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Abstract: We apply the data cloning method to estimate a medium-scale dynamic stochastic general
equilibrium model. The data cloning algorithm is a numerical method that employs replicas of
the original sample to approximate the maximum likelihood estimator as the limit of Bayesian
simulation-based estimators. We also analyze the identification properties of the model. We measure
the individual identification strength of each parameter by observing the posterior volatility of data
cloning estimates and access the identification problem globally through the maximum eigenvalue of
the posterior data cloning covariance matrix. Our results corroborate existing evidence suggesting
that the DSGE model of Smeets and Wouters is only poorly identified. The model displays weak
global identification properties, and many of its parameters seem locally ill-identified.
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1. Introduction

The data cloning (DC) methodology proposed by Lele et al. [1] is a numerical proce-
dure for approximating maximum-likelihood estimates as the limit of Bayesian posterior
simulation estimators when we repeat the original observed sample many times.

Because DC is applicable whenever we can employ Bayesian simulation techniques,
such as Markov Chain Monte Carlo (MCMC), for estimating a model, the method has been
adapted to many settings and applications, for example, Ponciano et al. [2], Baghishani
and Mohammadzadeh [3], Torabi [4], Ponciano et al. [5], Torabi et al. [6], Picchini and
Anderson [7], and Duan et al. [8]. We further discuss the DC method in Section 3.

Among econometricians, however, data cloning is not as popular. We only know of
a few existing applications in the estimation of stochastic volatility models (Laurini [9],
Marín et al. [10], de Zea Bermudez et al. [11]) A natural application of DC is in esti-
mating Dynamic Stochastic General Equilibrium (DSGE) models. DSGE models take the
form of nonlinear systems of expectational equations and play a central role in modern
macroeconomic practice and research. Bayesian posterior simulation methods are often
the preferred choice when estimating this wide class of models (Fernández-Villaverde [12].
Furlani et al. [13] use the DC method to estimate a small-scale DSGE model and report
good properties with respect to sensitivity to initial values.

More complex DSGE models often display diverse problems regarding parameter
identification (Canova and Sala [14]). Data cloning estimation has the convenient byproduct
of uncovering parameter identification problems, which makes the method especially
interesting to apply to DSGE models, since it becomes possible to, at the same time,
estimate parameters and expose identification problems.
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In this paper, we employ the DC method to estimate the DSGE model of Smets and
Wouters [15] (SW) and then to assess parameter identification issues. SW is a medium-scale
DSGE model with 36 free parameters, which are estimated from seven observed macroeco-
nomic time series. Its general equilibrium structure is augmented with nominal rigidities
and additional exogenous shocks. SW is a natural choice of subject for this analysis because
it has been extensively studied and embodies all characteristic features of New Keynesian
DSGE models. Indeed, much of the research on the identification of DSGE models, and
even general critiques to modern macroeconomics, at times points to specific issues with the
model of Smets and Wouters [15] (e.g., Canova and Sala [14], Chari et al. [16], Iskrev [17],
Komunjer and Ng [18], Romer [19], and Chadha and Shibayama [20]).

The remainder of this paper is structured as follows. Section 2 discusses relevant
estimation and identification issues with DSGE models, Section 3 overviews the data
cloning idea and comments on some applications of the method, Section 4 details the setup
of our exercise, Section 5 presents and discusses our results in relation to the literature, and
Section 6 concludes.

2. Estimation and Identification of DSGE Models

A central focus of macroeconomic research effort, be it in academia or policymaker
circles, is assessing the net effect of forces operating on different parts of the economy.
DSGE models are the main tool employed for such task.

DSGE models are built up from microeconomic primitives, which makes them specially
transparent with respect to underlying assumptions. Christiano et al. [21] argue that this
openness is the main appeal of the DSGE approach, and what allowed diverse groups of
researchers to make contributions to the field. While transparency is a great strength, it
also makes DSGE models easy to criticize. Dubious and problematic assumptions can be
singled out and scrutinized. Indeed, critics are plentiful, and we discuss some of them in
relation to our results.

In this section, we follow some key steps when taking a DSGE model to data and
extracting information about structural parameters; with each step, we highlight potential
issues and discuss important results in the literature.

2.1. Estimation

As DeJong and Dave [22] put it, DSGE models start with a characterization of the
environment in which decision makers reside, a set of decision rules that dictate their
behavior, and a characterization of the uncertainty they face when making decisions. This
structure takes the form of a nonlinear system of expectational equations, which are often
linearized before solving.

