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A New Soft-Clipping Discrete Beta GARCH Model and Its
Application on Measles Infection
Huaping Chen

School of Mathematics and Statistics, Henan University, Kaifeng 475004, China; chenhp0107@henu.edu.cn

Abstract: In this paper, we develop a novel soft-clipping discrete beta GARCH (ScDBGARCH)
model that provides an available method to model bounded time series with under-dispersion,
equi-dispersion or over-dispersion. The new model not only allows positive dependence, but also
negative dependence. The stochastic properties of the models are established, and these results are, in
turn, used in the analysis of the asymptotic properties of the conditional maximum likelihood (CML)
estimator of the new model. In addition, we apply the new model to measles infection to show its
improved performance.

Keywords: discrete beta distribution; bounded time series; ScDBGARCH model; negative dependence;
stochastic property

1. Introduction

More and more authors have underlined the importance and the common occurrence
of the bounded integer-valued time series over more than two decades. McKenzie [1] pro-
posed the binomial AR (BAR) model based on the binomial thinning operator to analyze the
bounded integer-valued time series. To monitor bounded data (which increase at a certain
point and then slowly decrease to the initial level), Weiß and Testik [2] further discussed
the BAR model by constructing positive additive outliers; see Möller et al. [3] for its some
extensions of zero inflation and Chen et al. [4] for its two types of innovative outliers.
Kang et al. [5] proposed an extended binomial AR(1) model based on the generalized
binomial thinning operator, which relaxes the independence assumption of the binomial
thinning operator. To analyze bounded data with under-dispersion, equi-dispersion and
over-dispersion, Chen et al. [6] first constructed the Conway–Maxwell–Poisson–binomial
thinning operator based on the Conway–Maxwell–Poisson–binomial distribution [7], and
then proposed the Conway–Maxwell–Poisson–binomial AR model. To accurately and
flexibly capture the correlation structure between two random coefficients in the BAR
process, Zhang et al. [8] proposed a new version of the BAR model by using the Farlie–
Gumbel–Morgenstern copula, which allows both positive and negative correlations.

In fact, the volatility (especially the heteroscedasticity) is a reality for many important
processes and cannot be described by the above models. Here, we take the number of
districts with new cases of measles infection per week in the year 2016–2017 reported in
n = 38 Germany’s districts as an example and present its path in Figure 1, which shows
that there seems to be more variation at the median of the time series, where the level also
appears to be higher.

For this purpose, Weiß and Pollett [9] considered a linear binomial ARCH(1) model,
which is generalized to the pth-order case by Ristić et al. [10]. Lee and Lee [11] further
discussed a version of the linear binomial ARCH(1) model with a feedback mechanism.
Chen et al. [12] proposed two classes of dynamic binomial ARCH models to model time
series with a finite range. Chen et al. [13] generalized the binomial ARCH model to the
beta-binomial GARCH model, which allows both the conditional and marginal binomial
indices of dispersion to be greater than one, i.e., data with extra-binomial variation can be
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more adequately captured than binomial GARCH-type models. See Liu et al. [14] for the
bounded Poisson AR process and Liu et al. [15] for the novel category AR process.
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Figure 1. Path of the measles infection counts.

However, the negative ACF cannot be achieved by the above models. To resolve this
dilemma, Weiß and Jahn [16], inspired by the softplus INGARCH model [17], proposed the
soft-clipping BGARCH model based on the soft-clipping function [18], i.e.,

Scc(x) = c log
(

1 + exp(x/c)
1 + exp((x− 1)/c)

)
, x ∈ (0, 1), c > 0. (1)

To further investigate the soft-clipping function, we give some example of the plot of Scc(x)
in Figure 2, when c takes the value in {0.02, 0.05, 0.1, 0.3, 0.5, 0.7, 1, 1.5}, ∀x ∈ (0, 1). From
Figure 2, Scc(x) tends to a linear function when c→ 0.
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Figure 2. Plots of the soft-clipping function.

“Although the beta-binomial distribution is very flexible with respect to its shape, it
is, to a large extent focused on dealing with data sets which appear, in some way, to arise
from binomial distributions but which are in fact overdispersed”, which was discussed
by Turner [19]. Hence, another concern arises because beta-binomial distribution focuses
on over-dispersion such that under-dispersed pseudo-binomial data sets (which are rare
but do exist) cannot be analyzed by the beta-binomial GARCH-type models. To fill this gap,
we proposed a new soft-clipping discrete beta GARCH (ScDBGARCH) model based on a
re-scaled discrete beta binomial distribution. What is remarkable about the ScDBGARCH
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model is that it not only can be fitted to under-dispersed data (besides over-dispersed
bounded data), but also allows negative dependence (besides positive dependence).

It is worth mentioning that the realization of negative dependence for the ScDB-
GARCH model is mainly due to the incorporated soft-clipping function. Another main
contribution of this paper is that we establish the stochastic order of the discrete beta
binomial distribution, and then discuss the stability property of the new model. In addition,
we discuss the CML estimators and establish their asymptotic normality. Last but not least,
we illustrate the availability and superiority in analyzing the count of districts with new
cases of measles infection per week in the period of the year 2016–2017 reported in n = 38
of Germany’s districts.

The paper is organized as follows. Section 2 first gives a brief review of the discrete beta
distribution, then gives the definition of the soft-clipping discrete beta GARCH model and
its stability properties. Conditional maximum likelihood estimation and their asymptotic
properties are established in Section 3. Section 4 provides real data to show the effective-
ness of the new model. Conclusions are made in Section 5. Appendix A presents some
auxiliary results.

2. Model Formulation and Stability Properties
2.1. Discrete Beta Distribution

For the readers’ convenience, we first give a brief review of the discrete beta distribu-
tion, which is introduced by Turner [19].

A random variable X taking values in {nbot, nbot + 1, nbot + 2, . . . , ntop} is said to
follow a discrete beta distribution with parameters (α, β) if its probability mass function of
X takes the form

P(X = x|α, β, n) =
1

Z(α, β)
f
(

x− nbot + 1
ntop − nbot + 2

)
, ∀x = nbot, nbot + 1, . . . , ntop, (2)

where

f (x) =
1

B(α, β)
xα−1(1− x)β−1, B(α, β) =

Γ(α)Γ(β)

Γ(α + β)
, Z(α, β) =

ntop

∑
x=nbot

f
(

x− nbot + 1
ntop − nbot + 2

)
,

where ntop ∈ N is the predetermined upper limit of the range and nbot = 0 or 1 is the
predetermined lower limit of the range. For simplicity, we denote X ∼ DB1(nbot, ntop, α, β).

