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Abstract: This paper proposes a heuristic reward reinforcement learning framework for point cloud
registration. As an essential step of many 3D computer vision tasks such as object recognition and
3D reconstruction, point cloud registration has been well studied in the existing literature. This
paper contributes to the literature by addressing the limitations of embedding and reward functions
in existing methods. An improved state-embedding module and a stochastic reward function are
proposed. While the embedding module enriches the captured characteristics of states, the newly
designed reward function follows a time-dependent searching strategy, which allows aggressive
attempts at the beginning and tends to be conservative in the end. We assess our method based on
two public datasets (ModelNet40 and ScanObjectNN) and real-world data. The results confirm the
strength of the new method in reducing errors in object rotation and translation, leading to more
precise point cloud registration.
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1. Introduction

Point cloud registration is a primary task of high-quality 3D model reconstruction. A
complete point cloud effectively captures the surface details of a detected object. However,
due to the limitation of scanning equipment and environment, single-view point clouds
with noise can inevitably be obtained. To get a complete point cloud of the object, multi-
viewpoints need to be transformed into the same coordinate system, referring to the
point cloud registration [1–3]. The iterative methods are applied in traditional algorithms,
such as the Iterative Closest Point (ICP) algorithm. Despite being widely used, ICP is
computationally expensive and demands the initial positions of two point clouds [4,5],
which can sometimes lead to the local optimum.

In recent studies, some learning-based methods have been proposed to directly predict
a transformation matrix for the source point cloud, e.g., ReAgent [6]. It handles point cloud
registration using Imitation Learning (IL) and Reinforcement Learning (RL). An accurate
initial policy can be obtained by imitating an expert, then fine-tuning the policy with a
symmetry-invariant reward. ReAgent realized the registration step by step. This paper
improves the model by addressing two limitations in ReAgent, including (1) the lack of the
extraction of local features to point cloud in the state embedding stage, and (2) the fixed
penalties for different states in the reward.

Specifically, with the purpose of getting the positional relation between the source
and target point cloud accurately, and generating a more effective state representation, a
feature extraction layer combined with EdgeConv is proposed, which enhances feature
description in the state embedding. Furthermore, this paper defines a new reward function
with time-varying penalties related to the current step. The new reward function allows
more aggressive attempts at the early search stage while tending to be conservative over
time. Finally, extensive experiments are conducted to assess the new method based on
different public datasets and real-world data.

To sum up, the main contributions of this paper are threefold.
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• First, to enrich the encoding process, an improved state-embedding module is pro-
posed. It combines EdgeConv to capture the local features of relative coordinates,
reflecting the key information of two point cloud positions among the current state.

• Second, a heuristic reward function is proposed. Unlike the invariable penalty in each
step, the newly designed reward function allows aggressive attempts at the beginning
when the environment is still unclear.

• Finally, the new method with an improved state-embedding module and the heuristic
reward function is evaluated on two public datasets as well as real-world data of
train components. The experimental results show that the new method effectively
reduces the errors in rotation and translation, and can lead to more precise point
cloud registration.

The rest of this paper is organized as follows. Related work is discussed in Section 2,
and Section 3 introduces the three-dimensional point cloud registration methods in detail,
including some principles of point cloud registration, an improved state-embedding mod-
ule, and the stochastic reward function. Section 4 shows the experimental results to prove
the effectiveness and feasibility of our methods. Finally, Section 5 concludes the paper.

2. Related Work

Point cloud registration methods can be generally divided into traditional algorithms
and learning-based methods.

In traditional algorithms, coarse registration is usually the first step to making two point
clouds closer. Some local feature descriptors need to be generated in point clouds [2,7–9], then
similar features between the two point clouds should be identified. The key point matching
algorithms are used to find the corresponding key point pairs, so that the correspondence
between two point clouds is built up. The transformation matrix can be generated by the
Singular Value Decomposition (SVD) method [10]. Even if some algorithms eliminate the
mismatched corresponding key point pairs [11,12], there are still errors in the transforma-
tion, especially when two point clouds partially overlap. Therefore, the Iterative Closest
Point algorithm (ICP) has been widely used as the fine calibration, as it minimizes the
Euclidean distance between the point pairs, making the registration more precise. Although
the requirements of ICP about the initial position and overlap rate of two point clouds are
strict, the result of ICP still easily converges to the local optimum. Thus, improved work
based on ICP was developed, aiming at solving problems such as the object in movement
and the slow convergence rate [13–15]. The 3D-NDT method uses probability density to
replace feature extraction and key point matching [3]. The 4-point congruent sets (4PCS)
algorithm selects four points in the same base from the source point cloud and detects other
four points in the same base from the target point cloud in the range of errors. Along this
line, the correspondence is generated [16]. The traditional algorithms usually need to build
up the correspondence or iterative calculation between the source and target point cloud.

