
Citation: Chen, B. Point Cloud

Registration via Heuristic Reward

Reinforcement Learning. Stats 2023,

6, 268–278. https://doi.org/10.3390/

stats6010016

Academic Editor: Stéphane

Mussard

Received: 15 December 2022

Revised: 30 January 2023

Accepted: 31 January 2023

Published: 6 February 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Point Cloud Registration via Heuristic Reward
Reinforcement Learning
Bingren Chen

Data Mining Laboratory, Dalian University of Technology, Dalian 116000, China; bingren_chen@126.com

Abstract: This paper proposes a heuristic reward reinforcement learning framework for point cloud
registration. As an essential step of many 3D computer vision tasks such as object recognition and
3D reconstruction, point cloud registration has been well studied in the existing literature. This
paper contributes to the literature by addressing the limitations of embedding and reward functions
in existing methods. An improved state-embedding module and a stochastic reward function are
proposed. While the embedding module enriches the captured characteristics of states, the newly
designed reward function follows a time-dependent searching strategy, which allows aggressive
attempts at the beginning and tends to be conservative in the end. We assess our method based on
two public datasets (ModelNet40 and ScanObjectNN) and real-world data. The results confirm the
strength of the new method in reducing errors in object rotation and translation, leading to more
precise point cloud registration.

Keywords: point cloud; registration; reinforcement learning; deep learning

1. Introduction

Point cloud registration is a primary task of high-quality 3D model reconstruction. A
complete point cloud effectively captures the surface details of a detected object. However,
due to the limitation of scanning equipment and environment, single-view point clouds
with noise can inevitably be obtained. To get a complete point cloud of the object, multi-
viewpoints need to be transformed into the same coordinate system, referring to the
point cloud registration [1–3]. The iterative methods are applied in traditional algorithms,
such as the Iterative Closest Point (ICP) algorithm. Despite being widely used, ICP is
computationally expensive and demands the initial positions of two point clouds [4,5],
which can sometimes lead to the local optimum.

In recent studies, some learning-based methods have been proposed to directly predict
a transformation matrix for the source point cloud, e.g., ReAgent [6]. It handles point cloud
registration using Imitation Learning (IL) and Reinforcement Learning (RL). An accurate
initial policy can be obtained by imitating an expert, then fine-tuning the policy with a
symmetry-invariant reward. ReAgent realized the registration step by step. This paper
improves the model by addressing two limitations in ReAgent, including (1) the lack of the
extraction of local features to point cloud in the state embedding stage, and (2) the fixed
penalties for different states in the reward.

Specifically, with the purpose of getting the positional relation between the source
and target point cloud accurately, and generating a more effective state representation, a
feature extraction layer combined with EdgeConv is proposed, which enhances feature
description in the state embedding. Furthermore, this paper defines a new reward function
with time-varying penalties related to the current step. The new reward function allows
more aggressive attempts at the early search stage while tending to be conservative over
time. Finally, extensive experiments are conducted to assess the new method based on
different public datasets and real-world data.

To sum up, the main contributions of this paper are threefold.

Stats 2023, 6, 268–278. https://doi.org/10.3390/stats6010016 https://www.mdpi.com/journal/stats

https://doi.org/10.3390/stats6010016
https://doi.org/10.3390/stats6010016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/stats
https://www.mdpi.com
https://orcid.org/0000-0002-6063-2793
https://doi.org/10.3390/stats6010016
https://www.mdpi.com/journal/stats
https://www.mdpi.com/article/10.3390/stats6010016?type=check_update&version=1

Stats 2023, 6 269

• First, to enrich the encoding process, an improved state-embedding module is pro-
posed. It combines EdgeConv to capture the local features of relative coordinates,
reflecting the key information of two point cloud positions among the current state.

• Second, a heuristic reward function is proposed. Unlike the invariable penalty in each
step, the newly designed reward function allows aggressive attempts at the beginning
when the environment is still unclear.

• Finally, the new method with an improved state-embedding module and the heuristic
reward function is evaluated on two public datasets as well as real-world data of
train components. The experimental results show that the new method effectively
reduces the errors in rotation and translation, and can lead to more precise point
cloud registration.

The rest of this paper is organized as follows. Related work is discussed in Section 2,
and Section 3 introduces the three-dimensional point cloud registration methods in detail,
including some principles of point cloud registration, an improved state-embedding mod-
ule, and the stochastic reward function. Section 4 shows the experimental results to prove
the effectiveness and feasibility of our methods. Finally, Section 5 concludes the paper.

2. Related Work

Point cloud registration methods can be generally divided into traditional algorithms
and learning-based methods.