Let z̄t be an m-dimensional vector of stationary variables, and z? be the steady state
values of those variables such that zt = z̄t− z? is the present deviation from the steady-state
value. Following Iskrev [17], most log-linearized DSGE models can be represented as

Γ0(θ)zt = Γ1(θ)Etzt+1 + Γ2(θ)zt−1 + Γ3εt. (1)

Since (1) depends on expectational components, it must be solved in terms of rational
expectations. There are several algorithms for solving linear rational expectation models
(e.g., Blanchard and Kahn [23], Anderson and Moore [24], King and Watson [25], Sims [26]).
Assuming that a unique solution exists, the linearized DSGE model can be written as

zt = A(θ)zt−1 + B(θ)εt. (2)

Due to unobserved variables, the transition Equation (2) is augmented with the mea-
surement equation

xt = Czt + Dut + νt. (3)
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Equations (2) and (3) together form the state space representation of our DSGE model.
Assuming that shocks εt are jointly Gaussian, we can recover the likelihood function L(·|θ)
of the data X through Kalman filter recursions. Then, the maximum likelihood estimate
(MLE) of θ is

θ̂ML = max
θ∈Θ
L(X|θ). (4)

The precision of the maximum-likelihood estimator θ̂ML is given by the inverse of the
Fisher information matrix

I(X|θ) = E
[(

∂L(X|θ)
∂θ′

)′(∂L(X|θ)
∂θ′

)]
. (5)

In practice, obtaining θ̂ML from the numerical optimization of L(X|θ), as suggested
in Equation (4), is not straightforward. The likelihood function of a typical DSGE model
is an ill behaved object, with multiple local maxima/minima and flat surfaces. Due to
those difficulties, Bayesian methods are often preferred when estimating DSGE models
(Fernández-Villaverde [12]).

Let π(θ) denote the joint prior distribution of parameters θ. Bayes’ theorem implies
the posterior distribution of the parameters given data is

π(θ|X) =
L(X|θ)π(θ)∫

Θ L(X|θ)π(θ)dθ
. (6)

The marginal likelihood of the denominator is constant over all parameter values, and
in many applications it suffices to compute the nominator

π(θ|X) ∝ L(X|θ)π(θ). (7)

The common solution here is then to sample from π(θ|X) using a posterior-simulation
Markov Chain Monte Carlo (MCMC) method [27]. Multiplying the likelihood by the prior
distribution has the effect of attenuating the computational issues with optimizing the
likelihood function that we alluded to before [28].

2.2. Identification

The classical result of identification in parametric models dates back to Rothenberg [29].
Local identifiability of a parameter vector is ensured by a non-singular Fisher information
matrix. Komunjer and Ng [18] show this result does not apply to DSGE models. Because
the reduced-form parameters of the state space representation are not generally identifiable,
the non-singularity of the information matrix does not suffice to ensure local identification
of the parameter vector.

Canova and Sala [14] frame the identification problem as having “to do with the ability
to draw inference about the parameters of a theoretical model from an observed sample”.
This broad definition of the identification problem is well suited for the DSGE context, as
issues with parameter identification may arise in all stages from model specification to
estimation from data, or, as the authors put it, from different “mappings” between the
estimated parameter vector θ̂ and data X.

The “solution mapping” regards the relationship between structural parameters θ
and the coefficients of matrices A(θ) and B(θ). Common issues arise here when some
individual parameter θ1 disappears from the solution (under identification), or when two
parameters θ1 and θ2 enter the solution only in relation to one another (partial identification).
It is not uncommon for approximation methods to induce under-identification or partial
identification problems. The SW model has two pairs of parameters that, due to log linear
approximation, are only partially identified. Calvo [30] price reoptimization probabilities
ξπ , ξw feature in the solution only as functions of the Kimball curvature parameters επ , εw,
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respectively. Indeed, Smets and Wouters [15] fix επ = εw = 10 and estimate ξπ and ξw
accordingly.

Partial identification and under-identification are problems of the model, the objective
function, and/or the approximation methods employed—therefore, a model that displays
this sort of problem will display them no matter the data set at hand. Alternatively, we
could say they involve only the “solution” and “objective function” mappings of Canova
and Sala [14].

One fundamental identification problem arises when the likelihood function does not
have a unique maximum. Thus, under the point of view of the objective function, two
models, potentially having different economic interpretations, are indistinguishable, and
information external to the model needs to be introduced in order to choose between struc-
tural forms. Observational equivalence is a well-known phenomenon in macroeconomics
and has played part in many debates over the years. For example, Sargent [31] showed
that it is difficult to distinguish between old Keynesian and neoclassical models using only
parameters estimated from a single policy regime. Chari et al. [16] uses observationally
equivalent, but structurally different, models to question to what extent shocks in the SW
model are interpretable.

A fourth identification issue characteristic of the DSGE model is related to the accuracy
with which some particular parameter θ can be estimated from finite samples. If the
curvature of the likelihood function L(X|θ) around θ̂ is small, then large changes in θ̂ will
have little impact on the value of the likelihood function. Canova and Sala [14] dub this
phenomenon “weak identification” in allusion to the literature on weak instruments.