Furthermore, the probability mass function (given in (2)) of X can be rewritten as the
exponential family form, i.e.,

P(X = x|α, β) = h(x) exp(αT1(x) + βT2(x)− A(α, β)), (3)

where A(α, β) = log

(
ntop

∑
x=nbot

h(x) exp
(
αT1(x) + βT2(x)

))
, T1(x) = log

(
x− nbot + 1

ntop − nbot + 2

)
,

T2(x) = log
(

ntop − x + 1
ntop − nbot + 2

)
, h(x) =

(ntop − nbot + 2)2

(x− nbot + 1)(ntop − x + 1)
.

In fact, f (·) involving in (2) is the probability density function of the beta distribution
with parameters α and β. By Lemma A2 in Appendix A, one can obtain the mean, variance
and BID of the DB1(nbot, ntop, α, β), if nbot = 0 and ntop → ∞. Similarly, the moments of

DB1(1, ntop, α, β) can be obtained if ntop → ∞. It is worth mentioning that µb =
α

α + β
and

σ2
b =

αβ

(α + β)2(1 + α + β)
(given in Lemma A2) are precisely the mean and variance of the

beta distribution with parameters α and β. Hence, we consider a reparameterization of
the discrete beta distribution given in (2) by setting p = α/(α + β) and τ = α + β. For
simplicity, we rewrite DB1(nbot, ntop, α, β) as DB2(nbot, ntop, p, τ).

Unfortunately, the specific range of BID for the DB2(nbot, ntop, p, φ) distribution cannot
be obtained, except the case for ntop → +∞. To solve this dilemma, we give an example of
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the BID in Figure 3 with n := ntop ∈ (2, 4, 6, 8) and nbot = 0, when p and φ are varying from
0.1 to 0.9 with increment 0.1 and 0.1 to 8.1 with increment 0.1, respectively. See Figure 4 for
nbot = 1.
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Figure 3. Plots of the BID when nbot = 0.
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Figure 4. Plots of the BID when nbot = 1.

From Figure 3, we have the following observations. First, for given τ, when p → 1,
the BID is decreasing but greater than 1, except for that of ntop = 2 (the BID is less than 1,
if p→ 1). Second, when p takes a small value, the BID takes the maximum if τ takes the
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boundary value. Third, for the given p and τ, the BID tends to a greater value when ntop
is increasing.

From Figure 4, we have the following observations. First, for ntop = 2, the BID seems
to be increasing but lower than 1 when p → 1, ∀τ. Second, for ntop > 2, if τ takes the
non-boundary value, the BID seems to be increasing and then decreasing when p → 1;
otherwise, the BID seems to be decreasing. Third, for the given p and τ, the BID tends to a
greater value when ntop is increasing.

To sum up, the discrete beta distribution allows to model bounded data with under-
dispersion, equi-dispersion and over-dispersion.

Similar to the statistical-order property of the one-parameter exponential family in [20],
Proposition 1 illustrates that it does hold for the DB1 distribution.

Proposition 1. Suppose Xi ∼ DB1(nbot, ntop, αi, βi), ∀i = 1, 2. If α1 ≤ α2 and β1 ≥ β2, then
the following conclusions hold and are equivalent:

(1) X1 ≤lr X2,
(2) p1 ≤ p2,

where pi = αi/(αi + βi), ∀i = 1, 2.

Proof. (1) It is easy to see that Xi exhibits the following probability density function

fXi (x) =
1

Z(αi, βi)

1
B(αi, βi)

(
x− nbot + 1

ntop − nbot + 2

)αi−1(
1− x− nbot + 1

ntop − nbot + 2

)βi−1
,

where Z(αi, βi) =
n
∑

x=0

1
B(αi, βi)

(
x− nbot + 1

ntop − nbot + 2

)αi−1(
1− x− nbot + 1

ntop − nbot + 2

)βi−1
. Hence,

l(x) :=
fX1(x)
fX2(x)

=
Z(α2, β2)B(α2, β2)

Z(α1, β1)B(α1, β1)

(
x− nbot + 1

ntop − nbot + 2

)α1−α2
(

1− x− nbot + 1
ntop − nbot + 2

)β1−β2

∝
(

x− nbot + 1
ntop − nbot + 2

)α1−α2
(

1− x− nbot + 1
ntop − nbot + 2

)β1−β2

and

l‘(x) ∝ (α1 − α2)

(
x− nbot + 1

ntop − nbot + 2

)α1−α2−1(
1− x− nbot + 1

ntop − nbot + 2

)β1−β2

− (β1 − β2)

(
x− nbot + 1

ntop − nbot + 2

)α1−α2
(

1− x− nbot + 1
ntop − nbot + 2

)β1−β2−1
≤ 0

with equality only if α1 = α2 and β1 = β2. Hence, X1 ≤lr X2. Furthermore, p1 ≤ p2 by
Theorem 4.2 in Wang [21].

(2) Note that if α1 ≤ α2 and β1 ≥ β2,

1
p1
− 1

p2
=

α1 + β1

α1
− α2 + β2

α2
=

β1

α1
− β2

α2
≥ 0.

Hence, p1 ≤ p2, if α1 ≤ α2 and β1 ≥ β2, and vice versa. Therefore, X1 ≤lr X2. The proof is
end.
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2.2. Discrete Beta GARCH(1,1) Model with a Nearly Linear Structure

Inspired by Weiß and Jahn [16] and DB2 distribution, we give the definition of the
ScDBGARCH(1,1) model by{

Zt|Ft−1 ∼ DB2(nbot, ntop, pt, τ),
pt = Scc(w + α1 pt−1 + β1Zt−1/ntop),

(4)

where Ft is the σ-field generated by {Zt, pt, t ∈ Z}, τ > 0, |α1| < 1, |β1| < 1 and
|α1|+ |β1| < 1, Scc(x) = c log

(
(1 + exp(x/c))/(1 + exp((x− 1)/c))

)
, ∀x ∈ (0, 1), c > 0,

nbot = 0 or 1 and ntop ∈ N is the predetermined upper limit of the range.
By (3) and (4), the conditional probability mass function of {Zt} takes the form

P(Zt = zt|Ft−1) = h(zt) exp
(

ptτT1(zt) + (1− τ)ptT2(zt)− A(ptτ, (1− τ)pt)
)
, (5)

where h(zt) =
(ntop − nbot + 2)2

(zt − nbot + 1)(ntop − zt + 1)
, T1(zt) = log

(
zt − nbot + 1

ntop − nbot + 2

)
, T2(zt) = log(

ntop − zt + 1
ntop − nbot + 2

)
, A
(

ptτ, (1− τ)pt
)
= log

(
ntop

∑
i=nbot

h(i) exp(ptτT1(i) + (1− τ)ptT2(i))

)
.