In traditional algorithms, coarse registration is usually the first step to making two point
clouds closer. Some local feature descriptors need to be generated in point clouds [2,7–9], then
similar features between the two point clouds should be identified. The key point matching
algorithms are used to find the corresponding key point pairs, so that the correspondence
between two point clouds is built up. The transformation matrix can be generated by the
Singular Value Decomposition (SVD) method [10]. Even if some algorithms eliminate the
mismatched corresponding key point pairs [11,12], there are still errors in the transforma-
tion, especially when two point clouds partially overlap. Therefore, the Iterative Closest
Point algorithm (ICP) has been widely used as the fine calibration, as it minimizes the
Euclidean distance between the point pairs, making the registration more precise. Although
the requirements of ICP about the initial position and overlap rate of two point clouds are
strict, the result of ICP still easily converges to the local optimum. Thus, improved work
based on ICP was developed, aiming at solving problems such as the object in movement
and the slow convergence rate [13–15]. The 3D-NDT method uses probability density to
replace feature extraction and key point matching [3]. The 4-point congruent sets (4PCS)
algorithm selects four points in the same base from the source point cloud and detects other
four points in the same base from the target point cloud in the range of errors. Along this
line, the correspondence is generated [16]. The traditional algorithms usually need to build
up the correspondence or iterative calculation between the source and target point cloud.

On the other hand, learning-based registration methods make registration based on
neural networks. As the pointwise network PointNet is proposed [17,18], other deep
learning models are put forward gradually [19–21]. To extract the local features from
point to point, the EdgeConv layer in DGCNN was proposed [22]. PointNetLK uses
PointNet to extract features, then, the high-dimensional features are considered as the
image to make the image registration so that the point cloud can be aligned [23]. Deep
Closest Point (DCP) combines the feature-embedded network and an attention module
to get a rigid transformation matrix [24]. Moreover, given the broad implementations of
reinforcement learning (RL), e.g., classic games [25], quantitative trading [26], and image
registration [27,28], RL has also been found useful in handling point cloud registration, and
the ReAgent [6] that combined imitation learning (IL) and RL is a typical example. This
paper focuses on improving the state embedding and reward function.

Stats 2023, 6 270

3. Methodology

This section introduces the heuristic reward reinforcement learning (RL) framework for
point cloud registration. In general, an improved state-embedding module and the heuristic
reward function are proposed to reduce transformation errors, improving registration
more precisely.

3.1. Point Cloud Registration Network and ReAgent

Suppose there are two point clouds, the source point cloud X and the target point
cloud Y. The point set of X may be the same as Y, indicating they are the same object. If
X is just a part of Y, then X partially overlaps Y. There is a point cloud X′ in observation
which need to be transformed to X, so the current observation can be defined as O(X′, Y),
and the registration between X′ and X can be written as follows:

X′ ⊗ T = X, (1)

where T is the transformation matrix. In traditional algorithms, based on the correspondence
of two point clouds, the transformation matrix is usually obtained by SVD. However, the
transformation matrix would be the prediction as the output by the learning-based methods.

The iterative registration is a kind of fine-tuning method with higher accuracy and
inefficiency; it would transform the point cloud step by step instead of directly transforming
in one shot. Suppose that the X′ requires n steps to be aligned with X. That is:

X′ ⊗ T1 ⊗ T2 . . .⊗ Tn = X′n = X (2)

at step i, the point cloud X′i can be represented as:

X′i = X′i−1 ⊗ Ti (3)

Thus, the transformation of the point cloud in each step can be regarded as the discrete
actions in rotation and translation, and this process is similar to the learning process in
RL. If the representation of state and reward function can be defined appropriately, RL
techniques should be able to implemented.

Figure 1 shows the architecture of ReAgent for one iteration in step i. First, the features
of X′i and Y are embedded and concatenated to the state vector Si as the representation of
the state, then it updates steps by using discrete, limited step sizes in each iteration. The
policy π(S) gives the probability of the actions that can be selected in the rotation and
translation axis; it is computed by the action head of the agent. Additionally, it predicts
the step sizes for this iteration. The disentanglement of rotation and translation is used to
avoid errors in transformation.

Stats 2023, 6, FOR PEER REVIEW 3

3. Methodology
This section introduces the heuristic reward reinforcement learning (RL) framework

for point cloud registration. In general, an improved state-embedding module and the
heuristic reward function are proposed to reduce transformation errors, improving regis-
tration more precisely.

