker in the ith trial as

∆Si = E(Sij(1)− Sij(0))

= E(Sij|Zij = 1)− E(Sij|Zij = 0)

= αS + βS + aSi + bSi − (αS + aSi )

= βS + bSi

Similarly, the causal effect of a treatment Z on the outcome measure in the ith trial is

∆Ti = E(Tij(1)− Tij(0))

= E(Tij|Zij = 1)− E(Tij|Zij = 0)

= αT + βT + aTi + bTi − (αT + aTi )

= βT + bTi
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Buyse et al. used the above distribution to suggest a trial-level measure of surrogate
validity called R2

trial [6]. R2
trial is the proportion of variance explained by the trial-level

random effects associated with the surrogate and is defined by

R2
trial =

V(T(1)− T(0))−V(T(1)− T(0) | aSi, bSi)

V(T(1)− T(0))

= 1−
dbb −

(
dsb dab

)( dss dsa
dsa daa

)−1( dsb
dab

)
dbb

=

(
dsb dab

)( dss dsa
dsa daa

)−1( dsb
dab

)
dbb

.

Elliott et al. use the joint distribution of ∆Si and ∆Ti to develop several measures of
surrogate paradox risk [10]. To do this, consider the contour plots of the joint distribution
Figure 1. Throughout the paper, we assume, without loss of generality, that the qualitative
effects of the treatment on the surrogate marker and true outcome are in the same direction,
with positive effects beneficial and negative effects harmful. Each scenario shows the joint
distribution of a different set of trials. Based on the location of the joint distribution on the
Cartesian plane, we can infer the risk of surrogate paradox occurring. If the distribution
falls mostly in the first or third quadrants, there is little risk of surrogate paradox, since
∆S and ∆T give the same qualitative conclusion. However, if the distribution falls in the
second or fourth quadrants, the treatment effect on the surrogate and true outcomes are
in opposite directions. By calculating the probabilities of the joint distribution falling in
each quadrant, Elliot et al. present measures of the risk of surrogate paradox [10]. These
measures are dependent on both the level of correlation between ∆S and ∆T and the size
of the treatment effect on both outcomes. For example, in Scenario 1, although there is a
strong correlation between the treatment effect on the surrogate and true outcomes, there is
still some risk of surrogate paradox because of the relatively small treatment effect on the
true outcome. In Scenario 2, there is some risk that the treatment effect on the surrogate
outcome is negative, while the true treatment effect is positive; however, the increased true
treatment effect size means that there is a lower risk of experiencing the more dangerous
surrogate paradox (i.e., the treatment effect on the surrogate is positive while the true
treatment effect is negative). In Scenario 3, despite the very strong correlation between the
treatment effects on the two outcomes, there is some risk of surrogate paradox because of
the low treatment effect sizes. Finally, in Scenario 4, there is low correlation between the
two outcomes, but the risk of surrogate paradox is precluded because of the large treatment
effect size on both outcomes. In the remainder of this section, we describe Elliott et al.’s
measures of surrogate paradox risk using this joint distribution [10].
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Figure 1. Joint distributions of the treatment effect on the surrogate and true outcome under four
difference scenarios: (1) βS = 2, βT = 1, daa = 1, dab = 0.375, dbb = 0.5, R2

trial = 0.358, ψSP13 = 0.918,
ψSP123 = 0.931; (2) βS = 1, βT = 2, daa = 1, dab = 0.75, dbb = 1, R2

trial = 0.568, ψSP13 = 0.858,
ψSP123 = 0.997; (3) βS = 0.5, βT = 0.5, daa = 1, dab = 0.9, dbb = 1, R2

trial = 0.822, ψSP13 = 0.874,
ψSP123 = 0.937; (4) βS = 3, βT = 3, daa = 1, dab = 0.25, dbb = 1, R2

trial = 0.118, ψSP13 = 0.997,
ψSP123 = 0.999. ψSP13 is defined as the probability than an outcome and marker will have the same
direction of treatment effects in a new trial and is introduced in Section 2.1. ψSP123 is defined as the
probability of avoiding the dangerous surrogate paradox, or the situation in which the surrogate
marker suggests a beneficial treatment effect but the outcome suggests a harmful treatment effect,
and it is introduced in Section 2.2.

2.1. ΨSP13: Estimating the Probability That an Outcome and Marker Will Have the Same Direction
of Treatment Effects in a New Trial

The first surrogate paradox measure considers the probability that the N + 1th trial
will yield treatment effects on the marker and the outcome in the same direction. This
probability is given by

ΨSP13 = P(∆S,N+1 × ∆T,N+1 > 0) = 1−Φ1(0; βS, daa)−Φ1(0; βT , dbb) + 2Φ2

((
0
0

)
,
(

βS
βT

)
,
(

daa dab
dbb

))
where Φk(x; Θ, Ψ) is the cumulative distribution function of a k-variate normal distribution
with mean Θ and variance Ψ. The subscript 13 in ΨSP13 refers to the first and third
quadrants of the Cartesian plane, the region in which the marker gives a qualitatively
correct prediction of the treatment effect.
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2.2. ΨSP123: Estimating the Probability of Avoiding Dangerous Surrogate Paradox

A second measure of surrogacy paradox considers the particularly dangerous situation
where the surrogate marker suggests a beneficial treatment effect but the treatment effect
on the outcome measure is harmful. This probability is given by

ΨSP123 = 1− P(∆S,N+1 > 0, ∆T,N+1 < 0) = 1−Φ1(0; βT , dbb) + Φ2

((
0
0

)
,
(

βS
βT

)
,
(

daa dab
dbb

))
This measure estimates the probability that the N + 1th trial lies outside of the fourth

quadrant of the Cartesian plane (see Figure 1). It is the probability that a future trial will
not result in a setting where the surrogate marker suggests the treatment will be helpful
when, in fact, it is harmful.

2.3. Ψ̂SP13N : Estimating the Probability That an Outcome and Marker Will Have the Same
Direction of Treatment Effects in a New Trial When Partial Data Have Been Collected

The first two measures can be considered when drawing inferences about a future trial
that has not yet collected data based on N historic trials that have already completed data
collection. In practice, a trial may have already begun data collection and be interested in
the risk of observing the surrogate paradox in their ongoing trial conditioning on the data
from historic trials. In particular, they may have collected data on the surrogate outcome
and no or very limited data on the true outcome of interest. We consider the situation
where we have collected partial data for the Nth trial and want to estimate the measures of
surrogate paradox risk in the ongoing trial conditioned on the previously collected data
from the first N − 1 trials.