On the other hand, learning-based registration methods make registration based on
neural networks. As the pointwise network PointNet is proposed [17,18], other deep
learning models are put forward gradually [19–21]. To extract the local features from
point to point, the EdgeConv layer in DGCNN was proposed [22]. PointNetLK uses
PointNet to extract features, then, the high-dimensional features are considered as the
image to make the image registration so that the point cloud can be aligned [23]. Deep
Closest Point (DCP) combines the feature-embedded network and an attention module
to get a rigid transformation matrix [24]. Moreover, given the broad implementations of
reinforcement learning (RL), e.g., classic games [25], quantitative trading [26], and image
registration [27,28], RL has also been found useful in handling point cloud registration, and
the ReAgent [6] that combined imitation learning (IL) and RL is a typical example. This
paper focuses on improving the state embedding and reward function.
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3. Methodology

This section introduces the heuristic reward reinforcement learning (RL) framework for
point cloud registration. In general, an improved state-embedding module and the heuristic
reward function are proposed to reduce transformation errors, improving registration
more precisely.

3.1. Point Cloud Registration Network and ReAgent

Suppose there are two point clouds, the source point cloud X and the target point
cloud Y. The point set of X may be the same as Y, indicating they are the same object. If
X is just a part of Y, then X partially overlaps Y. There is a point cloud X′ in observation
which need to be transformed to X, so the current observation can be defined as O(X′, Y),
and the registration between X′ and X can be written as follows:

X′ ⊗ T = X, (1)

where T is the transformation matrix. In traditional algorithms, based on the correspondence
of two point clouds, the transformation matrix is usually obtained by SVD. However, the
transformation matrix would be the prediction as the output by the learning-based methods.

The iterative registration is a kind of fine-tuning method with higher accuracy and
inefficiency; it would transform the point cloud step by step instead of directly transforming
in one shot. Suppose that the X′ requires n steps to be aligned with X. That is:

X′ ⊗ T1 ⊗ T2 . . .⊗ Tn = X′n = X (2)

at step i, the point cloud X′i can be represented as:

X′i = X′i−1 ⊗ Ti (3)

Thus, the transformation of the point cloud in each step can be regarded as the discrete
actions in rotation and translation, and this process is similar to the learning process in
RL. If the representation of state and reward function can be defined appropriately, RL
techniques should be able to implemented.

Figure 1 shows the architecture of ReAgent for one iteration in step i. First, the features
of X′i and Y are embedded and concatenated to the state vector Si as the representation of
the state, then it updates steps by using discrete, limited step sizes in each iteration. The
policy π(S) gives the probability of the actions that can be selected in the rotation and
translation axis; it is computed by the action head of the agent. Additionally, it predicts
the step sizes for this iteration. The disentanglement of rotation and translation is used to
avoid errors in transformation.
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Since point cloud registration is a complicated task, using RL to train the agent at
the beginning may fall into the suboptimal policy, so the IL is used to train for the state
embedding and the policy initialization.
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3.2. Feature Extraction and an Improved State-Embedding Module

The representation of state is achieved by a PointNet-like architecture in ReAgent, and
features of two point clouds are extracted separately with shared MLP layers.

In the process of state embedding, as shown in Figure 2, the target point cloud Y is the
extracted feature at the first step, then generated as φ(Y). The observed source point cloud
X′i is the embedded feature at the beginning of each step. For example, φ

(
X′i
)

represents
the feature vector of the source point cloud in step i. Finally, φ

(
X′i
)

is concatenated with
φ(Y), and the state vector in step i can be generated as follows:

Si = concate
[
φ
(
X′i
)
, φ(Y)

]
(4)
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Figure 2. The architecture of feature embedding in ReAgent.