3.1. Point Cloud Registration Network and ReAgent
Suppose there are two point clouds, the source point cloud and the target point

cloud . The point set of may be the same as , indicating they are the same object. If
 is just a part of , then partially overlaps . There is a point cloud in observation

which need to be transformed to , so the current observation can be defined as (,),
and the registration between and can be written as follows: ⊗ = , (1)

where is the transformation matrix. In traditional algorithms, based on the correspond-
ence of two point clouds, the transformation matrix is usually obtained by SVD. However,
the transformation matrix would be the prediction as the output by the learning-based
methods.

The iterative registration is a kind of fine-tuning method with higher accuracy and
inefficiency; it would transform the point cloud step by step instead of directly transform-
ing in one shot. Suppose that the requires steps to be aligned with . That is: ⊗ ⊗ … ⊗ = = (2)

at step , the point cloud can be represented as: = ⊗ (3)

Thus, the transformation of the point cloud in each step can be regarded as the dis-
crete actions in rotation and translation, and this process is similar to the learning process
in RL. If the representation of state and reward function can be defined appropriately, RL
techniques should be able to implemented.

Figure 1 shows the architecture of ReAgent for one iteration in step . First, the fea-
tures of and are embedded and concatenated to the state vector as the represen-
tation of the state, then it updates steps by using discrete, limited step sizes in each itera-
tion. The policy () gives the probability of the actions that can be selected in the rota-
tion and translation axis; it is computed by the action head of the agent. Additionally, it
predicts the step sizes for this iteration. The disentanglement of rotation and translation
is used to avoid errors in transformation.

Figure 1. Architecture of ReAgent for one step.

Since point cloud registration is a complicated task, using RL to train the agent at the
beginning may fall into the suboptimal policy, so the IL is used to train for the state em-
bedding and the policy initialization.

Figure 1. Architecture of ReAgent for one step.

Since point cloud registration is a complicated task, using RL to train the agent at
the beginning may fall into the suboptimal policy, so the IL is used to train for the state
embedding and the policy initialization.

Stats 2023, 6 271

3.2. Feature Extraction and an Improved State-Embedding Module

The representation of state is achieved by a PointNet-like architecture in ReAgent, and
features of two point clouds are extracted separately with shared MLP layers.

In the process of state embedding, as shown in Figure 2, the target point cloud Y is the
extracted feature at the first step, then generated as φ(Y). The observed source point cloud
X′i is the embedded feature at the beginning of each step. For example, φ

(
X′i
)

represents
the feature vector of the source point cloud in step i. Finally, φ

(
X′i
)

is concatenated with
φ(Y), and the state vector in step i can be generated as follows:

Si = concate
[
φ
(
X′i
)
, φ(Y)

]
(4)

Stats 2023, 6, FOR PEER REVIEW 4

3.2. Feature Extraction and an Improved State-Embedding Module
The representation of state is achieved by a PointNet-like architecture in ReAgent,

and features of two point clouds are extracted separately with shared MLP layers.
In the process of state embedding, as shown in Figure 2, the target point cloud is

the extracted feature at the first step, then generated as (). The observed source point
cloud is the embedded feature at the beginning of each step. For example, () rep-
resents the feature vector of the source point cloud in step i. Finally, () is concate-
nated with (), and the state vector in step i can be generated as follows: = (), () (4)

Specifically, in Figure 2b, the PointNet-like architecture is served as the feature em-
bedding layer. The input is a point cloud with points and three-dimension information

. It increases the dimension of features through the one-dimensional convolution layer
{64, 128, 1024}, then a 1 × 1024 global feature can be generated after max pooling, and two
global features from and are concatenated to a 1 × 2048 state vector.

(a) State embedding (b) The feature extraction layers

Figure 2. The architecture of feature embedding in ReAgent.

In ReAgent, fewer embedding layers are considered to learn the expressive feature
vector sufficiently. However, some works like PointNet++ and DGCNN have proved that
the local features are important to improve the accuracy of point cloud recognition and
segmentation. DCP also uses DGCNN in feature extraction for better registration results.
Although these local feature extraction methods require additional computing costs, local
features about the positional relations between points and neighboring points are neces-
sary for feature embedding. Based on extensive experiments, the new framework in this
paper replaces the PointNet-like architecture by feature extraction layers combined with
EdgeConv. The improved state-embedding module is shown in Figure 3a.

(a) Feature extraction combined with EdgeConv (b) The EdgeConv architecture

Figure 3. Improved state-embedding module.