Note that Proposition 1 presents that the new discrete beta distribution exhibits a
statistical-order property, which is similar to the one-parameter exponential family in Davis
and Liu [20]. Hence, a natural idea of the stability of the ScDBGARCH model is using the
theory of the iterated random function approach [22] to construct the stability properties
of the ScDBGARCH model. For this purpose, we first illustrate the stochastic order of the
coupling process {Zt, λt, t ∈ Z} given in (4), and then account for the moment property of
|Zi − Zj| (∀i 6= j), which is essential to derive the stability of the proposed model.

Proposition 2. If {Zt, pt, t ∈ Z} satisfies (4), then Z1 ≤lr Z2, if p1 ≤lr p2, where “lr” denotes
the likelihood ratio.

The result of Proposition 2 can be obtained by Proposition 1, i = 1, 2. We omit it.

Proposition 3. For all i = 1, 2, if Zi ∼ DB2(nbot, ntop, pt, τ) and Fλi is the cumulative distri-
bution function of DB2(nbot, ntop, pt, τ) with µi = ∑

ntop
z=nbot zP(Zi = z) and F−1

λi
(u) := inf{t ≥

0, Fµi (t) ≥ u}, then E|Z1 − Z2| = |λ1 − λ2|, where u is a uniform random variable in (0, 1) and
Zi = F−1

λi
(u).

Proof. Denote λi = ∑
ntop
x=nbot xP(Xi = x) with Xi ∼ DB1(nbot, ntop, αi, βi). Similar to the first

item of Proposition 1, λ1 ≤lr λ2, if α1 ≤ α2, β1 ≥ β2. Therefore, Z1 ≤lr Z2 by Proposition 2,
i.e., Z1 ≤st Z2 and F−1

λ1
(t) ≤ F−1

λ2
(t), ∀t ∈ (0, 1). Hence E|Z1 − Z2| = E(Z2 − Z1) =

λ2 − λ1 = |λ1 − λ2|. Similarly, E|Z1 − Z2| = E(Z1 − Z2) = |λ1 − λ2|, if λ1 ≥ λ2. Thus,
E|Z1 − Z2| = |λ1 − λ2|. The proof is complete.

In the following, we demonstrate that Scc(·) satisfies the contraction condition by
using Lemma A1 in Appendix A, i.e., ∀z1, z2 ≥ 0(z1 6= z2), p1, p2 ≥ 0(p1 6= p2), there exist
α and β such that
|Scc

(
w + α1 p1 + β1

z1
ntop

)
− Scc

(
w + α1 p2 + β1

z2
ntop

)
| < |α||p1 − p2|+ |β||z1 − z2|,

Scc(w + α1 p1 + β1z1) ≤ αp1 + βz1 + Scc(w),
|Scc(w + α1 p1 + β1z1/ntop)− Scc(w + α1 p2 + β1z1/ntop)| ≤ |α||p1 − p2|.

(6)

where |α1| < 1 and |β1| < 1.
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Assumption 1. The parametric space Θ = {θ = (w, α1, β1, φ)>} is compact with w ∈ R,
0 < φ < 1, |α1| < 1, |β1| < 1 and |α1|+ |β1| < 1.

Theorem 1. Let {Zt, t ∈ Z} satisfy (4). If Assumption 1 and the contraction condition (6) hold,
then the following results hold:

(1) If π is a stationary distribution and p0 ∼ π is independent of p
′
0 ∼ π, then {pt, t ∈ Z} is

geometric-moment contracting with unique stationary distribution π and Eπ p1 < ∞.
(2) There exists a measurable function G∞ : D∞ = {(n1, n2, . . .), ni ∈ D} −→ D such that

pt
a.s.
= G∞(Zt−1, Zt−2, . . .), i.e., pt is Ft−1-measurable, where D = [0, n].

(3) If {pt} starts from π, i.e., p0 ∼ π, then {Zt} is a stationary time series. Furthermore,
{Zt, pt} is strictly stationary and ergodic.

By Propositions 3 and (6), Theorem 1 can be proved in a similar way in Davis and Liu [20]
and Chen et al. [13], and we omit it here.

It is worth mentioning that the incorporated soft-clipping function results in negative
auto-regression, besides the positive auto-regression and over-dispersion. Unfortunately,
because of the complexity of the discrete beta distribution, we have the closed forms of
the auto-regressive coefficient. To get an idea about the abilities of the ScDBGARCH(1,1)
model with c = 0.01 for explaining different autocorrelation structures, we present some
ACF(2)-ACF(1) plots for the ScDBGARCH(1,1) model in Figures 5 and 6. To be precise,
for given ntop = 10 and nbot = 0 or 1, sample size T = 200 and τ = 1, we let β1 = 0.05 and
w = 0.5(1− |α1| − |β1|) with α1, varying from −0.9 to 0.9 with an increment of 0.1, and we
compute the values of ACF(1), ACF(2) and plot them against each other.

From Figures 5 and 6, both negative ACF and non-negative ACF are allowed by the
novel ScDBGARCH model, while negative ACF is rejected by the binomial GARCH-type
models [10,12], i.e., the novel ScDBGARCH model is much more flexible than the classical
binomial GARCH models with respect to the auto-regressive structure.
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Figure 5. Plots of attainable pairs of ACF(2) against ACF(1) for ntop = 10 with c = 0.01.
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Figure 6. Plots of attainable pairs of ACF(2) against ACF(1) for ntop = 2 with c = 0.01.