Iskrev [17] tackle the weak identification problem as a model feature, in both a math-
ematical and economic sense. He mentions that although the non-singularity of I(X|θ)
ensures the model’s expected likelihood is not flat and achieves a locally unique maximum,
the precision with which the true parameter θ may be estimated in finite samples depends
on the degree of curvature of the likelihood around an open neighborhood of θ̂, to which
the rank condition provides no information. If the curvature of the log likelihood is nearly
flat around θ̂, then large changes in the estimate θ̂ will induce small relative changes in
L(X|θ̂). The economic argument the author presents is that a weakly identified parameter
is one that is either irrelevant, because it has only a negligible effect on the likelihood, or
nearly redundant, because its effect on the likelihood may be closely approximated by other
parameters, and thus the value of such parameters is hard to pin down on the basis of the
information contained in the likelihood function alone.

Qu and Tkachenko [32] provide a characterization of necessary and sufficient con-
ditions for the local identification of structural parameters in linearized DSGE models
and propose a frequency domain quasi-maximum likelihood estimator. They show how
in a quasi-Bayesian estimation scheme, the procedure can be used to access parameter
identification properties. This method was employed by Tkachenko and Qu [33] to analyze
the model of Smets and Wouters [15].

In a Bayesian estimation, we are interested in the posterior distribution π(θ|X), which
is proportional to the likelihood function L(X|θ) times the prior distribution π(θ). As long
as there is a proper prior, the posterior distribution is well defined. The extreme case is infer-
ence without data, where the posterior is the prior itself. In fact, as An and Schorfheide [28]
discuss, priors “might add curvature to a likelihood function that is (nearly) flat in some di-
mensions of the parameter space and therefore strongly influence the shape of the posterior
distribution”. In this sense, the presence of the prior distribution makes weak identification
problems even harder to spot in real-world applications.

A naive Bayesian identification test used is to visually contrast prior and posterior
shapes. Intuitively, if the posterior is very similar to the prior, then data have little to say
about the parameter of interest. Canova and Sala [14] point out that this is only true if
the parameter space is variation-free; i.e., there are no model-implied restrictions on the
parameter space. DSGE models are seldom variation-free; they usually impose stability
restrictions or economically motivated non-negativity constraints on some parameters.
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If the parameter space is not variation-free, then beliefs updates about one parameter
might affect the parameter space of another, ultimately affecting the shape of the posterior
distribution even if data are not informative.

Koop et al. [34] introduce two Bayesian identification indicators. The first indicator
looks to the expected posterior shape relative to the prior and provides a yes-or-no answer
to the identification problem, much in line with Iskrev [17] and Komunjer and Ng [18]. The
second indicator is especially relevant to us because it is similar to the data cloning method
in that both use a scheme to create artificial data and tackle weak identification problems
computationally. The Bayesian Learning Rate indicator of Koop et al. [34] consists of
augmenting the observed sample with model simulated path and then observing the
standard error of MCMC estimates as the simulated sample size increases.

Morris [35] discusses the sampling distribution of estimators for DSGE parameters
tends to be non-normal and/or pile up on the boundary of the theoretical support. This
phenomenon is showcased in our exercise below.

More recently, Ivashchenko and Mutschler [36] combine the “a priori” rank identi-
fication criteria of Iskrev [17], Komunjer and Ng [18], and Qu and Tkachenko [32], with
the simulation-based Bayesian Learning Rate indicator of Koop et al. [34], to study the
identification properties of two traditional DSGE models. Their focus is on how differ-
ent investment adjustment cost specifications and output-gap definition affect individual
parameter identification. Qu and Tkachenko [37] discuss global identification properties
of DSGE models while taking into account indeterminacy of monetary policy rules that
can be (nearly) observationally equivalent to each other. An alternative approach to verify
identification conditions in DSGE models was proposed by Meenagh et al. [38], in the
context of the estimation of DSGE models using indirect inference. They verified the identi-
fication through Monte Carlo procedures, where artificial restrictions were progressively
imposed on the [15] model parameters, and checked the rejection rate over many samples
from the true model. With this method, identification problems are verified through the
power of the tests to reject invalid parameters in the model; in the absence of identification,
the power of these tests is low. A procedure to verify global identification was proposed in
Kocięcki and Kolasa [39], where the condition for identification was formulated through
the restrictions linking the observationally equivalent state space representations of the
DSGE model and on the constraints imposed on the deep parameters by the model solution.
Kocięcki and Kolasa [40] refine this method by using the concept of a Gröbner basis and
new algorithms to analytically compute the complete set of observationally equivalent
parameter vectors.

3. The Data Cloning Method

The data cloning (DC)methodology was developed by Lele et al. [1] and Lele et al. [41]
as a computational scheme to obtain maximum-likelihood (ML) parameter estimates as
the limit of Bayesian estimates when the original data are pooled many times. It was first
designed to estimate complex hierarchical ecological systems and has been applied to
a wide range of Generalized Linear Mixed models. Furlani et al. [13] demonstrate the
possibility of estimating DSGE models through the DC method.