Furthermore, the input point cloud will go through an EdgeConv layer. Figure 3b
shows that k neighboring points can be detected by k-nn algorithm for each point in N,
computing the difference of three-dimension coordinate values between the k neighboring
points and their center point; k vector point to the center point can be obtained, and a local
neighborhood graph can be generated. After that, the local features between the center

k-nn Graph

N
xk

x(
3x

2)

Co
nv

2D

N
xk
x6

4 pooling

N
x3

N
x6

4

EdgeConv

Figure 2. The architecture of feature embedding in ReAgent.

Specifically, in Figure 2b, the PointNet-like architecture is served as the feature em-
bedding layer. The input is a point cloud with N points and three-dimension information
xyz. It increases the dimension of features through the one-dimensional convolution layer
{64, 128, 1024}, then a 1 × 1024 global feature can be generated after max pooling, and two
global features from X′i and Y are concatenated to a 1 × 2048 state vector.

In ReAgent, fewer embedding layers are considered to learn the expressive feature
vector sufficiently. However, some works like PointNet++ and DGCNN have proved
that the local features are important to improve the accuracy of point cloud recognition
and segmentation. DCP also uses DGCNN in feature extraction for better registration
results. Although these local feature extraction methods require additional computing
costs, local features about the positional relations between points and neighboring points
are necessary for feature embedding. Based on extensive experiments, the new framework
in this paper replaces the PointNet-like architecture by feature extraction layers combined
with EdgeConv. The improved state-embedding module is shown in Figure 3a.

Stats 2023, 6, FOR PEER REVIEW 4

3.2. Feature Extraction and an Improved State-Embedding Module
The representation of state is achieved by a PointNet-like architecture in ReAgent,

and features of two point clouds are extracted separately with shared MLP layers.
In the process of state embedding, as shown in Figure 2, the target point cloud is

the extracted feature at the first step, then generated as (). The observed source point
cloud is the embedded feature at the beginning of each step. For example, () rep-
resents the feature vector of the source point cloud in step i. Finally, () is concate-
nated with (), and the state vector in step i can be generated as follows: = (), () (4)

Specifically, in Figure 2b, the PointNet-like architecture is served as the feature em-
bedding layer. The input is a point cloud with points and three-dimension information

. It increases the dimension of features through the one-dimensional convolution layer
{64, 128, 1024}, then a 1 × 1024 global feature can be generated after max pooling, and two
global features from and are concatenated to a 1 × 2048 state vector.

(a) State embedding (b) The feature extraction layers

Figure 2. The architecture of feature embedding in ReAgent.

In ReAgent, fewer embedding layers are considered to learn the expressive feature
vector sufficiently. However, some works like PointNet++ and DGCNN have proved that
the local features are important to improve the accuracy of point cloud recognition and
segmentation. DCP also uses DGCNN in feature extraction for better registration results.
Although these local feature extraction methods require additional computing costs, local
features about the positional relations between points and neighboring points are neces-
sary for feature embedding. Based on extensive experiments, the new framework in this
paper replaces the PointNet-like architecture by feature extraction layers combined with
EdgeConv. The improved state-embedding module is shown in Figure 3a.

(a) Feature extraction combined with EdgeConv (b) The EdgeConv architecture

Figure 3. Improved state-embedding module.

Furthermore, the input point cloud will go through an EdgeConv layer. Figure 3b
shows that k neighboring points can be detected by k-nn algorithm for each point in N,
computing the difference of three-dimension coordinate values between the k neighboring
points and their center point; k vector point to the center point can be obtained, and a local
neighborhood graph can be generated. After that, the local features between the center

k-nn Graph

N
xk

x(
3x

2)

Co
nv

2D

N
xk
x6

4 pooling

N
x3

N
x6

4

EdgeConv

Figure 3. Improved state-embedding module.

Furthermore, the input point cloud will go through an EdgeConv layer. Figure 3b
shows that k neighboring points can be detected by k-nn algorithm for each point in N,

Stats 2023, 6 272

computing the difference of three-dimension coordinate values between the k neighboring
points and their center point; k vector point to the center point can be obtained, and a local
neighborhood graph can be generated. After that, the local features between the center
point and k neighboring points can be extracted by two-dimension convolutional layers.
After pooling in dimension k, N × 64 feature vector is obtained. The subsequent feature
extraction architecture is similar to the ReAgent. Two 1 × 1024 feature vectors concatenate
to a 1 × 2048 and serve as the state vector.