Let Yij =

(
Sij
Tij

)
constitute the surrogate marker and outcome for each subject,

Mij =

(
1 0 Zij 0
0 1 0 Zij

)
be the fixed effect matrix associated with the parameters µ =

(αS, αT , βS, βT)
T , and let Wij =

(
1 0 Zij 0
0 1 0 Zij

)
be the random effect matrix associated

with γi = (aSi , aTi , bSi , bTi )
T . Let Yi, Mi, and Wi, represent the stacked elements of Yij, Mij,

and Wij. Then, YN , XN , and WN represent the stacked individual level data for each subject
(j = 1, . . . , nN) in the Nth trial (where nN is the total sample of the Nth trial so far) and
γN = (aSN , aTN , bSN , bTN )

T represents the trial-level random effects.
The conditional distribution of γN |YN can be found by considering the joint dis-

tribution of YN ∼ N2nN (MNµ, VN) and γN ∼ N4(0, D) and cov(YN , γN) = WN D for
VN = WN DWT

N + R, with R representing a 2nN × 2nN matrix with block diagonals of σ
representing the individual level residual variance. Then, we have

γN |YN ∼ N4(γ̃N , D̃N)

where γ̃N = DWT
NV−1

N (YN−XNµ) and D̃N = D−DWT
NV−1

N WN D. From here, the measure
of surrogate paradox risk is given by

Ψ̂SP13N = 1−Φ1(0; ˆ̃βSN , ˆ̃d33N )−Φ1(0; ˆ̃βTN , ˆ̃d44N ) + 2Φ2

((
0
0

)
,

(
ˆ̃βSN
ˆ̃βTN

)
,

(
ˆ̃d33N

ˆ̃d34N
ˆ̃d44N

))

where ˆ̃βSN = β̂S +
ˆ̃bSN for β̂S corresponding to the third element of the maximum likelihood

(ML) or reduced maximum likelihood (REML) estimate of µ and ˆ̃bSN corresponding to the

third element of the ML/REML estimate of γ̃N , ˆ̃βTN = β̂T + ˆ̃bTN for β̂T corresponding to

the fourth element of the ML/REML estimate of µ and ˆ̃bTN corresponding to the fourth

element of the ML/REML estimate of γ̃N , ˆ̃dklN corresponding to the k, l element of the
ML/REML estimator of D̃N . Similarly, we can derive Ψ̂SP123N .
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This measure allows measurement of surrogate paradox risk after some data have been
collected in the trial. This could be useful after the surrogate outcome has been collected on
some of the patients, but there are not yet many (or any) measurements of the true endpoint
that might occur later in the study. When TNj is missing, YNj can be replaced with SNj in
the above calculations, while leaving the placeholder XNj rows for the missing TNj.

2.4. s: Estimating the Size of the Beneficial Treatment Effect on the Marker Required to Preclude a
Harmful Treatment Effect on the Outcome

In the fourth surrogate paradox measure, Elliott et al. consider the minimum ob-
served beneficial treatment effect for a marker that can reduce the probability that the true
treatment effect for the outcome is harmful. Let

OSi =
∑j ZijSij

∑j Zij
−

∑j(1− Zij)Sij

∑j(1− Zij)

represent the difference between the observed surrogate marker means under treatment
and control. Note that for some value of s, OSi will coincide with the true ∆Si . Then,
the joint distribution of the true treatment effect on the outcome and the observed treatment
effect on the surrogate marker is given by(

OSi
∆Ti

)
∼ N2

((
βS
βT

)
,
(

d̃aa dab
dbb

))
where d̃aa = daa + σss(1/n1i + 1/n0i), n1i = ∑j Zij, and n0i = ∑j(1− Zij). From here, they
find that the distribution of the true treatment effect on the outcome ∆Ti conditional on a
given observed treatment effect OSi is

∆Ti|OSi = s ∼ N(βT + dab/d̃aa(s− βS), dbb − d2
ab/d̃aa)

and

P(∆Ti < 0|OSi = s) = Φ

−(βT + dab/d̃aa(s− βS))√
dbb − d2

ab/d̃aa

; 0, 1

 (3)

The authors propose two different ways to move forward from here. If data are
collected to determine s, we can calculate the probability that the true effect in the outcome
for the trial will be non-negative by replacing the parameters in (3) by their estimates from
the data. Alternatively, we can determine the value of s that will ensure that the probability
that ∆Ti is negative is less than or equal to a preset level α:

s ≥ βS −
d̃aa

dab

Φ(α; 0, 1)−1

√
d̃aadbb − d2

ab

d̃aa
+ βT


3. Incorporating Covariates

Treatments may have heterogeneous effects on surrogate and true endpoints in differ-
ent patient populations, exposing some subpopulations to increased risk of surrogate
paradox. Therefore, it is important that measuring risk of surrogate paradox allows
consideration of patient level factors. To address this concern, a natural extension to
Elliott et al. [10] is to incorporate covariate information by conditioning on a set of co-
variates and making the measures above (Sections 2.1–2.4) functions of covariates X. We
can consider a situation where the surrogate and outcome measures depend on a set of
covariates in addition to the treatment and extend (1) and (2) to incorporate covariates,
where k = 1, . . . , p indexes the number of covariates.
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Sij = αS + βSZij +
p

∑
k=1

γSk Xijk +
p

∑
k=1

δSk XijkZij + aSi + bSi Zij +
p

∑
k=1

cSi Xijk +
p

∑
k=1

dSi XijkZij + εSij

Tij = αT + βTZij +
p

∑
k=1

γTk Xijk +
p

∑
k=1

δTk XijkZij + aTi + bTi Zij +
p

∑
k=1

cTi Xijk +
p

∑
k=1

dTi XijkZij + εTij

This may be difficult to fit once p gets large and increases the number of random
effects required. We consider two simplified scenarios that can be extended to a larger
number of covariates if enough data are available:

• Scenario 1: The effects of covariates on surrogate and outcome are constant across
trials (i.e., no random effects related to the covariates X).

• Scenario 2: The effects of covariates on surrogate and outcome are not constant across
trials. In order to not overly complicate notation, we focus on the setting with only one
scalar or binary covariate X (i.e., p = 1, and all random effects related to the covariate
X are included), but the approach can easily be extended to higher dimensions of
covariates.

Although it is theoretically possible to consider a larger number of covariates, it
is often not possible or computationally feasibly if it is expected that the effect of the
covariates differs by study, since that would rapidly increase the size of the random effect
variance matrix.

In the following two sections, we recreate the surrogate paradox measures from
Elliott et al. under each of the above scenarios.

3.1. Scenario 1

Under scenario 1, we assume the effects of covariates on the surrogate and outcome
measures are constant across trials:

Sij = αS + βSZij +
p

∑
k=1

γSk Xijk +
p

∑
k=1

δSk XijkZij + aSi + bSi Zij + εSij

Tij = αT + βTZij +
p

∑
k=1

γTk Xijk +
p

∑
k=1

δTk XijkZij + aTi + bTi Zij + εTij

Then, we can choose a level xk for each Xk in X and calculate the causal effect of a
treatment Z on the surrogate marker among subjects with Xk = xk in the ith trial as

∆Si (xk) = E(Sij(1|Xijk = xk)− Sij(0|Xijk = xk))

= E(Sij|Zij = 1, Xijk = xk)− E(Sij|Zij = 0, Xijk = xk)

= αS + βS +
p

∑
k=1

γSk xk +
p

∑
k=1

δSk xk + aSi + bSi − (αS +
p

∑
k=1

γSk xk + aSi )

= βS +
p

∑
k=1

δSk xk + bSi
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Similarly, the causal effect of a treatment Z on the outcome measure among subjects
with Xk = xk in the ith trial is

∆Ti (xk) = E(Tij(1|Xijk = xk)− Tij(0|Xijk = xk))

= E(Tij|Zij = 1, Xijk = xk)− E(Tij|Zij = 0, Xijk = xk)

= αT + βT +
p

∑
k=1

γTk xk +
p

∑
k=1

δTk xk + aTi + bTi − (αT +
p

∑
k=1

γTk xk + aTi )

= βT +
p

∑
k=1

δTk xk + bTi

Thus, ∆Si and ∆Ti have the joint distribution:(
∆Si
∆Ti

)
∼ N2

((
βS + ∑

p
k=1 δSk xk

βT + ∑
p
k=1 δTk xk

)
,
(

daa dab
dbb

))
This distribution consists of a mean shift from the non-covariate-adjusted distribution.