To be honest, the merit of the model ScDBGARCH goes beyond allowing negative
auto-regression, and also allowing under-dispersion. To account for the dispersion, we
present the plots of the BID (in Figures 7 and 8) for the ScDBGARCH(1,1) model, for given
ntop = 10 or 2 and nbot = 0 or 1, sample size T = 200 and τ = 1 when α1 is varying from
−0.9 to 0.9 with an increment 0.1, β1 = 0.05 and w = 0.5(1− |α1| − |β1|).

0 10 20 30 40

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

(1) nbot=0

B
ID

0 10 20 30 40

3
.6

3
.8

4
.0

4
.2

4
.4

4
.6

4
.8

5
.0

(2) nbot=1

B
ID

Figure 7. Plots of BID for ntop = 10 with c = 0.01.
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From Figures 7 and 8, under-dispersion (besides over-dispersion) is allowed, especially
for the ScDBGARCH model with a smaller ntop. Hence, the ScDBGARCH model provides
an available way to analyze bounded integer-valued time series counts.

Remark 1. Similar to the BGARCH(1,1) model [11] and the BBGARCH(1,1) model [13], we can
define the following two models:

• Soft-clipping beta-binomial GARCH(1,1) model with

Zt|Ft−1 ∼ BB(n, pt, φ), pt = Scc(w + α1 pt−1 + β1Zt−1/n), (7)

where w ∈ R, 0 < φ < 1, |α1| < 1, |β1| < 1 and |α1|+ |β1| < 1.
Obviously, this model, given in (7), is an example of the BBGARCH(1,1) model in [13]. For
convenience, we recall it as the ScBBGARCH(1,1) model.

• Soft-clipping binomial GARCH(1,1) model [16] with

Zt|Ft−1 ∼ Bin(n, pt), pt = Scc(w + α1 pt−1 + β1Zt−1/n), (8)

where w ∈ R, 0 < φ < 1, |α1| < 1, |β1| < 1 and |α1|+ |β1| < 1.
Obviously, this model, given in (8), can be regarded as a further generation of the BARCH-type
model; see [10–12]. For convenience, we recall it as the ScBGARCH(1,1) model.

3. Parameter Estimation

In this section, we use the conditional maximum likelihood method to estimate the
parameters involved in the ScDBGARCH(1,1) model and study their asymptotic behavior.
Let θ = (w, α, β, τ)>. Denote ntop and nbot as the upper and lower ranges, and T ∈ N
represents the size of the sample. {Z0, Z1, . . . , ZT} is a realization of {Zt}, which can be
obtained by the following steps: First, we let p0 = Scc(w) and set a pre-run = 500, then
generate {Z0, p1, Z1, · · · , p500, Z500}, where pt is obtained by (4) and Zt is generated by
using rdb() function in the ddb package; see Turner [19] for more details. Second, we use
p500 as a new initial value of pt and rewrite it as p0, then generate {Z0, Z1, Z2, , ZT}.

By (5), the conditional log-likelihood function of (4) can be written as

log L(θ) = ∑T
t=1 log P(Zt = zt|Ft−1)

= ∑T
t=1 log(h(zt)) + ∑T

t=1(η1T1(zt) + η2T2(zt)− A(η1, η2)), (9)

where h(zt) =
(ntop − nbot + 2)2

(zt − nbot + 1)(ntop − zt + 1)
, T1(zt) = log

(
zt − nbot + 1

ntop − nbot + 2

)
, η1 = τpt,

T2(zt) = log
(

ntop − zt + 1
ntop − nbot + 2

)
, A(η1, η2) = log

(
ntop

∑
i=nbot

h(i) exp(η1T1(i) + η2T2(i))

)
and

η2 = (1− τ)pt. Then the CML estimator θ̂cml is obtained by maximizing (9).
Note that ∑T

t=1 log(h(zt)) in (9) is a constant for a given sample. Hence, the conditional
log-likelihood function given in (9) can be simplified and denoted as

`(θ) = ∑T
t=1 lt(θ) = ∑T

t=1(η1T1(zt) + η2T2(zt)− A(η1, η2)) (10)
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and θ̂cml can be obtained by maximizing (10), i.e., θ̂cml is a solution of the score equation

0 =
T

∑
t=1

∂lt(θ)
∂θ

=
T

∑
t=1

(
T1(zt)

∂η1

∂θ
− T2(zt)

∂η2

∂θ
−
(

∂A(η1, η2)

∂η1

∂η1

∂θ
+

∂A(η1, η2)

∂η2

∂η2

∂θ

))

=
T

∑
t=1

(
T1(zt)−

∂A(η1, η2)

∂η1

)
∂η1

∂θ
+

T

∑
t=1

(
T2(zt)−

∂A(η1, η2)

∂η2

)
∂η2

∂θ
(11)

=
T

∑
t=1

(
T1(zt)− A

′
1(η1, η2)

) ∂η1

∂θ
+

T

∑
t=1

(
T2(zt)− A

′
2(η1, η2)

) ∂η2

∂θ
,

where η1 := η1(θ) = τpt, η2 := η2(θ) = pt(1− τ), pt = Sc(ut),

∂A(η1, η2)/∂η1 := A
′
1(η1, η2) = ∑ntop

i=nbot
(h(i) exp(η1T1(i) + η2T2(i))T1(i))/B(η1, η2),

∂A(η1, η2)/∂η2 := A
′
2(η1, η2) = ∑ntop

i=nbot
(h(i) exp(η1T1(i) + η2T2(i))T2(i))/B(η1, η2),

∂η1

∂θ
=


τSc

′
c(ut)

τSc
′
c(ut)pt−1

τSc
′
c(ut)zt−1/ntop

Scc(ut)

,
∂η2

∂θ
=


(1− τ)Sc

′
c(ut)

(1− τ)Sc
′
c(ut)pt−1

(1− τ)Sc
′
c(ut)zt−1/ntop

−Scc(ut)


with A(η1, η2) = log B(η1, η2), B(η1, η2) = ∑

ntop
i=nbot

h(i) exp(η1T1(i) + η2T2(i)), ut = w +

α1 pt−1 + β1zt−1/ntop and pt = Scc(ut).
Furthermore, the Hessian matrix (denoted as HT(θ)) for model (4) is obtained by

further differentiation of the score equation, i.e., HT(θ) = −
T
∑

t=1

∂2lt
∂θ∂θ>

with
∂2lt

∂θ∂θ>
equal-

ing to

(T1 − A
′
1)