3.3. Heuristic Reward Function in RL

Only training the agent to imitate the expert policy does not guarantee consistently
good performance in different datasets. Thus, ReAgent used RL to fine-tune and improve
the model’s generality. First, as an important evaluation measure, the Chamfer distance
(CD) can be represented by:

CD(X, Y) =
1
|X| ∑

x∈X
min
y∈Y
‖ x− y ‖2

2, (5)

where x ∈ X and y ∈ Y. Note that CD reflects the similarity of two point clouds in terms of
the coordinate differences. In ReAgent, the reward function, denoted by r, is defined based
on CD:

r =

−ε−, CD

(
X′i , X

)
> CD

(
X′i−1, X

)
−ε0, CD

(
X′i , X

)
= CD

(
X′i−1, X

)
ε+, CD

(
X′i , X

)
< CD

(
X′i−1, X

) (6)

where X is the true source point cloud. It is identical to the target point cloud Y, or only
partially overlaps Y. So, X is used to represent the point cloud that needs registration based
on the observed point cloud Xi. Note that, X′i is a point cloud that is observed in step i, and
X′i−1 is the observed point cloud in step i− 1. The penalties

(
ε+, ε0, ε−

)
would be given

depending on the CD at step i compared with the CD at step i − 1. The three penalties
correspond to three reward states: “better”, “same”, and “worse”, respectively. The values
of
(
ε+, ε0, ε−

)
are set to (0.5, 0.1, 0.6) in [6].

If the CD between the current observed point cloud X′i and point cloud X is smaller
than the last step, the transformation of point cloud Xi in current step is considered as a
“better” state, so the positive penalty ε+ would be given. If the CD is larger or the same
as last step, the transformation is considered as “worse” or “same”. In these cases, the
negative penalties −ε− and −ε0 would be given respectively.

At the beginning of registration, there may be a large difference in rotation and
distance between the point cloud Xi and X at the initial position. In the process of iterative
registration by RL, the actions selected by the agent’s policy π(S) in the first few steps may
not reduce the values of CD, even making the CD increase.

Heuristic algorithms, such as simulated annealing that follow time-varying acceptance
rates for new attempts, have been proven to be efficient in achieving global optimum.
Examples of the implementations of heuristic methods in machine learning can be found
in simulated annealing-based mobile sequential recommendation [29–31], stochastic deep
learning [32], and stochastic subsampling RL [33,34].

Inspired by the simulated annealing algorithm, two parameters related to the current
step are introduced to optimize the reward function:

θm = tm · αi (7)

θn = tn · βi (8)

where i is the current step number, and tm, α, tn, β are set according to the experimental
results. Then, the following heuristic reward function is proposed:

Stats 2023, 6 273

r =

−ε− · θm, CD

(
X′i , X

)
> CD

(
X′i−1, X

)
−ε0 · θn, CD

(
X′i , X

)
= CD

(
X′i−1, X

)
ε+ · θm, CD

(
X′i , X

)
< CD

(
X′i−1′X

) (9)

where θm is a growing exponential function, and θn is a decreasing exponential function.
Therefore, in the first few steps, the actions selected by policy π(S) may cause the

values of CD to increase. Given the fact that the penalties of “worse” and “better” are small,
while the penalty of “same” is relatively large, this reward function encourages the agent to
take aggressive movements and avoid staying in the “same” state. In the last few steps, the
penalties of “worse” and “better” states increase, leading to a more careful and accurate
transformation by policy π(S).

4. Experimental Results

This section discusses the results from experiments based on different datasets and
robustness checks.

4.1. Registration on ModelNet40

First, I demonstrate the results from the experiments evaluating the new method,
based on the ModelNet40 dataset. Following the same setting in [6], ModelNet40 has been
split into two parts, the 1–20 categories models and the 21–40 categories. In the experiments,
all models have taken resample, rigid rotation, and translation, so that the source and target
point cloud can be obtained.

Based on imitation learning, the agent would be pre-trained for 50 epochs on the first
20 categories without any noise. Then, based on RL, another 50 epochs are supplied for
fine-tuning the policy on the first 20 categories with some Gaussian noise added.

All experiments are performed under Windows11 operating system, Intel i9-12900k
and 32 GB RAM, and RTX3090ti with the simulation software. We followed the parameters
in [6]. The Proximal Policy Optimization (PPO) is used to update the policy, and the
formulation in [35] can be implemented as used in actor-critic architecture. The PPO loss
and advantage Â are the same as the ReAgent. In the rotation and translation axis, there
are 11 step sizes in each axis, [−0.27, −0.09, −0.03, −0.01, −0.0033, 0, 0.0033, 0.01, 0.03, 0.09,
0.27]. Note that the negative values indicate that the agent would take a transformation
in negative directions of coordinate axes. The learning rate in pretraining by IL is set to
0.001 with halving it in each of the 10 epochs. The learning rate of RL is set to 0.0001. All
the point cloud data would be pretreated according to the ReAgent.