The variance remains the same as the original, no-subgroup distribution. To visualize this,
refer to Scenario 1 in Figure 2. The risk of surrogate paradox may be different in the two
groups and can be identified by calculating the differing probabilities of falling into each
quadrant for the different covariate levels. The change in risk occurs from a mean shift of
the overall joint distribution (the variance of the joint distribution for the two covariate
levels remains the same).

−4 −2 0 2 4

−
4

−
2

0
2

4

Scenario 1

∆S

∆ T

III

III IV

−4 −2 0 2 4

−
4

−
2

0
2

4
Scenario 2

∆S

∆ T

III

III IV

X = 0 X = 1

Figure 2. Changes to the joint distribution of ∆S and ∆T dependent on X: (1) Scenario 1: The effects
of a binary covariate X on surrogate and outcome is constant across trials, resulting in a mean shift of
the overall distribution for different levels of X. (2) Scenario 2: The effects of a binary covariate X on
surrogate and outcome differs across trials, resulting in both a mean shift and variance change for
different levels of X.

3.1.1. Scenario 1: ΨSP13(x)

Using the new joint distribution, the probability that the N + 1th trial will yield
treatment effects on the marker and outcome in the same direction is given by

ΨSP13(x) = 1−Φ1(0; βS +
p

∑
k=1

δSk xk, daa)−Φ1(0; βT +
p

∑
k=1

δTk xk, dbb)+

2Φ2

((
0
0

)
,
(

βS + ∑
p
k=1 δSk xk

βT + ∑
p
k=1 δTk xk

)
,
(

daa dab
dbb

))
(4)
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where Φk(x; Θ, Ψ) is the cumulative distribution function of a k-variate normal distribution
with mean Θ and variance Ψ.

3.1.2. Scenario 1: ΨSP123(x)

Under the new joint distribution, the probability that the treatment effects for the
outcome will be harmful given that the treatment effect on the marker is beneficial is
given by

ΨSP123(x) = 1−Φ1(0; βT +
p

∑
k=1

δTk xk, dbb) + Φ2

((
0
0

)
,
(

βS + ∑
p
k=1 δSk xk

βT + ∑
p
k=1 δTk xk

)
,
(

daa dab
dbb

))
This measure estimates the probability that a future trial will not result in a setting

where the surrogate marker suggests the treatment will be helpful when it is, in fact,
harmful.

3.1.3. Scenario 1: Ψ̂SP13N (x)

For this section, we consider the simplest case of one covariate for illustrative purposes.
This can easily be extended to multiple covariates by extending the XN and WN matrices

and the µ and γi vectors. Let Yij =

(
Sij
Tij

)
constitute the surrogate marker and outcome for

each subject,

Mij =

(
1 0 Zij 0 x 0 xZij 0
0 1 0 Zij 0 x 0 xZij

)
be the fixed effect matrix associated with the parameters µ = (αS, αT , βS, βT , γS, γT , δS, δT)

T ,

and let Wij =

(
1 0 Zij 0
0 1 0 Zij

)
be the random effect matrix associated with

γi = (aSi , aTi , bSi , bTi )
T . Let Mi, Yi, and Wi, represent the stacked elements of Mij, Yij,

and Wij.
Consider the vector of random effects γN = (aSN , aTN , bSN , bTN )

T , then the condi-
tional distribution of γN |YN can be found by considering the joint distribution of YN ∼
N2nN (MNµ, VN) and γN ∼ N4(0, D) and cov(YN , γN) = WN D for VN = WN DWT

N + R,
with R representing a 2nN × 2nN matrix with block diagonals of σ as before.

γN |YN ∼ N4(γ̃N , D̃N)

where γ̃N = DWT
NV−1

N (YN−XNµ) and D̃N = D−DWT
NV−1

N WN D. From here, the measure
of surrogate paradox risk is given by

Ψ̂SP13N (x) = 1−Φ1(0; ˆ̃βSN + ˆ̃δSN x, ˆ̃d33N )−Φ1(0; ˆ̃βTN + ˆ̃δTN x, ˆ̃d44N )

+ 2Φ2

((
0
0

)
,

(
ˆ̃βSN + ˆ̃δSN x
ˆ̃βTN + ˆ̃δTN x

)
,

(
ˆ̃d33N

ˆ̃d34N
ˆ̃d44N

))

where ˆ̃βSN = β̂S + δ̂S +
ˆ̃bSN for β̂S and δ̂S corresponding to the third and seventh elements

of the estimate of µ and ˆ̃bSN corresponding to the third element of the estimate of γ̃N ,
ˆ̃βTN = β̂T + δ̂T + ˆ̃bTN for β̂T and δ̂T corresponding to the fourth and eighth element of

the estimate of µ and ˆ̃bTN corresponding to the fourth element of the estimate of γ̃N ,
ˆ̃dklN corresponding to the k, l element of the estimator of D̃N . Similarly, we can derive

Ψ̂SP123N (x).

3.1.4. Scenario 1: s Value

In the fourth surrogate paradox measure, Elliott et al. consider the minimum observed
beneficial treatment effect for a marker that can reduce the probability that the true treat-
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ment effect for the outcome is harmful [10]. When considering covariate subgroups, we
can compute OSi for each covariate level and call it OSi (x):

OSi (x) =
∑j:Xij=x ZijSij

∑j:Xij=x Zij
−

∑j:Xij=x(1− Zij)Sij

∑j:Xij=x(1− Zij)

OSi (x) represents the difference between the observed surrogate marker means under
treatment and control within a fixed level of X. Then, the joint distribution of the true
treatment effect on the outcome and the observed treatment effect on the surrogate marker
is given by (

OSi (x)
∆Ti (x)

)
∼ N2

((
βS + δS x
βT + δT x

)
,
(

d̃aa dab
dbb

))
where d̃aa = daa + σss(1/n1ix + 1/n0ix), n1ix = ∑j:Xij=x Zij,and n0ix = ∑j:Xij=x(1− Zij). So,
the distribution of the true treatment effect on the outcome ∆Ti(x) conditional on a given
observed treatment effect OSi(x) within the group having X = x is

∆Ti|OSi(x) = s ∼ N(βT + δTx + dab/d̃aa(s− (βS + δSx)), dbb − d2
ab/d̃aa)

and

P(∆Ti < 0|OSi = s, X = x) = Φ

−(βT + δTx + dab/d̃aa(s− (βS + δSx)))√
dbb − d2

ab/d̃aa

; 0, 1


The value of s that will ensure that the probability that ∆Ti(x) is negative is less than

or equal to a preset level α:

s ≥ βS + δSx− d̃aa

dab

Φ(α; 0, 1)−1

√
d̃aadbb − d2

ab

d̃aa
+ βT + δTx


3.2. Scenario 2

Under scenario 2, we assume the effects of the covariates on the surrogate and out-
come are not constant across trials. For simplicity, we consider only one scalar or binary
covariate X:

Sij = αS + βSZij + γSXij + δSXijZij + aSi + bSi Zij + cSi Xij + dSi XijZij + εSij

Tij = αT + βTZij + γTXij + δTXijZij + aTi + bTi Zij + cTi Xij + dTi XijZij + εTij

where (
εSij

εTij

)
∼ N2

((
0
0

)
, σ =

(
σss σst

σtt

))


aSi
aTi
bSi
bTi
cSi
cTi
dSi
dTi


∼ N8





0
0
0
0
0
0
0
0


, D =



dss dst dsa dsb dscs dsct dsds dsdt
dtt dta dtb dtcs dtct dtds dtdt

daa dab dacs dact dads dadt
dbb dbcs dbct dbds dbdt

dcs dcsct dcsds dcsdt
dct dctds dctdt

dds ddsdt
ddt
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Now, we can choose a level x for the covariaite X and calculate the causal effect of a
treatment Z on the surrogate marker and outcome measure among subjects with X = x in
the ith trial as

∆Si (x) = E(Sij(1|Xij = x)− Sij(0|Xij = x))

= E(Sij|Zij = 1, Xij = x)− E(Sij|Zij = 0, Xij = x)

= αS + βS + γSx + δSx + aSi + bSi + cSi x + dSi x− (αS + γSx + aSi + cSi x)

= βS + δSx + bSi + dSi x

Similarly, the causal effect of a treatment Z on the surrogate marker and outcome
measure among subjects with X = x in the ith trial is

∆Ti (x) = E(Tij(1|Xij = x)− Tij(0|Xij = x))

= E(Tij|Zij = 1, Xij = x)− E(Tij|Zij = 0, Xij = x)

= αT + βT + γTx + δTx + aTi + bTi + cTi x + dTi x− (αT + γTx + aTi + cTi x)

= βT + δTx + bTi + dTi x

Now, we can calculate the joint distribution of ∆Si (x) and ∆Ti (x):

E(∆Si (x)) = E(βS + δSx + bSi + dSi x) = βS + δS x

E(∆Ti (x)) = E(βT + δTx + bTi + dTi x) = βT + δTx

Var(∆Si (x)) = Var(βS + δSx + bSi + dSi x) = daa + x2dds + 2xdads

Var(∆Ti (x)) = Var(βT + δTx + bTi + dTi x) = dbb + x2ddt + 2xdbdt

Cov(∆Si (x), ∆Ti (x)) = Cov(βS + δSx + bSi + dSi x, βT + δTx + bTi + dTi x)

= Cov(bSi + dSi x, bTi + dTi x)

= E(bSi bTi + bSi dTi x + bTi dSi x + dSi dTi x
2)

= Cov(bSi , bTi ) + xCov(bSi , dTi ) + xCov(bTi , dSi ) + x2Cov(dSi , dTi )

= dab + xdadt + xdbds + x2ddsdt

Thus, ∆Si and ∆Ti have the joint distribution:(
∆Si
∆Ti

)
∼ N2

((
βS + δS x
βT + δT x

)
, D∗ =

(
d∗aa d∗ab

d∗bb

))
where

d∗aa = daa + x2dds + 2xdads

d∗ab = dab + xdadt + xdbds + x2ddsdt

d∗bb = dbb + x2ddt + 2xdbdt

This distribution consists of both a mean shift and change in variance compared
with the original, no-subgroup distribution. To visualize this, refer to Scenario 2 in
Figures 2 and 3. The change in risk occurs from both a mean shift and change in vari-
ance of the overall joint distribution by covariate level. We can use this distribution to
construct the four surrogate paradox measures proposed by Elliott et al.
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Figure 3. Changes to the joint distribution of ∆S and ∆T dependent on a continuous covariate X: (1)
Scenario 1: The effects of a continuous covariate X on surrogate and outcome is constant across trials,
resulting in a mean shift of the overall distribution based on the value of X. (2) Scenario 2: The effects
of a continuous covariate X on surrogate and outcome differs across trials, resulting in both a mean
shift and variance change for different values of X.

3.2.1. Scenario 2: ΨSP13(x)

Using the new joint distribution, the probability that the N + 1th trial will yield
treatment effects on the marker and outcome in the same direction is given by

ΨSP13(x) = 1−Φ1(0; βS + δSx, d∗aa)−Φ1(0; βT + δTx, d∗bb) + 2Φ2

((
0
0

)
,
(

βS + δS x
βT + δT x

)
,
(

d∗aa d∗ab
d∗bb

))
where Φk(x; Θ, Ψ) is the cumulative distribution function of a k-variate normal distribution
with mean Θ and variance Ψ.

3.2.2. Scenario 2: ΨSP123(x)

Under the new joint distribution, the probability that the treatment effects for the
outcome will be harmful given that the treatment effect on the marker is beneficial is
given by

ΨSP123(x) = 1−Φ1(0; βT + δTx, d∗bb) + Φ2

((
0
0

)
,
(

βS + δS x
βT + δT x

)
,
(

d∗aa d∗ab
d∗bb

))
3.2.3. Scenario 2: Ψ̂SP13N (x)

Let Yij =

(
Sij
Tij

)
constitute the surrogate marker and outcome for each subject,

Mij =

(
1 0 Zij 0 x 0 xZij 0
0 1 0 Zij 0 x 0 xZij

)
be the fixed effect matrix associated with the parameters µ = (αS, αT , βS, βT , γS, γT , δS, δT)

T ,
and let

Wij =

(
1 0 Zij 0 x 0 xZij 0
0 1 0 Zij 0 x 0 xZij

)
be the random effect matrix associated with γi = (aSi , aTi , bSi , bTi , cSi , cTi , dSi , dTi )

T . Let Mi,
Yi, and Wi represent the stacked elements of Mij, Yij, and Wij.

Consider the vector of random effects γN = (aSN , aTN , bSN , bTN , cSN , cTN , dSN , dTN )
T ,

then the conditional distribution of γN |YN can be found by considering the joint distribution
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of YN ∼ MVN(XNµ, VN) and γN ∼ MVN(0, D∗) and cov(YN , γN) = WN D∗ for VN =
WN D∗WT

N + R, with R representing a 2nN × 2nN matrix with block diagonals of σ as before.

γN |YN ∼ MVN(γ̃N , D̃N)

where γ̃N = D∗WT
NV−1

N (YN − XNµ) and D̃N = D∗ − D∗WT
NV−1

N WN D∗. From here,
the measure of surrogate paradox risk is given by

Ψ̂SP13N (x) = 1−Φ1(0; ˆ̃βSN + ˆ̃δSN x, ˆ̃d33N )−Φ1(0; ˆ̃βTN + ˆ̃δTN x, ˆ̃d44N )

+ 2Φ2

((
0
0

)
,

(
ˆ̃βSN + ˆ̃δSN x
ˆ̃βTN + ˆ̃δTN x

)
,

(
ˆ̃d33N

ˆ̃d34N
ˆ̃d44N

))

where ˆ̃βSN = β̂S + δ̂S +
ˆ̃bSN for β̂S and δ̂S corresponding to the third and seventh elements

of the estimate of µ and ˆ̃bSN corresponding to the third element of the estimate of γ̃N ,
ˆ̃βTN = β̂T + δ̂T + ˆ̃bTN for β̂T and + δ̂T corresponding to the fourth and eighth element of

the estimate of µ and ˆ̃bTN corresponding to the fourth element of the estimate of γ̃N , ˆ̃dklN
corresponding to the k, l element of the estimate of D̃N . Similarly, we can derive Ψ̂SP123N (x).