∂2η1

∂θ∂θ>
+ (T2 − A

′
2)

∂2η2

∂θ∂θ>
− A

′′
11

∂η1

∂θ

∂η1

∂θ>
− A

′′
22

∂η2

∂θ

∂η2

∂θ>
− (A

′′
12 + A

′′
21)

∂η1

∂θ

∂η2

∂θ>
,

where A
′
1 := A

′
1(η1, η2), A

′
2 := A

′
2(η1, η2), A

′′
ij := A

′′
ij(η1, η2) = ∂A

′
i(η1, η2)/∂ηj, ∀i, j = 1, 2

and

∂2η1

∂θ∂θ>
=


τSc

′′
c τSc

′′
c pt−1 τSc

′′
c zt−1/ntop Sc

′
c

τSc
′′
c pt−1 τSc

′′
c p2

t−1 τSc
′′
c pt−1zt−1/ntop pt−1Sc

′
c

τSc
′′
c zt−1/ntop τSc

′′
c pt−1zt−1/ntop τSc

′′
c z2

t−1/n2
top Sc

′
czt−1/ntop

Sc
′
c pt−1Sc

′
c Sc

′
czt−1/ntop 0

,

∂2η2

∂θ∂θ>
=


(1− τ)Sc

′′
c (1− τ)Sc

′′
c pt−1 (1− τ)Sc

′′
c zt−1/ntop −Sc

′
c

(1− τ)Sc
′′
c pt−1 (1− τ)Sc

′′
c p2

t−1 (1− τ)Sc
′′
c pt−1zt−1/ntop −pt−1Sc

′
c

(1− τ)Sc
′′
c zt−1/ntop (1− τ)Sc

′′
c pt−1zt−1/ntop (1− τ)Sc

′′
c z2

t−1/n2
top −Sc

′
czt−1/ntop

−Sc
′
c −pt−1Sc

′
c −Sc

′
czt−1/ntop 0


with Sc

′
c := Sc

′
c(ut) and Sc

′′
c := Sc

′′
c (ut).

Lemma 1. Denote g(x, η1, η2) = T1(x)η1 + T2(x)η2− A(η1, η2). For all x ∈ R, g(x, η1, η2) =

g(x, η
′
1, η

′
2) if and only if η1 = η

′
1 and η2 = η

′
2, where h(x) =

(ntop − nbot + 2)2

(x− nbot + 1)(ntop − x + 1)
,

T1(x) = log
(

x− nbot + 1)/(ntop − nbot + 2)
)
, T2(x) = log

(
(ntop − x + 1)/(ntop − nbot +

2)
)
, A(η1, η2) = log

(
∑

ntop
i=nbot

h(i) exp(η1T1(i) + η2T2(i))
)

, nbot = 0 or 1 and ntop is considered
a known quantity.
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Proof. Note that g(x, η1, η2) is continuously differentiable; hence,

∂g(x, η1, η2)

∂η1
= T1(x)− ∑n

i=0 h(i)T1(i) exp(η1T1(i) + η2T2(i))
∑n

i=0 h(i) exp(η1T1(i) + η2T2(i))
,

∂g(x, η1, η2)

∂η2
= T2(x)− ∑n

i=0 h(i)T2(i) exp(η1T1(i) + η2T2(i))
∑n

i=0 h(i) exp(η1T1(i) + η2T2(i))
.

Because (∑ h(i)T1(i) exp(η1T1(i) + η2T2(i)))/(∑ h(i) exp(η1T1(i) + η2T2(i))) is strictly in-
creasing in terms of η1 or η2, so does for(

∑ h(i)T2(i) exp(η1T1(i) + η2T2(i))
)
/
(
∑ h(i) exp(η1T1(i) + η2T2(i))

)
.

Hence, ∂g(x, η1, η2)/∂η1 = ∂g(x, η
′
1, η

′
2)/∂η2 if and only if η1 = η

′
1 and η2 = η

′
2.

To sum up, g(x, η1, η2) = g(x, η
′
1, η

′
2) if and only if η1 = η

′
1 and η2 = η

′
2, ∀x ∈ R.

Assumption 2. If there exists a t ≥ 1 such that Zt(θ0) = Zt(θ), P(z|Ft−1)θ0 a.s., then θ = θ0,
where P(z|Ft−1)θ0 = P(Zt = z|Ft−1)θ0 is the probability measure under the true parameter θ0
and Ft−1.

Assumption 2 establishes the identification of the ScDBGARCH(1,1) model based on
Lemma 1.

Theorem 2. Let {Zt, t ∈ Z} be a stationary and ergodic sequence with a finite range and its
conditional mean process {λt} satisfy (4), the contraction condition (6). If Assumptions 1 and 2
hold, then, as T → ∞, we obtain the following results:

(1) There exists an estimator θ̂cml
2 such that θ̂cml a.s.→ θ;

(2)
√

T(θ̂cml − θ)
d→N

(
0, H−1(θ)I(θ)H−1(θ)

)
,

where I(θ) := E
(

∂lt(θ)
∂θ

∂lt(θ)
∂θ>

)
and H(θ) := −E

(
∂2lt(θ)
∂θ∂θ>

)
.

The proof of Theorem 2 is similar to Theorem 4 in Chen et al. [12]. We omit it.

4. Real Data Example

In this section, we reconsider the number of districts with new cases of measles
infection per week in the year 2016–2017 reported in n = 38 of Germany’s districts. The
dataset is taken from the “SurvStat” data (https://survstat.rki.de/Content/Query/Main.
aspx) (accessed on 10 December 2022), which have been reported to the Robert Koch
Institute by local and state health departments. See Figure 1 for its sample path.

By communication, the sample mean and variances are 4.3173 and 8.3546, respectively.
The ACF and PACF plots are given in Figure 9, respectively.