We used several metrics that are commonly used in related work to evaluate performance.
Mean Absolute Error (MAE) is the error between the predicted vector vp and ground

truth vector vgt, and it can be calculated as following:

MAEv =
1
3 ∑

∣∣vp − vgt
∣∣ (10)

where the vector can be a rotation or translation vector to calculate the errors.
Isotropic Error (ISO) only considers the values of rotation and translation matrix to

calculate errors, so the ISO can be obtained as follows:

ISOr = arccos
trace

(
RdR−1

gt − 1
)

2
(11)

ISOt = ‖ Td − Tgt ‖2 (12)

where trace is the sum of the diagonal elements of the matrix; Rd and Td are the rotation
and translation matrix in the end; Rgt and Tgt are ground truths for the point cloud
to transformation.

Stats 2023, 6 274

The Chamfer Distance has been mentioned in the definition of the reward function. A
Modified Chamfer Distance (CD̃) is proposed by Lee and Yew [36]. It is defined as follows:

CD̃ = (Ps, Pt) = CD(Ps, Pt,clean) + CD(Pt, Ps,clean) (13)

where clean means the point cloud with no noise.
Table 1 shows the experimental results on ModelNet40. Due to a different testing envi-

ronment, the results of ReAgent were slightly different from the original paper, while the
main patterns were found consistent. It can be seen that the new method and ReAgent ob-
tained smaller errors of rotation and translation than the DCP-v2 [24] and PointNetLK [23].
Additionally, the errors of the new method are smaller than ReAgent in all 40 categories,
while the running speed of ReAgent is faster. Although the running time of the new
method is slower than ReAgent and DCP-v2, the accuracy of the new method in registra-
tion is better.

Table 1. Registration Results on ModelNet40.

The First 20 Categories The Second 20 Categories
MAE ISO C̃D MAE ISO C̃D T

R T R T ×0.001 R T R T ×0.001 (ms)

DCP-v2 3.876 0.032 7.826 0.071 2.81 4.912 0.038 9.138 0.079 3.95 21
PointNetLK 1.912 0.013 3.826 0.028 1.12 1.853 0.017 3.812 0.032 1.62 42

ReAgent IL + RL 1.783 0.011 3.189 0.024 0.76 1.760 0.011 2.996 0.023 0.99 19
Our method IL + RL 1.588 0.011 3.134 0.024 0.78 1.557 0.010 2.897 0.022 1.00 26

4.2. Robustness Test

To check the robustness of the model when noises exist, the different variance of
Gaussian noise is respectively added to the point cloud, and the noise clipped to 0.05.
Figure 4 shows the models with noise in different σ. The Chamfer Distances (CD̃s) are
calculated based on different results of registration.

Stats 2023, 6, FOR PEER REVIEW 7

= (,) = (, ,) + (, ,) (13)

where means the point cloud with no noise.
Table 1 shows the experimental results on ModelNet40. Due to a different testing

environment, the results of ReAgent were slightly different from the original paper, while
the main patterns were found consistent. It can be seen that the new method and ReAgent
obtained smaller errors of rotation and translation than the DCP-v2 [24] and PointNetLK
[23]. Additionally, the errors of the new method are smaller than ReAgent in all 40 cate-
gories, while the running speed of ReAgent is faster. Although the running time of the
new method is slower than ReAgent and DCP-v2, the accuracy of the new method in reg-
istration is better.

Table 1. Registration Results on ModelNet40.

 The First 20 Categories The Second 20 Categories
 MAE ISO

~
 MAE ISO

~
 T

 R T R T ×0.001 R T R T ×0.001 (ms)
DCP-v2 3.876 0.032 7.826 0.071 2.81 4.912 0.038 9.138 0.079 3.95 21

PointNetLK 1.912 0.013 3.826 0.028 1.12 1.853 0.017 3.812 0.032 1.62 42
ReAgent IL+RL 1.783 0.011 3.189 0.024 0.76 1.760 0.011 2.996 0.023 0.99 19

Our method IL+RL 1.588 0.011 3.134 0.024 0.78 1.557 0.010 2.897 0.022 1.00 26

4.2. Robustness Test
To check the robustness of the model when noises exist, the different variance of

Gaussian noise is respectively added to the point cloud, and the noise clipped to 0.05.
Figure 4 shows the models with noise in different . The Chamfer Distances (s) are
calculated based on different results of registration.

(a) (b) (c) (d)

Figure 4. Examples of point cloud with different variance of Gaussian noise. (a) Model without
noise; (b) = 0.01; (c) = 0.03; (d) = 0.05.