3.2.4. Scenario 2: s Value

In the fourth surrogate paradox measure, Elliott et al. consider the minimum observed
beneficial treatment effect for a marker that can reduce the probability that the true treat-
ment effect for the outcome is harmful. When considering covariate subgroups, we can
compute OSi for each covariate level and call it OSi (x):

OSi (x) =
∑j:Xij=x ZijSij

∑j:Xij=x Zij
−

∑j:Xij=x(1− Zij)Sij

∑j:Xij=x(1− Zij)

OSi (x) represents the difference between the observed surrogate marker means under
treatment and control within a fixed level of X. Then, the joint distribution of the true
treatment effect on the outcome and the observed treatment effect on the surrogate marker
is given by (

OSi (x)
∆Ti (x)

)
∼ N2

((
βS + δS x
βT + δT x

)
,
(

d̃∗aa d∗ab
d∗bb

))
where d̃∗aa = d∗aa + σss(1/n1ix + 1/n0ix), n1ix = ∑j:Xij=x Zij,and n0ix = ∑j:Xij=x(1− Zij). So,
the distribution of the true treatment effect on the outcome ∆Ti(x) conditional on a given
observed treatment effect OSi(x) within the group having X = x is

∆Ti|OSi(x) = s ∼ N(βT + δTx + d∗ab/d̃∗aa(s− (βS + δSx)), d∗bb − (d∗ab)
2/d̃∗aa)

and

P(∆Ti < 0|OSi = s, X = x) = Φ

−(βT + δTx + d∗ab/d̃∗aa(s− (βS + δSx)))√
d∗bb − (d∗ab)

2/d̃∗aa

; 0, 1


The value of s that will ensure that the probability that ∆Ti(x) is negative is less than

or equal to a preset level α:

s ≥ βS + δSx− d̃∗aa
d∗ab

Φ(α; 0, 1)−1

√
d̃∗aad∗bb − (d∗ab)

2

d̃∗aa
+ βT + δTx





Stats 2023, 6 336

4. Bayesian Estimation

In this section, we describe how to obtain estimates and inferences for the proposed
measures using a Bayesian frameworks for scenario 2, which is a generalization of scenario
1 that allows for covariate effects and interactions to differ by study. It is also possible to
estimate the measures using a maximum likelihood (ML) or reduced maximum likelihood
(REML) approach, although it is often not computationally feasible in practice without
large sample sizes, so we focused on a Bayesian estimation approach in this paper. Details
of the ML/REML estimation approach are provided in the Appendix A.

The estimation can also be conducted using a fully Bayesian approach, with pri-
ors placed on µ, D, and σ. We obtain draws of the parameters from a Markov chain
Monte Carlo and transform them to obtain p(ψSP13|Y) and p(ψSP123|Y), the posterior dis-
tributions of ψSP13 and ψSP123. We place a multivariate normal prior on the fixed effects,
µ = (αS, αT , βS, βT , γS, γT , δS, δT)

T , such that µ ∼ N8(0, Σ0). We place Wishart priors on
the variance parameters D and σ such that σ−1 W(νσ, G) and D−1 W(νD, F). Then, we can
obtain the conditional posterior distributions for each of the parameters of interest as

D−1|· ∼W
(

N + νD,
(

ΣN
i=1γiγ

T
i + F−1

)−1
)

σ−1|· ∼W
(

ΣN
i=1ni + νσ, (S1 + G−1)−1

)
γ−1

i |· ∼ N8

(
S2

(
Σni

j=1MT
ij σ
−1(Yij −Mijµ)

)
, S2

)
µ−1|· ∼ N8

(
S3

(
ΣN

i=1Σni
j=1MT

ij σ
−1(Yij −Wijγi)

)
, S3

)
with

S1 = ΣN
i=1Σni

j=1(Yij −Mijµ−Wijγi)(Yij −Mijµ−Wijγi)
T

S2 =
(

Σni
j=1MT

ij σ
−1Mij + D−1

)−1

S3 =
(

ΣN
i=1Σni

j=1MT
ij σ
−1Mij + Σ−1

0

)−1

Using the conditional posterior distributions and a Gibbs sampling routine, we can
obtain draws from the posterior distributions of each of the parameters of interest.

5. Testing

In order to determine which scenario is the best fit for a particular analysis, we would
need some intuition as to whether the effect of a covariate X on the outcome differs based on
the study and whether that effect also differs based on treatment. If there is no intuition as
to whether the covariate effect differs by center, it may be of interest to test which scenario
is the most appropriate for the observed meta-analytic data. This amounts to jointly testing
the null hypotheses that all of the variances and covariances associated with the covariate
random effects are equal to zero.

D =



dss dst dsa dsb 0 0 0 0
dtt dta dtb 0 0 0 0

daa dab 0 0 0 0
dbb 0 0 0 0

0 0 0 0
0 0 0

0 0
0


Since variances are positive, testing whether they are equal to zero means we are

testing a null hypothesis on the boundary of the parameter space, and the usual chi-square
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distribution of the likelihood ratio statistics under this null hypothesis is incorrect. Drik-
vandi et al. propose a test statistic based on the variance least square estimator of variance
components, as well as a permutation test to approximate its finite sample distribution [12].
Under the Bayesian framework, Ariyo et al. recommend using the marginal deviance
information criterion (DIC) or the marginal widely applicable information criterion (WAIC)
to evaluate the need for random effects [13] by comparing the criterion value between
the model including the random effects and a model excluding all the covariate-related
random effects.

6. Simulations

We perform simulations under several surrogacy scenarios to examine the properties
of the proposed estimators as a function of a binary covariate X. We generate data under
scenario 1 (the effect of X on the surrogate and outcome is constant across trials) and
scenario 2 (the effect of X on the surrogate and outcome is not constant across trials).
For scenario 1, we generate data assuming αS = αT = 1, βS = 2, βT = 1, γS = γT = 0,
and δS = −1, δT = 1. For the variance components, we assume dss = dtt = daa = dbb = 1,
dab = 0.5, and dst = dsa = dsb = dta = dtb = dab = 0.3. For scenario 2, we generate
data using the same parameters as scenario 1 and assume the new variance components
dcs = dct = dds = ddt = 1 and that all the new off-diagonal components dscs − ddsdt are set
to 0.3. Under each scenario, we simulate 200 studies with 30 or 100 clusters, each of size 20,
50, or 500, representing 30 or 100 repeated trials of the same treatment, surrogate, and true
endpoint combination, each with either 20, 50, or 500 participants. Half of the participants
in each trial are randomly assigned to either placebo or control.