Original data X are repeated K times to obtain an artificially augmented, cloned
dataset X(K) = (X, . . . , X). The new likelihood function based on the cloned data is given
by [L(X|θ)]K. Then, the new posterior distribution is

πK(θ|X) =
[L(X|θ)]Kπ(θ)∫

Θ[L(X|θ)]Kπ(θ)dθ
. (8)

Lele et al. [1] and Lele [42] show that as the number of sample clones K grows larger,
the DC posterior distribution converges to an approximately normal with mean θ̂ML and
variance 1

KI−1(X|θ̂ML),
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πK(θ|X) −→
K→∞

N
(

θ̂ML,
1
K
I−1(X|θ̂ML)

)
. (9)

In other words, as the number of clones K increases, marginal distributions of individ-
ual parameters θ0 should be nearly degenerated around the ML point estimate, and the
variance of this distribution is K times the corresponding asymptotic variance of the ML
estimator of θ.

Thus, the main result of the data cloning method is to guarantee that when we estimate
the posterior distributions of model parameters using K clones of the original sample
(Equation (8)), as K grows to infinity, the resulting estimator eliminates the influence of
prior specification on parameter estimation by pinpointing maximum likelihood estimates
as limiting estimates from the procedure. Intuitively, the influence of priors on posterior
estimation is progressively eliminated by the sample cloning procedure because, since the
contribution of the prior is fixed for any sample size, its influence is dominated by the
information contained in an evaluated likelihood function from a K times replicated original
sample. The factor 1/K multiplying the inverse of the information matrix in Equation (9)
is necessary in order to correct the variance of the estimators. Since they are obtained
using K-clones of the original sample, their posterior variance is artificially reduced by the
increased sample size. The asymptotic normality of DC posterior estimates is demonstrated
by [1]. Thus, the DC estimator can be taken as a computational method employed in order
to exploit the standard asymptotic properties of Bayesian estimators given by the Bernstein–
von Mises theorem, which states that under some regularity conditions, discussed, for
example, in van der Vaart [43], Bayesian estimators converge to the maximum-likelihood
estimator as sample size grows.

Data cloning estimators belong to the class of estimators denoted as quasi-Bayesian/
Laplacian by Chernozhukov and Hong [44] and thus inherit the good computational prop-
erties that such methods exhibit when compared to directly maximizing the likelihood
function. As the estimators are constructed through MCMC sampling, they are not obtained
through numerical optimization and thus are robust to problems such as nonsmooth and
discontinuous objective functions, do not suffer from the computational curse of dimen-
sionality, and are as efficient as the extremum estimates. Chernozhukov and Hong [44]
also provide evidence that these estimators are robust to multiple local maxima and initial
values. However, these estimators can be affected by problems that affect the speed of
convergence of the MCMC chains, for example, initial values in the tails of the posterior
distribution, a problem that can be avoided through a choice of initial values based on
economic considerations.

The implementation of the data cloning method is very straightforward. One has
only to repeat the original sample K times to obtain an augmented sample with K × T
observations and then sample from πK(θ|X) using a traditional Metropolis–Hastings al-
gorithm. As discussed by Lele et al. [1], one does not assume that the artificial samples
are independent and the sample repetition is only a scheme to numerically obtain the
maximum-likelihood estimator of parameter θ. As the number of clones increases, the algo-
rithm better approximates the true location of the likelihood function and the true inverse
of the Fisher information for the observed data. The statistical accuracy of the estimator is
a function of sample size and is not enhanced by the data cloning procedure; increasing the
number of clones will only contribute to enhancing the numerical approximation of the ML
estimates.

An alluring theoretical advantage of the data cloning methodology is that since ML
estimates are invariant to the choice of prior distributions, DC helps attenuate the impact
of subjectivity that prior specification can have on posterior estimates. There is no guar-
antee, however, that the DC method will be successful in pinpointing ML estimates. As
Lele [42] discuss, Bayesian hierarchical models are easy to construct and straightforward
to analyze due to MCMC, and, as a general principle, the complexity of the model should
not exceed the information content in the data. Data cloning can be helpful by alerting the
researcher to potential issues with the model such as nonestimability. Data cloning is used
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by Ponciano et al. [5] to assess parameter identifiability in Bayesian phylogenetic models.
Ponciano et al. [2] show how the data cloning can be used to construct hypothesis tests,
confidence intervals, and perform model selection exercises.

Within the DC framework, an individual parameter is considered identifiable if its
marginal posterior variance converges to 0 at the rate of 1/K as the number of K clones
increases (Lele et al. [41], Ponciano et al. [5]). If, however, the likelihood function has
insufficient curvature with respect to some individual parameter θ0, then as the number
of clones increases and the prior distribution has a diminished impact on the posterior,
marginal variance will not converge to zero at the predicted rate because the flat likelihood
dominates the DC marginal posterior distribution.