The -noise curve in Figure 5 shows the with different noise magnitudes. It
can be seen that the values of obtained by the new method are consistently smaller
than ReAgent, indicating that the values of the state embedding used some local features
to represent the point cloud, and the heuristic reward function proposed in this paper.
Overall, the results confirm the robustness of the new method under different noise levels.

Figure 4. Examples of point cloud with different variance of Gaussian noise. (a) Model without noise;
(b) σ = 0.01; (c) σ = 0.03; (d) σ = 0.05.

The CD̃-noise curve in Figure 5 shows the CD̃ with different noise magnitudes. It
can be seen that the values of CD̃ obtained by the new method are consistently smaller
than ReAgent, indicating that the values of the state embedding used some local features
to represent the point cloud, and the heuristic reward function proposed in this paper.
Overall, the results confirm the robustness of the new method under different noise levels.

Stats 2023, 6 275
Stats 2023, 6, FOR PEER REVIEW 8

Figure 5. Performance Comparisons under Different Noise Levels.

4.3. Experiment on ScanobjectNN and Other Real-World Data
Experiments have also been conducted based on the ScanObjectNN dataset [37],

which is collected from the depth sensor as the real data. The point clouds are segmented
objects in ScanObjectNN, including 15 categories and 581 models in total, and 2048 points
for each point cloud.

Furthermore, an additional category containing train components was manually col-
lected (see [38]). Figure 6 shows 8 component point clouds such as traction rods, bolts,
and wheelsets. They also have 2048 points with some noise after resampling. So, there are
16 categories and 589 point cloud models in the evaluated dataset.

Figure 6. The train component point cloud.

Figure 7 shows the process of registration in train component wheelsets; the source
point cloud (red) is transformed into the target point cloud (blue) step by step. The green
point cloud represents the initial position of the source point cloud. Figure 7a demon-
strates the results based on the ReAgent registration, and Figure 7b shows the results
based on the newly proposed method. As can be seen, ReAgent results are unstable. It
transforms after two point clouds overlapped at step 7 and the final step. Compared with
ReAgent, the new method was designed to transform more and more conservatively over
time, hence led to a stabilized overlapping result.

(a) ReAgent

Figure 5. Performance Comparisons under Different Noise Levels.

4.3. Experiment on ScanobjectNN and Other Real-World Data

Experiments have also been conducted based on the ScanObjectNN dataset [37], which
is collected from the depth sensor as the real data. The point clouds are segmented objects
in ScanObjectNN, including 15 categories and 581 models in total, and 2048 points for each
point cloud.

Furthermore, an additional category containing train components was manually
collected (see [38]). Figure 6 shows 8 component point clouds such as traction rods, bolts,
and wheelsets. They also have 2048 points with some noise after resampling. So, there are
16 categories and 589 point cloud models in the evaluated dataset.

Stats 2023, 6, FOR PEER REVIEW 8

Figure 5. Performance Comparisons under Different Noise Levels.

4.3. Experiment on ScanobjectNN and Other Real-World Data
Experiments have also been conducted based on the ScanObjectNN dataset [37],

which is collected from the depth sensor as the real data. The point clouds are segmented
objects in ScanObjectNN, including 15 categories and 581 models in total, and 2048 points
for each point cloud.

Furthermore, an additional category containing train components was manually col-
lected (see [38]). Figure 6 shows 8 component point clouds such as traction rods, bolts,
and wheelsets. They also have 2048 points with some noise after resampling. So, there are
16 categories and 589 point cloud models in the evaluated dataset.

Figure 6. The train component point cloud.

Figure 7 shows the process of registration in train component wheelsets; the source
point cloud (red) is transformed into the target point cloud (blue) step by step. The green
point cloud represents the initial position of the source point cloud. Figure 7a demon-
strates the results based on the ReAgent registration, and Figure 7b shows the results
based on the newly proposed method. As can be seen, ReAgent results are unstable. It
transforms after two point clouds overlapped at step 7 and the final step. Compared with
ReAgent, the new method was designed to transform more and more conservatively over
time, hence led to a stabilized overlapping result.

(a) ReAgent

Figure 6. The train component point cloud.

Figure 7 shows the process of registration in train component wheelsets; the source
point cloud (red) is transformed into the target point cloud (blue) step by step. The green
point cloud represents the initial position of the source point cloud. Figure 7a demonstrates
the results based on the ReAgent registration, and Figure 7b shows the results based on the
newly proposed method. As can be seen, ReAgent results are unstable. It transforms after
two point clouds overlapped at step 7 and the final step. Compared with ReAgent, the new
method was designed to transform more and more conservatively over time, hence led to a
stabilized overlapping result.