We used a Gibbs sampling routine, as described in Section 4, with a multivariate
normal prior for the fixed effects, such that (αS, αT , βS, βT , γS, γT , δS, δT) ∼ N8(0, 106 I8),
and Wishart priors for the inverse of the covariance matrices of the form W(q + 1, (1/(q +
2))Iq), where q is the length of the associated vector of covariance effects. We sample from
the derived conditional posterior distributions to obtain draws of the proposed estimators.
Tables 1 and 2 contain the point estimates, standard errors, bias, and coverage rates for
ψSP13(X), ψSP123(x), and s, with 30 and 100 trials, respectively. The true value of s assumes
that there is equal distribution of subjects between each of the treatment and covariate
categories. To estimate ψSP13N , we considered the final study to have only half of the data
of the other trials. Although it is also possible to conduct this analysis with a ML/REML
estimation approach, as described in the Appendix A, we ran into computation issues
when estimating the large number of random effects using reasonable sample sizes and
have therefore presented only the simulation results for the Bayesian approach.

Table 1. Simulation Results for 30 trials.

20 Subjects 50 Subjects 500 Subjects

Quantity X True Value Bias (SE) Coverage Bias (SE) Coverage Bias (SE) Coverage

Scenario 1

ψSP13 0 0.850 0.04 (0.06) 98% 0.04 (0.05) 94% 0.05 (0.04) 84%
1 0.845 0.04 (0.06) 98% 0.04 (0.05) 95% 0.04 (0.04) 88%

ψSP123 0 0.854 0.04 (0.06) 99% 0.04 (0.05) 95% 0.04 (0.04) 86%
1 0.991 0.01 (0.02) 99% 0.01 (0.01) 96% 0.01 (0.01) 92%

ψSP13N 0 0.850 0.07 (0.08) 98% 0.06 (0.06) 95% 0.05 (0.05) 87%
1 0.845 0.08 (0.10) 98% 0.06 (0.07) 96% 0.04 (0.05) 84%

s 0 −3.56 59.81 (267) 100% 15.96 (671) 100% 5.78 (243) 99%
1 −6.82 97.27 (4338) 100% 22.12 (929) 99% 7.95 (333) 99%

Scenario 2

ψSP13 0 0.850 0.05 (0.05) 93% 0.05 (0.05) 87% 0.05 (0.04) 84%
1 0.762 0.04 (0.05) 94% 0.04 (0.05) 93% 0.05 (0.04) 84%

ψSP123 0 0.855 0.04 (0.05) 96% 0.04 (0.04) 90% 0.04 (0.04) 89%
1 0.961 0.03 (0.02) 87% 0.02 (0.02) 86% 0.02 (0.02) 85%

ψSP13N 0 0.850 0. (0.) 99% 0. (0.) 95% 0. (0.) 86%
1 0.762 0. (0.) 99% 0. (0.) 96% 0. (0.) 92%

s 0 −3.56 792.20 (3542) 100% 10.59 (426) 100% 8.48 (311) 100%
1 −7.31 18.10 (736) 100% 10.23 (384) 100% 13.37 (478) 100%
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Table 2. Simulation Results for 100 trials.

20 Subjects 50 Subjects 500 Subjects

Quantity X True Value Bias (SE) Coverage Bias (SE) Coverage Bias (SE) Coverage

Scenario 1

ψSP13 0 0.850 0.02 (0.03) 97% 0.03 (0.03) 93% 0.02 (0.02) 89%
1 0.845 0.02 (0.03) 95% 0.02 (0.03) 94% 0.02 (0.02) 85%

ψSP123 0 0.854 0.03 (0.03) 95% 0.02 (0.03) 96% 0.02 (0.02) 90%
1 0.991 0.003 (0.01) 95% 0.004 (0.01) 96% 0.004 (0.02) 92%

ψSP13N 0 0.850 0.02 (0.04) 96% 0.03 (0.03) 92% 0.02 (0.02) 89%
1 0.762 0.02 (0.04) 95% 0.03 (0.03) 94% 0.02 (0.02) 85%

s 0 −3.27 1.06 (3.98) 92% 0.85 (3.76) 97% 0.77 (2.29) 97%
1 −6.43 1.44 (5.53) 92% 0.67 (5.16) 97% 0.61 (3.16) 98%

Scenario 2

ψSP13 0 0.850 0.03 (0.03) 89% 0.02 (0.03) 94% 0.03 (0.02) 86%
1 0.762 0.02 (0.03) 96% 0.02 (0.03) 93% 0.03 (0.02) 85%

ψSP123 0 0.855 0.03 (0.03) 92% 0.02 (0.03) 95% 0.03 (0.02) 83%
1 0.961 0.01 (0.01) 87% 0.01 (0.01) 89% 0.01 (0.01) 82%

ψSP13N 0 0.850 0.06 (0.06) 89% 0.03 (0.05) 93% 0.03 (0.04) 84%
1 0.762 0.06 (0.08) 93% 0.05 (0.06) 93% 0.03 (0.03) 85%

s 0 −3.27 2.90 (78.60) 99% 1.93 (7.12) 99% 0.87 (2.99) 97%
1 −7.13 2.32 (19.42) 93% 2.02 (4.64) 94% 1.04 (2.22) 96%

We observed some minimal bias in estimating ψSP13, ψSP123, and ψSP13N with either 30
or 100 trials, each of size 20, 50, or 500 subjects. However, with the estimate of s, we found
that the lower number of trials and lower number of subjects resulted in unstable estimates
with very large bias and variance. The observed coverage rates of the credible intervals
were below the nominal level for some estimates of ψSP13 and ψSP123 in both scenarios,
demonstrating the need for large numbers of trials and subjects per trial when there is a
desire to identify the risk of surrogate paradox in subpopulations.

As a sensitivity analysis, we also considered two simulation settings with data that
were not normally distributed to assess the robustness of our proposed method to model
misspecification. We generated data using a T Distribution with 15 degrees of freedom,
as well as a skew normal distribution with α equal to 0.1 times the location and scale
parameters and centered at 0. The data generated under the T distribution allow us to
assess whether the method is robust to a situation in which the normality assumption is
violated in the tails of the distribution [14]. The data generated under the skew normal
distribution consider a situation in which the data are distributed asymmetrically, as carried
out in prior similar sensitivity analyses [15]. For each sensitivity analysis, we generated
30 trials, each with 50 subjects, and considered the bias, standard error, and coverage
of ψSP13 and ψSP123. The true value of each of the parameters of interest was estimated
empirically by taking one million draws of ∆S and ∆T and computing ψSP13 and ψSP123
from the proportion of draws that fell into each of the relevant quadrants. The results of the
sensitivity analysis are shown in Table 3. Under these deviations from normality, we had
small increases in bias and standard error but still maintained high coverage rates. As the
number of required parameters increased in scenario 2, the coverage rates also decreased,
as we would expect.
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Table 3. Sensitivity to model misspecification: each sensitivity analysis considered 30 simulated trials,
each with 50 subjects.