Specifically, in Figure 2b, the PointNet-like architecture is served as the feature em-
bedding layer. The input is a point cloud with N points and three-dimension information
xyz. It increases the dimension of features through the one-dimensional convolution layer
{64, 128, 1024}, then a 1 × 1024 global feature can be generated after max pooling, and two
global features from X′i and Y are concatenated to a 1 × 2048 state vector.

In ReAgent, fewer embedding layers are considered to learn the expressive feature
vector sufficiently. However, some works like PointNet++ and DGCNN have proved
that the local features are important to improve the accuracy of point cloud recognition
and segmentation. DCP also uses DGCNN in feature extraction for better registration
results. Although these local feature extraction methods require additional computing
costs, local features about the positional relations between points and neighboring points
are necessary for feature embedding. Based on extensive experiments, the new framework
in this paper replaces the PointNet-like architecture by feature extraction layers combined
with EdgeConv. The improved state-embedding module is shown in Figure 3a.
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Furthermore, the input point cloud will go through an EdgeConv layer. Figure 3b
shows that k neighboring points can be detected by k-nn algorithm for each point in N,
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computing the difference of three-dimension coordinate values between the k neighboring
points and their center point; k vector point to the center point can be obtained, and a local
neighborhood graph can be generated. After that, the local features between the center
point and k neighboring points can be extracted by two-dimension convolutional layers.
After pooling in dimension k, N × 64 feature vector is obtained. The subsequent feature
extraction architecture is similar to the ReAgent. Two 1 × 1024 feature vectors concatenate
to a 1 × 2048 and serve as the state vector.

3.3. Heuristic Reward Function in RL

Only training the agent to imitate the expert policy does not guarantee consistently
good performance in different datasets. Thus, ReAgent used RL to fine-tune and improve
the model’s generality. First, as an important evaluation measure, the Chamfer distance
(CD) can be represented by:

CD(X, Y) =
1
|X| ∑

x∈X
min
y∈Y
‖ x− y ‖2

2, (5)

where x ∈ X and y ∈ Y. Note that CD reflects the similarity of two point clouds in terms of
the coordinate differences. In ReAgent, the reward function, denoted by r, is defined based
on CD:

r =


−ε−, CD

(
X′i , X

)
> CD

(
X′i−1, X

)
−ε0, CD

(
X′i , X

)
= CD

(
X′i−1, X

)
ε+, CD

(
X′i , X

)
< CD

(
X′i−1, X

) (6)

where X is the true source point cloud. It is identical to the target point cloud Y, or only
partially overlaps Y. So, X is used to represent the point cloud that needs registration based
on the observed point cloud Xi. Note that, X′i is a point cloud that is observed in step i, and
X′i−1 is the observed point cloud in step i− 1. The penalties

(
ε+, ε0, ε−

)
would be given

depending on the CD at step i compared with the CD at step i − 1. The three penalties
correspond to three reward states: “better”, “same”, and “worse”, respectively. The values
of
(
ε+, ε0, ε−

)
are set to (0.5, 0.1, 0.6) in [6].

If the CD between the current observed point cloud X′i and point cloud X is smaller
than the last step, the transformation of point cloud Xi in current step is considered as a
“better” state, so the positive penalty ε+ would be given. If the CD is larger or the same
as last step, the transformation is considered as “worse” or “same”. In these cases, the
negative penalties −ε− and −ε0 would be given respectively.

At the beginning of registration, there may be a large difference in rotation and
distance between the point cloud Xi and X at the initial position. In the process of iterative
registration by RL, the actions selected by the agent’s policy π(S) in the first few steps may
not reduce the values of CD, even making the CD increase.

Heuristic algorithms, such as simulated annealing that follow time-varying acceptance
rates for new attempts, have been proven to be efficient in achieving global optimum.
Examples of the implementations of heuristic methods in machine learning can be found
in simulated annealing-based mobile sequential recommendation [29–31], stochastic deep
learning [32], and stochastic subsampling RL [33,34].