Besides the ScDBGARCH(1,1) model, the ScBBGARCH(1,1) model given in (7) and
the ScBGARCH(1,1) model given in (8) with c = 0.01, we also choose the following
compared models:

• BARCH(p) model [10] with

Zt|Ft−1 ∼ Bin(n, pt), pt = a0 + ∑p
k=1 akZt−k/n, p = 1, 2;

• logit-BARCH(p) model [12] with

Zt|Ft−1 ∼ Bin(n, pt), logit(pt) = α0 +
p

∑
k=1

logit(αk)Zt−k, p = 1, 2;

https://survstat.rki.de/Content/Query/Main.aspx
https://survstat.rki.de/Content/Query/Main.aspx
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• score-BARCH(1) model [12] with

Zt|Ft−1 ∼ Bin(n, pt), logit(pt) = α0 + α1logit(pt−1) + α2st, st = npt − Zt;

• BGARCH(1,1) model [11] with

Zt|Ft−1 ∼ Bin(n, pt), pt = α0 + α1 pt−1 + α2Zt−1/n;

• logit-BBGARCH(1,1) model [13] with Zt|Ft−1 ∼ BB(n, pt, φ) and its mean process
{λt} satisfying logit(λt) = w + α1logit(λt−1) + β1Zt−1.
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Figure 9. Measles infection’s counts: (a) ACF, (b) PACF.

In the following, we use the above models to fit the measles infection’s data by the
CML method and compare their estimated standard error (SE), −log-likelihood (−log-lik),
AIC and BIC, where SE is computed by Theorem 2 and φ̂ = 1/(1 + τ̂). The CML estimates
and approximated standard errors of parameters (including the fitted values of −log-lik,
AIC and BIC) are summarized in Table 1.

From Table 1, we have the following observations. For the BARCH-type models, the
BARCH(2) model with a linear transformation takes the smallest −log-lik, AIC and BIC.
For the GARCH-type models, the ScDBGARCH(1,1) model takes the smallest−log-lik, AIC
and BIC, followed by the ScBGARCH(1,1) model, which may be attributed to the merits of
the soft-clipping function.For all compared models, the ScDBGARCH(1,1) model takes the
smallest −log-lik, AIC and BIC. Hence, the ScDBGARCH(1,1) model is more suitable for
the measles data.

To further check the adequacy of the ScDBGARCH(1,1) model, we analyze its Pearson

residuals, which are defined by et = (Zt − µ̂t)/
√

σ̂2
t with µ̂t = ∑n

z=0 ZtP(Zt = z|Ft−1) and

σ̂2
t = ∑n

z=0(z− µ̂t)2P(Zt = z|Ft−1). As discussed in Weiß [23], “for an adequate model, its
fitted standardized Pearson residuals are expected to be uncorrelated with a mean about 0
and a variance about 1”.

First, we calculate that the mean and variance of the Pearson residuals of the ScD-
BGARCH(1,1) model are −0.0059 and 1.0107, which implies that the ScDBGARCH(1,1)
model demonstrates adequacy. Second, we give its residual analysis in Figure 10, which
also shows that this model does rather well.
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Table 1. Estimates and SEs in parentheses for the measles infection counts.

Model Estimates −log-lik AIC BIC

BARCH(1)
â0 â1

212.6574 429.3148 434.60360.0367 0.6844
(0.0071) (0.0651)

BARCH(2)
â0 â1 â2

204.8729 415.7457 423.67890.0270 0.4056 0.3669
(0.0072) (0.0991) (0.1005)

logit-BARCH(1)
â0 â1

215.9542 415.7457 423.5789−2.8248 0.1608
(0.1002) (0.0161)

logit-BARCH(2)
â0 â1 â2

207.5645 421.1290 429.0622−2.9473 0.1042 0.0827
(0.1087) (0.0221) (0.0220)

score-BARCH(1)
α̂0 α̂1 α̂2

213.1136 432.2272 440.1604−0.6178 0.6777 0.1192
(0.1525) (0.0751) (0.0160)

BGARCH(1,1)
â0 â1 â2

212.4199 430.8399 438.77300.0332 0.0175 0.6923
(0.0087) (0.0263) (0.0675)

ScBGARCH(1,1)
ŵ α̂1 β̂1

204.9207 415.8414 423.77460.2209 0.5123 0.4292
(0.2235) (0.1002) (0.0836)

ScDBGARCH(1,1)
ŵ α̂1 β̂1 φ̂

203.5400 415.0799 425.5750.2130 0.4926 0.4506 0.0196
(0.2297) (0.0963) (0.0832) (0.0028)

ScBBGARCH(1,1)
ŵ α̂1 β̂1 φ̂

211.9121 431.8242 442.40170.3188 0.4946 0.4401 0.0202
(0.3267) (0.1333) (0.1116) (0.0174)

logit-BBGARCH(1,1)
ŵ α̂1 β̂1 φ̂

208.9151 425.8302 436.4078−1.7203 0.4288 0.1137 0.0020
(0.2657) (0.0933) (0.0176) (0.0040)

Third, we consider the fitted values of the Ljung–Box test based on lags k = 3, 5, 7, 9, 11,
13, and 15, including their p-values and their critical values (χ2

0.95(k)) with 0.05 confidence,
and summarize them in Table 2.

Table 2. Values of the Ljung–Box test for the measles data.

Lag k 3 5 7 9 11 13 15

p-value 0.7736 0.9519 0.9642 0.9916 0.9950 0.9800 0.9934
χ2

0.95(k) 7.8147 11.0705 14.0671 16.9190 19.6751 22.3620 24.9958
Ljung–Box statistic 1.1144 1.1245 1.9191 1.9895 2.6083 4.7636 4.8430
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Figure 10. Pearson residual analysis: (a) ACF, (b) PACF.

Table 2 shows that all of the Ljung–Box statistics are less than the corresponding
critical values, and the p-values are much greater than the significant level 0.05. Hence,
both of them further illustrate the availability of the ScDBGARCH(1,1) model in analyzing
the measles data. To sum up, the ScDBGARCH(1,1) model shows better performance in
analyzing the measles data.

5. Concluding and Discussion

This paper considers a new and flexible soft-clipping discrete beta GARCH(1,1) model,
which not only allows positive correlation, but also negative correlation, as well as under-
dispersion, equi-dispersion and over-dispersion. We discuss some properties of the new
model, the CML estimate of the parameters involved in the novel model, and the large-sample
property of the CML estimate. The applicability and superior of the ScDBGARCH model are
illustrated by a real data example.