The computational properties of data cloning estimators in the context of estimating
DSGE models are analyzed in Furlani et al. [13], which through Monte Carlo studies, show
that data cloning estimators are robust to the choice of initial values and local maximums,
and it has superior performance in finite samples terms of bias and root mean squared
error in relation to several other numerical methods of maximizing the likelihood function.
As discussed in Furlani et al. [13], data cloning estimators do not rely on the evaluation
of derivatives and Hessians of the objective function, and in this respect, they are more
robust to problems related to the evaluation of these functions, such as near-flat-likelihood
functions, discontinuities, and problems in the numerical approximations of these functions
through the use of methods such as finite differences.

Given its both practical and theoretical appeal, the idea of DC has been adapted to
many settings and applications. We enumerate a few for the sake of context. Baghishani and
Mohammadzadeh [3] employ the DC method to estimate generalized linear mixed models
in a spatial setting. Picchini and Anderson [7] combine the DC idea with an approximate
Bayesian computation (ABC) approach. More recently, Duan et al. [8] incorporated
data cloning into a sequential Monte Carlo algorithm. They employed DC to help with
convergence and argue that their method has good computational properties that take
advantage of parallel computing.

The data cloning method allows the construction of information criteria such as the
AIC and the BIC. These criteria can be constructed by evaluating the likelihood function
with the parameters estimated through the limit of the Bayesian estimator, using the
penalties associated with each information criterion. In the case of our study, we are only
analyzing a single model, and therefore, there is no need to compare different specifications
using these criteria.

4. Model and Estimation Details

The model of Smets and Wouters [15] is a medium-scale general equilibrium model
augmented with nominal rigidities and additional exogenous shocks that embodies many
key features of New Keynesian DSGE models.

There are 41 parameters in the SW model: 17 dictate the dynamics of exogenous AR
and ARMA processes, the remainder characterize structural features of the economy. Five
parameters are calibrated, leaving a total of 36 parameters to be estimated from seven
observable series. The model is estimated from seven macroeconomic variables observed at
a quarterly frequency: real output, worked hours, inflation rate, consumption, investment,
and capital stock. We omit further details on the model structure due to space constraints,
and point to the original paper for more information. Smets and Wouters [15] employ data
from the third quarter of 1947 through the fourth quarter of 2004, totaling 230 observations.
Estimation was carried out in Matlab and Dynare (version 4.3.3, Adjemian et al. [45]),
using two MCMC chains composed of 250.000 iterations each.

First we replicate the baseline estimation exercise of Smets and Wouters [15], employ-
ing the same data and prior specification. Then, using gradually more sample repetitions
(5, 10, and 25), we compute data cloning posterior estimates. As discussed in Section 3,
parameter identification can be accessed by observing the behavior of data cloning pos-
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terior variance as the number of sample repetitions increases, and a global measure of
identification comes from the largest eigenvalue of the DC posterior covariance matrix.

5. Results

The present application of the data cloning method consists in first replicating the
baseline exercise of Smets and Wouters [15], then estimating the model using gradually
more sample replications—we consider 5, 10, and 25. Local identification can be accessed
by observing the posterior volatility of the data cloning estimated parameters. We also
measured the global identification identification properties of the DSGE system obtained
through the maximum eigenvalue of the data cloning posterior covariance matrix. In this
section, we report our findings and place them in relation to established results in the
literature.

Table 1 summarizes our estimation results. The first two columns display parameters
and their economic definition. Prior specification, which mimics Smets and Wouters [15],
is reported in columns three to five. Following standard practice in the DSGE literature,
prior specification is reported in terms of distribution family (N for Normal, B for Beta,
G for Gamma, and IG for Inverse Gamma), mean, and standard deviation. Columns
three through eight display our single-sample MCMC estimation results: the mode ob-
tained through numerical optimization (initial values for posterior sampling), the posterior
mean, and standard deviation. Then we report posterior mean and standard deviations
for data cloning estimations using 5, 10, and 25 sample replications. The last column
reproduces posterior means reported by Smets and Wouters [15] in their Table 1A,B for
easier comparison.

Table 1. Data cloning posterior estimates.

Parameter Definition Prior Optimization Single-Sample (MCMC) 5 Clones 10 Clones 25 Clones Benchmark