Inspired by the simulated annealing algorithm, two parameters related to the current
step are introduced to optimize the reward function:

θm = tm · αi (7)

θn = tn · βi (8)

where i is the current step number, and tm, α, tn, β are set according to the experimental
results. Then, the following heuristic reward function is proposed:



Stats 2023, 6 273

r =


−ε− · θm, CD

(
X′i , X

)
> CD

(
X′i−1, X

)
−ε0 · θn, CD

(
X′i , X

)
= CD

(
X′i−1, X

)
ε+ · θm, CD

(
X′i , X

)
< CD

(
X′i−1′X

) (9)

where θm is a growing exponential function, and θn is a decreasing exponential function.
Therefore, in the first few steps, the actions selected by policy π(S) may cause the

values of CD to increase. Given the fact that the penalties of “worse” and “better” are small,
while the penalty of “same” is relatively large, this reward function encourages the agent to
take aggressive movements and avoid staying in the “same” state. In the last few steps, the
penalties of “worse” and “better” states increase, leading to a more careful and accurate
transformation by policy π(S).

4. Experimental Results

This section discusses the results from experiments based on different datasets and
robustness checks.

4.1. Registration on ModelNet40

First, I demonstrate the results from the experiments evaluating the new method,
based on the ModelNet40 dataset. Following the same setting in [6], ModelNet40 has been
split into two parts, the 1–20 categories models and the 21–40 categories. In the experiments,
all models have taken resample, rigid rotation, and translation, so that the source and target
point cloud can be obtained.

Based on imitation learning, the agent would be pre-trained for 50 epochs on the first
20 categories without any noise. Then, based on RL, another 50 epochs are supplied for
fine-tuning the policy on the first 20 categories with some Gaussian noise added.

All experiments are performed under Windows11 operating system, Intel i9-12900k
and 32 GB RAM, and RTX3090ti with the simulation software. We followed the parameters
in [6]. The Proximal Policy Optimization (PPO) is used to update the policy, and the
formulation in [35] can be implemented as used in actor-critic architecture. The PPO loss
and advantage Â are the same as the ReAgent. In the rotation and translation axis, there
are 11 step sizes in each axis, [−0.27, −0.09, −0.03, −0.01, −0.0033, 0, 0.0033, 0.01, 0.03, 0.09,
0.27]. Note that the negative values indicate that the agent would take a transformation
in negative directions of coordinate axes. The learning rate in pretraining by IL is set to
0.001 with halving it in each of the 10 epochs. The learning rate of RL is set to 0.0001. All
the point cloud data would be pretreated according to the ReAgent.

We used several metrics that are commonly used in related work to evaluate performance.
Mean Absolute Error (MAE) is the error between the predicted vector vp and ground

truth vector vgt, and it can be calculated as following:

MAEv =
1
3 ∑

∣∣vp − vgt
∣∣ (10)

where the vector can be a rotation or translation vector to calculate the errors.
Isotropic Error (ISO) only considers the values of rotation and translation matrix to

calculate errors, so the ISO can be obtained as follows:

ISOr = arccos
trace

(
RdR−1

gt − 1
)

2
(11)

ISOt = ‖ Td − Tgt ‖2 (12)

where trace is the sum of the diagonal elements of the matrix; Rd and Td are the rotation
and translation matrix in the end; Rgt and Tgt are ground truths for the point cloud
to transformation.
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The Chamfer Distance has been mentioned in the definition of the reward function. A
Modified Chamfer Distance (CD̃) is proposed by Lee and Yew [36]. It is defined as follows:

CD̃ = (Ps, Pt) = CD(Ps, Pt,clean) + CD(Pt, Ps,clean) (13)

where clean means the point cloud with no noise.
Table 1 shows the experimental results on ModelNet40. Due to a different testing envi-

ronment, the results of ReAgent were slightly different from the original paper, while the
main patterns were found consistent. It can be seen that the new method and ReAgent ob-
tained smaller errors of rotation and translation than the DCP-v2 [24] and PointNetLK [23].
Additionally, the errors of the new method are smaller than ReAgent in all 40 categories,
while the running speed of ReAgent is faster. Although the running time of the new
method is slower than ReAgent and DCP-v2, the accuracy of the new method in registra-
tion is better.

Table 1. Registration Results on ModelNet40.