T15 Distribution Skew Normal Distribution

Quantity X True Value Bias (SE) Coverage Bias (SE) Coverage

Scenario 1

ψSP13 0 0.845 0.04 (0.05) 96% 0.04 (0.05) 94%
1 0.846 0.04 (0.05) 94% 0.05 (0.05) 95%

ψSP123 0 0.854 0.04 (0.05) 97% 0.04 (0.05) 95%
1 0.990 0.01 (0.01) 98% 0.01 (0.01) 97%

Scenario 2

ψSP13 0 0.845 0.05 (0.05) 89% 0.05 (0.05) 88%
1 0.762 0.04 (0.04) 88% 0.04 (0.04) 91%

ψSP123 0 0.854 0.04 (0.04) 92% 0.04 (0.04) 91%
1 0.961 0.02 (0.02) 87% 0.02 (0.02) 86%

7. Applications
7.1. Collaborative Initial Glaucoma Treatment Study

We apply the proposed method to data from the Collaborative Initial Glaucoma Treat-
ment Study (CIGTS) [16]. The CIGTS trial was a multicenter randomized clinical trial
that contrasted initial surgical therapy versus initial medical therapy to treat glaucoma,
with reduction in intraocular pressure (IOP) as one of its outcome measures. A total of
607 patients were enrolled in the study, and 307 were randomized to the drug arm. IOP
was recorded in mmHg at baseline, 3 months, 6 months, and every 6 months thereafter. We
consider the measurement of IOP at 18 months after beginning treatment as a surrogate
for the true endpoint of interest: IOP at 96 months. We consider the 14 centers at which
the study was conducted to be the trial-level replicates. Missing data were imputed using
single imputation with a linear mixed model with a random effect for trial, a quadratic
trend for time, an effect for treatment, and an interaction between time and treatment.
The estimates of the between-trial covariance matrix, D, are not positive definite, so only
the results (estimates and 95% credible intervals(CIs)) from the Bayesian estimation pro-
cedure are presented. As in the simulation study, we used a Gibbs sampling routine, as
described in Section 4, with a multivariate normal prior for the fixed effects, such that
(αS, αT , βS, βT , γS, γT , δS, δT) ∼ N8(0, 106 I8), and Wishart priors for the inverse of the co-
variance matrices of the form W(q+ 1, (1/(q+ 2))Iq), where q is the length of the associated
vector of covariance effects. The R2

trial measure of surrogacy is 0.49, indicating a moderate
quality surrogate by the Buyse criteria [6].

In order to illustrate our proposed methods, we consider two covariates: sex (female,
male) and age (<60, ≥60), and compute ΨSP13 and ΨSP123 for each variable category under
both proposed scenarios. The results are shown in Table 4.

Table 4. Results of application to Collaborative Initial Glaucoma Treatment Study dataset.

Scenario 1 Scenario 2

Quantity ψSP13 95% CI ψSP123 95% CI s 95% CI ψSP13 95% CI ψSP123 95% CI s 95% CI

Sex Female 0.96 (0.76, >0.99) 0.99 (0.95, >0.99) −3.6 (−34.7, 31.2) 0.93 (0.71, >0.99) 0.99 (0.93, >0.99) −4.9 (−46.2, 34.5)
Male 0.97 (0.79, >0.99) 0.99 (0.91, >0.99) −3.2 (−30.0, 21.7) 0.86 (0.64, 0.97) 0.96 (0.81, >0.99) −2.4 (−30.7, 31.2)

Age <60 0.97 (0.78, >0.99) 0.99 (0.90, >0.99) −1.7 (−32.2, 23.8) 0.92 (0.71, >0.99) 0.98 (0.83, >0.99) −2.6 (−27.4, 24.2)
≥60 0.96 (0.75, >0.99) 0.99 (0.96, >0.99) −2.8 (−24.3, 23.0) 0.84 (0.61, 0.97) 0.98 (0.87, >0.99) −1.7 (31.9, 33.6)

In scenario 1, we exclude all of the random effects for the included covariates. As we
can see, overall, there is a small probability of experiencing the surrogate paradox when
using early IOP as a surrogate for later IOP in this trial, since the 95% credible intervals of
the measures are close to 1. This does not change significantly when comparing the overall
ΨSP13 and ΨSP123 with the covariate adjustments, implying that there is no evidence of a
significant difference between the risk of surrogate paradox by age or gender. In scenario
2, we estimate all of the random effects for the included covariates, allowing the effect of
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the covariate and the interaction between the covariate and treatment to differ by study
center. In this scenario, we observe some differences between the risk of surrogate paradox
by subgroup. Notably, it seems as though males and people aged 60 or over are at a higher
risk of experiencing the surrogate paradox in a new trial compared with females and
people under the age of 60, respectively. However, the difference in their risk of dangerous
surrogate paradox is minimal. In both scenarios, the measure of s is too unstable to provide
useful inference.

Using WAIC as a model selection tool, we find that there is a WAIC difference of 380
between the models for scenarios 1 and 2 for the model including sex as a covariate, and a
WAIC difference of 815 for the model including age as a covariate, and conclude that the
models including the additional random effects (scenario 2) are a better fit in this data
example. The data for this trial are not publicly available.

7.2. Trial of Preventing Hypertension

Our second illustrative example comes from the Trial of Preventing Hypertension
(TROPHY) [17]. This multicenter randomized trial compared the effects of two years of
treatment with Candesartan versus the standard of care on the incidence of hypertension
in patients with prehypertension. Blood pressure and hypertension status were collected at
baseline, 1 month and 3 months post randomization, and then every 3 months for a total
of two years of follow-up. To illustrate our proposed methods, we consider the average
of systolic and diastolic pressure at 1 month as a surrogate for the average of systolic and
diastolic pressure at 12 months. Although the primary endpoint of interest in the original
trial was a binary indicator of developing hypertension, we used the endpoint of average
systolic and diastolic pressure at 12 months, since our method has currently only been
developed for normally distributed outcomes. After developing hypertension patients were
switched to a new treatment regimen, resulting in some missing data in both the surrogate
measured at 1 month and the true endpoint measured at 12 months. These missing data
were imputed using a model that was stratified by treatment and gender and included
the following baseline covariates: age, race, weight, body mass index, systolic blood
pressure, diastolic blood pressure, total cholesterol, high-density lipoprotein cholesterol
(HDL), low-density lipoprotein (LDL), HDL:LDL ratio, triglycerides, fasting glucose, total
insulin, and creatinine. For missing outcome values at 12 months, the imputation model
also included the blood pressure measurements up to the 12th month. We consider the
69 centers at which the study was conducted to be the trial-level replicates. There were a
total of 772 patients included in the original analysis. After removing centers with patients
in only one treatment arm, there were a remaining 62 centers and 764 patients, 389 of
which received the treatment. The size of the remaining centers ranged from 2 patients to
46 patients. When applying the REML estimation method, the covariance matrix was non-
positive-definite (likely due to the small sample size at some centers), so we only present the
results (estimates and 95% credible intervals (CIs)) from the Bayesian estimation procedure.

In order to illustrate our proposed methods, we consider two covariates: sex (female,
male) and age (<50, ≥50), and compute ΨSP13 and ΨSP123 for each variable category under
both proposed scenarios. The results are shown in Table 5.

Table 5. Results of application to Trial of Preventing Hypertension dataset.