Like linear binomial ARCH/GARCH-type models [10,11], logit binomial ARCH-
type models [12] or beta-binomial GARCH-type models [13], the ScDBGARCH model is
applicable to analyze stationary non-negative data with a finite range and will be invalid
for data with some time trends. Two natural methods arise, and both of them deserve a
detailed analysis in a future project.

One popular method is incorporated into the covariate processes when constructing a
new model. Similar to the logit-BBGARCHX model [24] and the PARX model [25], one can
establish a model with covariates, taking the ScDBGARCH(1,1) model as an example:{

Zt|Ft−1 ∼ DB2(nntop, nbot, pt, τ),
pt = Scc(w + α1 pt−1 + β1Zt−1/ntop + f (Xt−1, γ)),

where ntop ∈ N is a predetermined upper limit of the range, nbot = 0 or 1 is a predetermined
lower limit of the range, Xt = (X1t, X2t, · · · , Xdt) is a d-dimensional exogenous covariate
vector, Ft is the σ-field generated by {Zs, λs, Xs, ∀s < t}, f (·, γ) : Rd → R, γ is the addi-
tional parameter vector involved in f (·, ·), and (w, α1, β1, τ) is the parameter vector with
τ > 0, |α1| < 1, |β1| < 1 and |α1|+ |β1| < 1. When discussing the statistical property, an es-
sential and unavoidable point is the specific form of f (·, ·). See Chen and Khamthong [26]
for Markov-switching cases.

Specially, if the considered data have a periodic trend, one can consider a s-periodically
distributed sequence {Zt, t ∈ Z} and its mean process {λt} satisfying (4), i.e., the s-periodicity

of {Zt, t ∈ Z} is understood in the sense that Zt
d
= Zks+τ for all k, t ∈ Z, τ = 1, 2, . . . , s, where
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d
= denotes equality in distribution. To highlight the periodicity, one can consider the model
by letting t = ks + τ, ∀k ∈ Z, ∀τ = 1, 2, . . . , s, and{

Zks+τ |Fks+τ−1 ∼ DB2(n, pks+τ , φks+τ),
λks+τ := (n + 2)pks+τ − 1 = Sc(wks+τ + α1,ks+τλks+τ−1 + β1,ks+τZks+τ−1),

where |α1,τ | < 1, |β1,τ | < 1 and ∏s
τ=1 |α1,τ |+ |β1,τ | < 1. See Aknouche et al. [27] for a

general periodic mixed Poisson autoregression.
The other popular method is to remove the time trend by using the difference method,

but having a negative value emerge (besides non-negative bounded data), i.e., Z-valued
bounded data emerge. As far as we know, existing GARCH-type models are constructed by
random rounding operators (see Liu and Yuan [28]), some Z-valued discrete distributions
(see Alomani et al. [29], Carallo et al. [30], Cui et al. [31]), difference of two independent
non-negative INGARCH models (see Gonçalves and Mendes-Lopes [32]) and non-negative
INGARCH models multiplying by some special Z-valued discrete random variables (see
Xu and Zhu [33]). However, they focus on Z-valued data with infinite range and cannot
apply to bounded data. Hence, a future project in term of the Z-valued bounded data
deserves to be considered.

In addition, as discussed in Chen et al. [6], the Conway–Maxwell–Poisson–binomial
AR model shows better performance in analyzing bounded time series counts with under-
dispersion, equi-dispersion and over-dispersion. A class of the Conway–Maxwell–Poisson–
binomial GARCH model deserves to be considered to analyze volatility for integer-valued
time series with a finite range. Similar to Bulla et al. [34] and Chen et al. [35], a signed
Conway–Maxwell–Poisson–binomial (SCMPB) thinning operator and a bivariate INAR
model based on the SCMPB thinning operator also deserve to be considered to analyze
bivariate dependent time series with finite ranges.
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Abbreviations
The following abbreviations are used in this manuscript:

|x| absolute of x, x ∈ R;
lr likelihood ratio;
≤st stochastic small;
d
= equality in distribution.
a.s.→ almost surely convergence;
d→ convergence in distribution.

Appendix A. Auxiliary Results

Lemma A1. Let Scc(x) = c log
1 + exp(x/c)

1 + exp((x− 1)/c)
, ∀x ∈ R, c > 0. Then,

(1) Sc
′
c(x) =

exp(x/c)
1 + exp(x/c)

−
exp

(
(x− 1)/c

)
1 + exp

(
(x− 1)/c

) and |S′c(x)| ≤ 1/2;

https://survstat.rki.de/Content/Query/Main.aspx
https://survstat.rki.de/Content/Query/Main.aspx
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(2) ∀x1 ∈ R, x2 ∈ R and x1 6= x2, |Scc(x2)− Scc(x1)| ≤
1
2
|x2 − x1|;

(3) Sc
′′
c (x) =

exp(x/c)
c(1 + exp(x/c))2 −

exp
(
(x− 1)/c

)
c
(
1 + exp

(
(x− 1)/c

))2 and |Sc
′′
c (x)| ≤ 1

2c
;

(4) Sc
′′′
c (x) =

exp(x/c)(exp(x/c)− 1)
c2(1 + exp((x− 1)/c))3 −

exp(x− 1/c)(exp
(
(x− 1)/c

)
− 1)

c2
(
1 + exp

(
(x− 1)/c

))3 and

|Sc
′′′
c (x)| ≤ 1

4c2 .

Proof. (1) Because Scc(x) is a continuously differentiable function in R, Sc
′
c(x) exists and

Sc
′
c(x) =

exp(x/c)
1 + exp(x/c)

−
exp

(
(x− 1)/c

)
1 + exp

(
(x− 1)/c

)
and

|Sc
′
c(x)| ≤

∣∣∣∣ exp(x/c)
1 + exp(x/c)

∣∣∣∣+
∣∣∣∣∣ exp

(
(x− 1)/c

)
1 + exp

(
(x− 1)/c

) ∣∣∣∣∣ ≤ 1
4
+

1
4
=

1
2

by Lemma 4 in [12].
(2) By using the mean value theorem, there exists at least one point δ ∈ (x1, x2), ∀x1 6=

x2, such that
Scc(x2)− Scc(x1) = Sc

′
c(δ)(x2 − x1),

where Sc
′
c(δ) =

exp(ξ/c)
1 + exp(δ/c)

− exp((δ− 1)/c)
1 + exp((δ− 1)/c)

. Hence, |Sc
′
c(δ)| ≤ 1/2 and |Scc(x2)−

Sc(x1)| ≤
1
2
|x2 − x1|, ∀x1 6= x2.