Density Mean Std Mode Mean Std Mean Std Mean Std Mean Std Mean
ψ Investment adj. cost. N 4.00 1.50 5.49 5.588 2.241 6.851 1.091 6.004 0.694 5.974 1.044 5.74
σc Inv. elats. intert. subst. N 1.50 0.38 1.47 1.435 0.328 1.401 0.327 1.406 0.243 1.468 0.061 1.38
h Consump. habit B 0.70 0.10 0.70 0.705 0.102 0.794 0.071 0.771 0.032 0.759 0.054 0.71
ξw Calvo wage B 0.50 0.10 0.73 0.692 0.163 0.896 0.024 0.855 0.067 0.838 0.121 0.71
σl Elast. labour supply N 2.00 0.75 1.67 1.655 1.259 3.791 0.433 3.267 0.731 3.398 1.852 1.83
ξp Calvo price B 0.50 0.10 0.68 0.676 0.125 0.784 0.048 0.737 0.039 0.695 0.076 0.66
ιw Index. of wages B 0.50 0.15 0.56 0.543 0.277 0.476 0.145 0.495 0.141 0.582 0.037 0.58
ιp Index. of prices B 0.50 0.15 0.24 0.26 0.202 0.273 0.092 0.276 0.073 0.265 0.039 0.24
Ψ Capital utilization B 0.50 0.15 0.40 0.411 0.211 0.171 0.122 0.199 0.102 0.226 0.388 0.54
Φ Fixed cost N 1.25 0.12 1.65 1.643 0.171 1.581 0.095 1.591 0.065 1.575 0.078 1.6
rπ Response to inflation N 1.50 0.25 1.98 2.015 0.375 2.131 0.316 1.936 0.072 1.949 0.193 2.04
ρ Interest rate smooth. N 0.75 0.10 0.82 0.82 0.052 0.872 0.016 0.854 0.018 0.851 0.021 0.81
ry Response to output N 0.13 0.05 0.09 0.095 0.052 0.138 0.069 0.123 0.029 0.118 0.007 0.08
r∆y Response to output gap N 0.13 0.05 0.22 0.222 0.064 0.191 0.013 0.185 0.027 0.192 0.047 0.22
π̄ Steady state inflation G 0.63 0.10 0.67 0.679 0.157 0.534 0.121 0.604 0.107 0.604 0.065 0.78
100 (β−1 − 1) Discount factor G 0.25 0.10 0.21 0.241 0.203 0.232 0.167 0.186 0.041 0.195 0.038 0.16
l̄ Steady state hours worked N 0.00 2.00 0.40 0.296 2.249 2.351 1.921 0.876 1.135 1.038 1.222 0.53
100 (γ− 1) Trend growth N 0.40 0.10 0.44 0.435 0.035 0.451 0.011 0.456 0.025 0.455 0.011 0.43
α Share of capital N 0.30 0.05 0.32 0.314 0.092 0.354 0.106 0.371 0.031 0.356 0.067 0.19
δ Depreciation rate n.a. 0.025 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
gy Government/Output ratio n.a. 0.18 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
φw Wage mark-up n.a. 1.5 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
εw Kimball (wage) n.a. 10 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
εp Kimball (price) n.a. 10 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
ρga Tech. shock to gov. spending N 0.50 0.25 0.60 0.587 0.204 0.553 0.097 0.644 0.116 0.625 0.036 0.52
ρa AR nonspecific technology B 0.50 0.20 0.95 0.948 0.0354 0.974 0.027 0.968 0.014 0.967 0.005 0.95
ρb AR risk premium B 0.50 0.20 0.17 0.212 0.1957 0.219 0.183 0.217 0.034 0.209 0.014 0.22
ρg AR government spending B 0.50 0.20 0.97 0.973 0.0196 0.997 0.001 0.996 0.016 0.995 0.019 0.97
ρi AR investment B 0.50 0.20 0.74 0.747 0.134 0.647 0.083 0.671 0.101 0.681 0.045 0.71
ρm AR monetary policy B 0.50 0.20 0.12 0.142 0.1294 0.042 0.049 0.121 0.095 0.121 0.031 0.15
ρp AR price mark-up B 0.50 0.20 0.90 0.879 0.1326 0.999 0.001 0.999 0.075 0.999 0.016 0.89
ρw AR wage mark-up B 0.50 0.20 0.97 0.959 0.0366 0.972 0.029 0.969 0.004 0.967 0.011 0.96
µp MA price mark-up B 0.50 0.20 0.77 0.723 0.2217 0.966 0.013 0.952 0.115 0.927 0.081 0.69
µw MA wage mark-up B 0.50 0.20 0.87 0.809 0.1694 0.945 0.048 0.914 0.026 0.904 0.029 0.84
σa Std. technology shock IG 0.10 2.00 0.43 0.434 0.0506 0.472 0.029 0.445 0.011 0.446 0.026 0.45
σb Std. risk premium shock IG 0.10 2.00 0.24 0.237 0.0606 0.243 0.052 0.241 0.038 0.243 0.003 0.23
σg Std. government spending IG 0.10 2.00 0.51 0.516 0.0519 0.52 0.016 0.504 0.061 0.512 0.011 0.53
σi Std. investment shock IG 0.10 2.00 0.43 0.435 0.0688 0.469 0.079 0.458 0.085 0.461 0.011 0.56
σm Std. monetary policy IG 0.10 2.00 0.24 0.244 0.1014 0.231 0.011 0.233 0.006 0.228 0.009 0.24
σπ Std. price mark-up shock IG 0.10 2.00 0.14 0.141 0.0328 0.145 0.016 0.139 0.014 0.133 0.004 0.14
σw Std. wage mark-up shock IG 0.10 2.00 0.24 0.235 0.0359 0.231 0.024 0.217 0.008 0.224 0.028 0.24

Note: table displays posterior estimates of the SW model. In the priors, specification N corresponds to a Normal
distribution, B a Beta distribution, G a Gamma distribution, and IG an Inverse-Gamma distribution. The Single-
Sample columns are the results of the usual estimation by MCMC. Calibrated parameters are represented by “n.a.”
values.