The First 20 Categories The Second 20 Categories
MAE ISO C̃D MAE ISO C̃D T

R T R T ×0.001 R T R T ×0.001 (ms)

DCP-v2 3.876 0.032 7.826 0.071 2.81 4.912 0.038 9.138 0.079 3.95 21
PointNetLK 1.912 0.013 3.826 0.028 1.12 1.853 0.017 3.812 0.032 1.62 42

ReAgent IL + RL 1.783 0.011 3.189 0.024 0.76 1.760 0.011 2.996 0.023 0.99 19
Our method IL + RL 1.588 0.011 3.134 0.024 0.78 1.557 0.010 2.897 0.022 1.00 26

4.2. Robustness Test

To check the robustness of the model when noises exist, the different variance of
Gaussian noise is respectively added to the point cloud, and the noise clipped to 0.05.
Figure 4 shows the models with noise in different σ. The Chamfer Distances (CD̃s) are
calculated based on different results of registration.
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Figure 4. Examples of point cloud with different variance of Gaussian noise. (a) Model without noise;
(b) σ = 0.01; (c) σ = 0.03; (d) σ = 0.05.

The CD̃-noise curve in Figure 5 shows the CD̃ with different noise magnitudes. It
can be seen that the values of CD̃ obtained by the new method are consistently smaller
than ReAgent, indicating that the values of the state embedding used some local features
to represent the point cloud, and the heuristic reward function proposed in this paper.
Overall, the results confirm the robustness of the new method under different noise levels.
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4.3. Experiment on ScanobjectNN and Other Real-World Data

Experiments have also been conducted based on the ScanObjectNN dataset [37], which
is collected from the depth sensor as the real data. The point clouds are segmented objects
in ScanObjectNN, including 15 categories and 581 models in total, and 2048 points for each
point cloud.

Furthermore, an additional category containing train components was manually
collected (see [38]). Figure 6 shows 8 component point clouds such as traction rods, bolts,
and wheelsets. They also have 2048 points with some noise after resampling. So, there are
16 categories and 589 point cloud models in the evaluated dataset.
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Figure 6. The train component point cloud.

Figure 7 shows the process of registration in train component wheelsets; the source
point cloud (red) is transformed into the target point cloud (blue) step by step. The green
point cloud represents the initial position of the source point cloud. Figure 7a demonstrates
the results based on the ReAgent registration, and Figure 7b shows the results based on the
newly proposed method. As can be seen, ReAgent results are unstable. It transforms after
two point clouds overlapped at step 7 and the final step. Compared with ReAgent, the new
method was designed to transform more and more conservatively over time, hence led to a
stabilized overlapping result.
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Figure 7. Example of component registration (initial position, step 1, step 7, and the final step).

As reported in Table 2, the errors of the new method are consistently smaller than
DCP-v2, PointNetLK, and ReAgent. Importantly, the running time of the new method
did not have significant changes compared with the running time in the ModelNet40-
related experiments. It shows that the methods can be applied to practical applications on
real-world data.

Table 2. Results on ScanObjectNN and train component.

MAE ISO C̃D T
R T R T ×0.001 ms

DCP-v2 8.760 0.081 17.320 0.163 5.08 53
PointNetLK 1.321 0.015 2.314 0.030 1.62 46

ReAgent IL + RL 1.449 0.012 2.789 0.025 0.75 22
Our method IL + RL 1.153 0.012 2.276 0.022 0.68 27

5. Discussion and Conclusions

Despite the overall outperformance of the new method which has been confirmed,
there are two limitations that may lead to additional improvements in future work. First,
since the EdgeConv has been used in embedding layers, the extraction of local features
required an increasing computational complexity. Second, θm and θn related to the cur-
rent step in the reward optimization were determined based on a series of experimental
results. To address these two limitations, simplified but efficient embedding layers may be
investigated so that the computing cost and the embedding effectiveness can be better bal-
anced. Additionally, implementing the optimization process with parallel computing and
high-performance computing techniques is also a possible research direction to enhance
the computing efficiency while remaining the embedding quality. Furthermore, regarding
the parameters, an adaptive time-dependent searching strategy may be developed for a
more powerful optimization of the registration.

In conclusion, this paper introduces a point cloud registration method via heuristic
reward reinforcement learning. An improved state-embedding module is also proposed to
extract more local features about related positions from point to point. The heuristic reward
function follows a time-dependent searching strategy, which allows aggressive attempts at
the beginning and tends to be conservative in the end. The new method is evaluated on
ModelNet40, ScanObjectNN, and additional real-world data, and the results confirm the
improvements in terms of multiple evaluation metrics.
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