(3) According to item (1), Sc
′
c(x) is a continuously differentiable function in R, thus

Sc
′′
c (x) exists and Sc

′′
c (x) =

exp(x/c)
c(1 + exp(x/c))2 −

exp
(
(x− 1)/c

)
c
(
1 + exp

(
(x− 1)/c

))2 . Furthermore,

|Sc
′′
c (x)| ≤

∣∣∣∣ exp(x/c)
c(1 + exp(x/c))2

∣∣∣∣+
∣∣∣∣∣ exp

(
(x− 1)/c

)
c
(
1 + exp

(
(x− 1)/c

))2

∣∣∣∣∣ ≤ 1/(4c) + 1/(4c) = 1/(2c)

by (a + b)2 ≥ 4ab, ∀a ∈ R, ∀b ∈ R.
(4) By (3), Sc

′′
c (x) is a continuously differentiable function in R, and thus, Sc

′′′
c (x) exists

and

Sc
′′′
c (x) =

exp(x/c)(exp(x/c)− 1)
c2(1 + exp(x/c))3 −

exp((x− 1)/c)(exp
(
(x− 1)/c

)
− 1)

c2
(
1 + exp

(
(x− 1)/c

))3 .

Furthermore, by using Lemma 4 in [12], we obtain

|Sc
′′′
c (x)| ≤

∣∣∣∣exp(x/c)(exp(x/c)− 1)
c2(1 + exp(x/c))3

∣∣∣∣+
∣∣∣∣∣exp((x− 1)/c)(exp

(
(x− 1)c

)
− 1)

c2
(
1 + exp

(
(x− 1)/c

))3

∣∣∣∣∣
≤ 1

c2

∣∣∣∣ exp(2x/c)
(1 + exp(x/c))3

∣∣∣∣+ 1
c2

∣∣∣∣∣ exp(2(x− 1)/c)(
1 + exp

(
(x− 1)/c

))3

∣∣∣∣∣
≤ 1

4c2 .

The proof is complete.

Lemma A2. Let X ∼ DB1(nbot, ntop, α, β) with nbot = 0 and ntop = n. If n→ +∞, then
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(1). E(X) ≈ (n + 2)
α

α + β
− 1 = (n + 2)µb − 1,

(2). Var(X) ≈ (n + 2)2σ2
b ,

(3). BID =
nVar(X)

EX(n− EX)
≈ nφ(n + 2)2 p(1− p)

(n + 2)2 p(1− p)− (n + 1)


> 1, if p(1− p) >

n + 1
(1− nφ)(n + 2)2 ,

= 1, if p(1− p) =
n + 1

(1− nφ)(n + 2)2 ,

< 1, if p(1− p) <
n + 1

(1− nφ)(n + 2)2 ,

where µb = p = α/(α + β) and σ2
b = φµb(1− µb) with φ = 1/(1 + α + β).

Proof. By (2), we compute that

E(X) =
1

Z(α, β)

n

∑
x=0

x f
(

x + 1
n + 2

)
=

(n + 2)2

Z(α, β)

n

∑
x=0

(
x + 1
n + 2

− 1
n + 2

)
f
(

x + 1
n + 2

)
1

n + 2

=
(n + 2)2

Z(α, β)

n

∑
x=0

x + 1
n + 2

f
(

x + 1
n + 2

)
1

n + 2
− (n + 2)2

Z(α, β)

n

∑
x=0

1
n + 2

f
(

x + 1
n + 2

)
1

n + 2

≈ (n + 2)2

Z(α, β)

∫ 1

0
x f (x)dx− n + 2

Z(α, β)

∫ 1

0
f (x)dx

≈ (n + 2)2

n + 2

∫ 1

0
x f (x)dx− n + 2

n + 2

∫ 1

0
f (x)dx

≈ (n + 2)
α

α + β
− 1 = (n + 2)µb − 1,

E(X2) =
1

Z(α, β)

n

∑
x=0

x2 f
(

x + 1
n + 2

)
=

(n + 2)3

Z(α, β)

n

∑
x=0

(
(x + 1)2

(n + 2)2 −
2(x + 1)
(n + 2)2 +

1
(n + 2)2

)
f
(

x + 1
n + 2

)
1

n + 2

=
(n + 2)3

Z(α, β)

n

∑
x=0

(
x + 1
n + 2

)2
f
(

x + 1
n + 2

)
1

n + 2
− 2(n + 2)2

Z(α, β)

n

∑
x=0

x + 1
n + 2

f
(

x + 1
n + 2

)
1

n + 2

+
n + 2

Z(α, β)

n

∑
x=0

f
(

x + 1
n + 2

)
1

n + 2

=
(n + 2)3

Z(α, β)

(∫ 1

0
x2 f (x)dx−

(∫ 1

0
x f (x)dx

)2
)
+

(n + 2)3

Z(α, β)

(∫ 1

0
x f (x)dx

)2

− 2(n + 2)2

Z(α, β)

∫ 1

0
x f (x)dx +

n + 2
Z(α, β)

∫ 1

0
f (x)dx

≈ (n + 2)2 αβ

(α + β)2(1 + α + β)
+ (n + 2)2 α2

(α + β)2 − 2(n + 2)
α

α + β
+ 1

= (n + 2)2σ2
b + (n + 2)2µ2

b − 2(n + 2)µb + 1,

where σ2
b =

αβ

(α + β)2(1 + α + β)
and µb =

α

α + β
. Hence,

Var(X) = E(X2)− (EX)2 ≈ (n + 2)2σ2
b + (n + 2)2µ2

b − 2(n + 2)µb + 1− ((n + 2)µb − 1)2

= (n + 2)2σ2
b .
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Hence, the binomial index of dispersion (BID) of X satisfies

BID =
nVar(X)

EX(n− EX)
≈ nφ(n + 2)2 p(1− p)

(n + 2)2 p(1− p)− (n + 1)


> 1, if p(1− p) >

n + 1
(1− nφ)(n + 2)2 ,

= 1, if p(1− p) =
n + 1

(1− nφ)(n + 2)2 ,

< 1, if p(1− p) <
n + 1

(1− nφ)(n + 2)2 .

The proof is complete.
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