Single sample-point estimates are mostly in line with benchmark SW values and
remain, with notable exceptions, stable as the number of sample replication increases. As
we increase the number of clones, estimates of the autorregressive coefficient of the price-
markup exogenous process ρp push the upper limit of unity. SW’s estimate of ρp is 0.89,
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while our estimate with 20 sample clones is 0.99, implying qualitatively different dynamics
for the exogenous price-markup process. The price-markup process is ARMA(1,1), and a
similar issue seems to occur with the moving average parameter µp, whose benchmark
estimate of 0.69 changes to 0.927 with 20 sample clones. This phenomenon seems to be
specific to the price-markup process. For some other exogenous processes, we do have
autorregressive coefficients estimated with relatively high magnitude, namely ρg and ρw,
but those parameters have stable estimates not far from benchmark values. Furthermore,
this issue seems to be of a different sort than the one discussed by Morris [35], as in his
Monte Carlo experiment of SW’s model, the sampling distribution of the estimator of ρp is
indistinguishable from its Beta prior.

Following Furlani et al. [13], we compute normalized standard errors (proportional
to the standard error in the single-sample estimation) to evaluate whether the data-cloning
algorithm is successful in reducing posterior volatility. Table 2 displays the normalized
standard errors as a function of the number of clones K, denoted by s∗K. To enhance
visualization, we list the parameters in decreasing order relative to the 25-clone standard
deviation estimate. Parameters in Table 2 are listed from worse to best identified with
respect to the normalized standard error metric.

Parameters related to the dynamics of exogenous stochastic processes, in general, seem
to be better identified relative to structural parameters. In Table 1 shock parameters are
presented below the calibrated parameters, while structural parameters are placed above.
This is a recurring finding in the identification literature ([14,17,20]). Indeed, we find the
best-identified parameters to be ρb and σb, which describe the risk-premium exogenous
process. Even though ρp and σp are considered well identified according to the normalized
standard deviation metric, from the previous discussion on the autorregressive coefficient,
we know that there must be estimation problems related to those parameters.

Among shock parameters, the one whose posterior volatility is least diminished by
the data cloning method is the standard deviation of shocks to wage markups σw. This is
not unexpected, since this specific parameter is embroiled in the critique Chari et al. [16]
made of the SW model, which is based on the implausible magnitude and interchangeable
economic interpretation of exogenous wage markup shocks εw

t .
Several structural parameters that characterize the economic environment seem not to

be identifiable. After 20 clones, the posterior standard deviation of Ψ, which determines
costs to capital utilization readjustment, is almost twice the original standard deviation;
in the case of wage elasticity of labor supply σl , s∗25 is almost one and a half times s∗1 ,
indicating the data cloning algorithm is unable to reduce posterior volatility and thus
unable to accurately determine maximum likelihood point estimates.

Calvo reoptimization probabilities ξp and ξw are badly identified, while partial in-
dexation degrees ιp and ιw display somewhat better identifiability. The fact that we seem
to better identify partial indexation parameters could be, as suggested by Iskrev [17] and
Canova and Sala [14], because ξ and ι are highly pairwise collinear. We believe it is im-
portant to remember that price rigidities are not primitive model features, and there is
nothing that justifies the introduction of these rigidities besides a higher level of realism in
the model. However, the empirical validity of the indexed-Calvo model is questionable
(Dixon and Kara [46], Bils et al. [47], Bils and Klenow [48]), which adds to the catalogue
of critiques directed towards the class of NK-DSGE models, of which SW’s model is an
important example.

Parameters that appear explicitly in the measurement equations are sometimes called
“trend parameters”. In SW’s model, these are the growth rate trend γ, steady-state inflation
π̄, steady-state worked hours l̄, and discount factor β. Most trend parameters seem to be
badly identified, especially steady-state worked hours l̄ and inflation π̄. The parameter γ is
featured explicitly as linear growth trend of output, consumption, investment, and worked
hours. According to the the data cloning method, γ seems to be only weakly identified.
Canova and Sala [14] and Chadha and Shibayama [20] show that these trend parameters
mainly affect first moments, and having constant terms changes the identification in
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general. Interestingly, we find the intertemporal discount factor β to be relatively well
identified—the best performing among trend parameters. This result is unexpected since
Iskrev [17] argues β has little expected impact over the likelihood function and should be
especially hard to identify.