Scenario 1 Scenario 2

Quantity ψSP13 95% CI ψSP123 95% CI s 95% CI ψSP13 95% CI ψSP123 95% CI s 95% CI

Sex Female 0.99 (0.99, >0.99) 0.99 (0.99, >0.99) 1.0 (−147.2, 138.6) 0.92 (0.89, 0.94) 0.96 (0.93, 0.98) 0.9 (−140.9, 130.1)
Male 0.99 (0.99, >0.99) 0.99 (0.99, >0.99) 1.4 (−164.8, 154.9) 0.94 (0.92, 0.95) 0.97 (0.95, 0.98) 1.6 (−120.9, 98.1)

Age <50 0.99 (0.96, >0.99) 0.99 (0.99, >0.99) −0.9 (−80.7, 74.6) 0.99 (0.96, >0.99) 0.99 (0.99, >0.99) −0.3 (−143.3, 138.0)
≥50 0.99 (0.99, >0.99) 0.99 (0.99, >0.99) 2.9 (−139.0, 127.7) 0.99 (0.95, >0.99) 0.99 (0.98, >0.99) 1.8 (−132.7, 125.2)
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The results indicate that, overall, there is very little risk of the surrogate paradox when
considering the effect Candesartan on the average of systolic and diastolic blood pressure at
1 month as a surrogate for the average of systolic and diastolic blood pressure at 12 months.
Although there are minor differences between the risk of surrogate paradox (measured
through both ΨSP13 and ΨSP123) by gender and age, the credible intervals overlap between
the groups, indicating no significant difference between their risk of surrogate paradox.
As in the previous example, the measure of s is too unstable to provide useful inference,
consistent with our simulation study that indicated a large number of trials would be
required to obtain useful inference for this quantity.

Using WAIC as a model selection tool, we find that there is a WAIC difference of 120
between the models for scenarios 1 and 2 for the model with sex as a covariate, and a WAIC
differnce of 83 for the model with age as a covariate, and conclude that the models including
the additional random effects (scenario 2) are better fitting in this data example. However,
qualitatively, the results between the two scenarios are quite similar, and a simpler model
may be preferred. The data for this trial are not publicly available.

8. Discussion

Surrogate outcomes are commonly used in clinical trials, and their prevalence has led
to the development of innovative trial designs that aim to efficiently use the additional
information provided by surrogate outcomes [18–20]. Despite the valuable additional
information that surrogate outcomes provide, their use also comes with risk. Evaluating
the quality of a chosen surrogate to prevent the surrogate paradox should be an important
step in both the design and analysis of clinical trials.

There are several existing approaches for evaluating surrogate outcome efficacy,
but some apparently “good” surrogates under these methods may still experience the
“surrogate paradox”, in which the treatment has a positive effect on the surrogate endpoint
but a negative effect on the true endpoint. The meta-analytic causal association approach to
surrogate validation is particularly useful in assessing the risk of surrogate paradox. In this
paper, we develop methods to measure the risk of the surrogate paradox in subpopulations
when there are data available on multiple trials of similar treatments on the same surrogate
and outcome. Using measures of surrogate paradox risk can prevent the occurrence of the
surrogate paradox in new trials and protect the health of study participants.

Incorporating covariate information can provide valuable insights into the mechanism
of the surrogate paradox and identify groups that are particularly vulnerable to the paradox.
This additional information can tell us about the transferability of surrogates from one
trial to the next, depending on their study population. It can also help assess the risk of
using a proposed surrogate in a new trial depending on the demographic distribution of
the new study population. Researchers can incorporate their understanding of whether
certain subpopulations are at a higher risk of experiencing the surrogate paradox into the
design of new clinical trials of similar treatments that plan to use the same surrogate and
true endpoints.

Both our simulations and examples focused on exploring whether the surrogate
paradox risk varied with a single scalar covariate. While in principle this could easily be
extended to a multiple-covariate setting, in practice, this would typically require a fairly
large set number of trials to obtain stable estimates, especially for the “scenario 2” setting,
where both the fixed and random effects are associated with multiple covariates. Our
simulation study showed that the estimation of some measures can be unstable when
there is a small number of trials and subjects. We also considered simulations under
mild deviations from normality and were able to retain relatively high coverage rates.
The proposed method derives the probabilities of interest assuming normally distributed
variables that may not be likely in practice. Future work will consider further violations of
the normality assumption, as well as how to account for them when estimating the risk of
surrogate paradox.
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This work has the potential to be extended to non-normal surrogate and true endpoints.
By using a copula model instead of the bivariate normal assumption in this paper, we may
be able to consider a larger range of distributions for the surrogate and true endpoints,
including binary or time-to-event distributions. We may also be able to consider the
situation when the proposed surrogate and true endpoints have differing distributional
forms (e.g., an indicator of hypertension as a surrogate for time to cardiac death). Another
potential extension is to apply meta-analytic methods to estimate the risk of surrogate
paradox when individual-level data on the prior studies are not available. One example
would be if we only have the parameter estimates from a series of published papers on the
same treatment and endpoint combination and want to use them to estimate the risk of
surrogate paradox risk in a newly designed study.

Finally, we note that while we focused on conditional surrogacy paradox estimates—
interactions with covariates—this method can also be used to deal with non-normality in
the multiple trials setting, with the conditional surrogacy paradox measures averaged to
obtain marginal results, using the sample distribution of the covariates to approximate the
population density. Thus,

ΨSP13 =
∫

ΨSP13(x)P(x)dx ≈ 1
n

n

∑
i=1

Ψ̂SP13(xi);

variance estimates could be obtained by bootstrapping for the REML approaches or via
posterior distributions of draws of ΨSP13 obtained by averaging the draws of ΨSP13(xi).

The code for implementing these methods is available at github.com/fatemashafie.
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Appendix A. Maximum Likelihood Estimation

To estimate ψSP13, we can use the best linear unbiased estimators from a linear mixed
model using either maximum likelihood (ML) or reduced maximum likelihood (REML) es-
timation. Let Yij = (Sij, Tij)

T constitute the surrogate marker and outcome for each subject,

Mij =

(
1 0 Zij 0 x 0 xZij 0
0 1 0 Zij 0 x 0 xZij

)
be the fixed effect matrix associated with the parameters µ = (αS, αT , βS, βT , γS, γT , δS, δT)

T ,
and let

Wij =

(
1 0 Zij 0 x 0 xZij 0
0 1 0 Zij 0 x 0 xZij

)

github.com/fatemashafie
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be the random effect matrix associated with γi = (aSi , aTi , bSi , bTi , cSi , cTi , dSi , dTi )
T . Let Mi,

Yi, and Wi represent the stacked elements of Mij, Yij, and Wij. Then, consider the model:

Yi = Miµ + Wiγi + εi

where γi ∼ N8(0, D), εi ∼ N2ni (0, σ⊗ Ini ), ni is the number of observations in the ith trial,
and ⊗ is the Kronecker product operator. Then, β̂S, β̂T , δ̂S, and δ̂T are the third, fourth,
seventh, and eighth elements of of the ML or REML estimator of µ. Similarly, we can obtain
estimates of the needed variance components from the ML or REML estimators of D. Then,
we have

Ψ̂SP13(x) = 1−Φ1(0; β̂S + δ̂Sx, d̂∗aa)−Φ1(0; β̂T + δ̂Tx, d̂∗bb) + 2Φ2

((
0
0

)
,
(

β̂S + δ̂S x
β̂T + δ̂T x

)
,
(

d̂∗aa d̂∗ab
d̂∗bb

))
where

d̂∗aa = d̂aa + x2d̂ds + 2xd̂ads

d̂∗ab = d̂ab + xd̂adt + xd̂bds + x2d̂dsdt

d̂∗bb = d̂bb + x2d̂dt + 2xd̂bdt

Similarly, we can estimate ψ̂SP123.
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