Table 2. Normalized data cloning posterior standard deviation.

Parameters s∗1 s∗2 s∗3 s∗5 s∗10 s∗25

Ψ 1.000 0.389 0.373 0.582 0.445 1.841
σl 1.000 0.441 0.348 0.344 0.33 1.471
ρg 1.000 0.178 0.142 0.081 0.132 1.004
σw 1.000 0.406 0.434 0.685 0.328 0.799
ξw 1.000 0.176 0.174 0.151 0.318 0.738
α 1.000 0.428 0.545 1.149 0.495 0.733
r∆y 1.000 0.338 0.361 0.207 0.515 0.733
ξp 1.000 0.339 0.343 0.382 0.409 0.61
l̄ 1.000 0.621 0.575 0.853 1.046 0.543
h 1.000 0.383 0.294 0.7 0.127 0.534
σa 1.000 0.284 0.533 0.588 0.792 0.519
rπ 1.000 0.352 0.571 0.843 0.225 0.516
ψ 1.000 0.429 0.423 0.486 0.206 0.466
Φ 1.000 0.488 0.611 0.556 0.441 0.456
π̄ 1.000 0.529 0.375 0.763 1.059 0.413
ρ 1.000 0.299 0.329 0.316 0.193 0.397
µp 1.000 0.097 0.086 0.059 0.087 0.362
ρi 1.000 0.426 0.452 0.621 0.555 0.341
100 (γ− 1) 1.000 0.314 0.257 0.311 0.226 0.311
ρw 1.000 0.265 0.295 0.803 0.532 0.306
ρm 1.000 0.326 0.333 0.383 0.912 0.238
σg 1.000 0.425 0.483 0.312 0.676 0.204
ιp 1.000 0.485 0.288 0.455 0.433 0.194
σc 1.000 0.425 0.465 0.999 0.536 0.187
100 (β−1 − 1) 1.000 0.705 0.525 0.825 0.226 0.186
ρga 1.000 0.357 0.497 0.475 0.328 0.178
µw 1.000 0.108 0.109 0.285 0.324 0.171
σi 1.000 0.302 0.773 1.156 1.315 0.175
ρa 1.000 0.209 0.333 0.779 0.581 0.163
ry 1.000 0.316 0.728 1.324 0.277 0.148
ιw 1.000 0.503 0.384 0.523 0.628 0.135
σp 1.000 0.307 0.371 0.496 0.368 0.128
ρp 1.000 0.027 0.017 0.007 0.002 0.122
σm 1.000 0.359 0.116 0.116 0.146 0.088
ρb 1.000 0.392 0.386 0.937 0.325 0.072
σb 1.000 0.402 0.419 0.871 0.712 0.061

Note: Table reports the posterior standard deviation s∗K of parameters of the SW model obtained from DC estimates
as a proportion of the single sample standard deviation s∗1 .

Figure 1 plots the standardized maximum eigenvalue of the data cloning covariance
matrix λS

K against its expected value of 1/K. We find λS
K above its reverence level for all

samples considered. From this evidence, we cannot say the SW model is globally identified,
which is to be expected given the widespread poor individual parameter identification
performance.
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Figure 1. Standardized maximum eigenvalue of the posterior covariance matrix. Note: figure plots
the standardized maximum eigenvalue of data cloning posterior the covariance matrix estimates
against the 1/K expected value for a well-identified model.

6. Conclusions

In this paper, we applied the data cloning methodology of Lele et al. [1] to the flagship
NK-DSGE model of Smets and Wouters [15]. The data-cloning method is a numerical
scheme to obtain maximum-likelihood parameter estimates by artificially replicating the
original sample. A byproduct of this method is an identification metric related to the
posterior variability of the parameter as the number of sample clones increases.

The data cloning method is a simple way of obtaining maximum likelihood estimators,
and in this respect, it allows verifying the impact of the prior structure on the estima-
tion results of DSGE models with some simple modifications in the Bayesian methods
traditionally used in the estimation of these models.

In addition, this method produces measures of local and global identification in this
class of models as direct by-products. This result is particularly useful since identification
diagnoses are notably more complex due to the non-linear structure and the use of the
approximations and linearizations required for estimation. We believe that the data cloning
method is an effective contribution to the estimation and analysis of DSGE models and can
be built from the Bayesian estimation methods that are the standard in this literature.

Regarding the identification diagnostics obtained by the data cloning method for the
Smets and Wouters [15] model analyzed in this work, shock-related parameters seem better
identified relative to structural parameters, which has become a stylized fact. The former
group displays identification problems nonetheless. Point estimates for the autoregressive
coefficient of the exogenous price markup process ρp become larger as the number of
sample clones increases, pushing the upper limit of the unit. The standard deviation of
shocks to the wage-markup process σw does not seem well identified, which relates to the
critique that Chari et al. [16] make of the NK-DSGE model of Smets and Wouters [15].
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