Stats 2023, 6 276

Stats 2023, 6, FOR PEER REVIEW 8

Figure 5. Performance Comparisons under Different Noise Levels.

4.3. Experiment on ScanobjectNN and Other Real-World Data
Experiments have also been conducted based on the ScanObjectNN dataset [37],

which is collected from the depth sensor as the real data. The point clouds are segmented
objects in ScanObjectNN, including 15 categories and 581 models in total, and 2048 points
for each point cloud.

Furthermore, an additional category containing train components was manually col-
lected (see [38]). Figure 6 shows 8 component point clouds such as traction rods, bolts,
and wheelsets. They also have 2048 points with some noise after resampling. So, there are
16 categories and 589 point cloud models in the evaluated dataset.

Figure 6. The train component point cloud.

Figure 7 shows the process of registration in train component wheelsets; the source
point cloud (red) is transformed into the target point cloud (blue) step by step. The green
point cloud represents the initial position of the source point cloud. Figure 7a demon-
strates the results based on the ReAgent registration, and Figure 7b shows the results
based on the newly proposed method. As can be seen, ReAgent results are unstable. It
transforms after two point clouds overlapped at step 7 and the final step. Compared with
ReAgent, the new method was designed to transform more and more conservatively over
time, hence led to a stabilized overlapping result.

(a) ReAgent

Stats 2023, 6, FOR PEER REVIEW 9

(b) The proposed method

Figure 7. Example of component registration (initial position, step 1, step 7, and the final step).

As reported in Table 2, the errors of the new method are consistently smaller than
DCP-v2, PointNetLK, and ReAgent. Importantly, the running time of the new method did
not have significant changes compared with the running time in the ModelNet40-related
experiments. It shows that the methods can be applied to practical applications on real-
world data.

Table 2. Results on ScanObjectNN and train component.

 MAE ISO
~

 T
 R T R T ×0.001 ms

DCP-v2 8.760 0.081 17.320 0.163 5.08 53
PointNetLK 1.321 0.015 2.314 0.030 1.62 46

ReAgent IL+RL 1.449 0.012 2.789 0.025 0.75 22
Our method IL+RL 1.153 0.012 2.276 0.022 0.68 27

5. Discussion and Conclusion
Despite the overall outperformance of the new method which has been confirmed,

there are two limitations that may lead to additional improvements in future work. First,
since the EdgeConv has been used in embedding layers, the extraction of local features
required an increasing computational complexity. Second, and related to the cur-
rent step in the reward optimization were determined based on a series of experimental
results. To address these two limitations, simplified but efficient embedding layers may
be investigated so that the computing cost and the embedding effectiveness can be better
balanced. Additionally, implementing the optimization process with parallel computing
and high-performance computing techniques is also a possible research direction to en-
hance the computing efficiency while remaining the embedding quality. Furthermore, re-
garding the parameters, an adaptive time-dependent searching strategy may be devel-
oped for a more powerful optimization of the registration.

In conclusion, this paper introduces a point cloud registration method via heuristic
reward reinforcement learning. An improved state-embedding module is also proposed
to extract more local features about related positions from point to point. The heuristic
reward function follows a time-dependent searching strategy, which allows aggressive
attempts at the beginning and tends to be conservative in the end. The new method is
evaluated on ModelNet40, ScanObjectNN, and additional real-world data, and the results
confirm the improvements in terms of multiple evaluation metrics.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The ModelNet40 and ScanObjectNN are publicly available. Mod-
elNet40 can be downloaded here: https://modelnet.cs.princeton.edu/, (accessed on 11 January 2023);
The ScanObjectNN can be downloaded here: https://hkust-vgd.github.io/scanobjectnn/, (accessed
on 11 January 2023).

Conflicts of Interest: The author declares no conflict of interest.

Figure 7. Example of component registration (initial position, step 1, step 7, and the final step).

As reported in Table 2, the errors of the new method are consistently smaller than
DCP-v2, PointNetLK, and ReAgent. Importantly, the running time of the new method
did not have significant changes compared with the running time in the ModelNet40-
related experiments. It shows that the methods can be applied to practical applications on
real-world data.

Table 2. Results on ScanObjectNN and train component.

MAE ISO C̃D T
R T R T ×0.001 ms

DCP-v2 8.760 0.081 17.320 0.163 5.08 53
PointNetLK 1.321 0.015 2.314 0.030 1.62 46

ReAgent IL + RL 1.449 0.012 2.789 0.025 0.75 22
Our method IL + RL 1.153 0.012 2.276 0.022 0.68 27

5. Discussion and Conclusions

Despite the overall outperformance of the new method which has been confirmed,
there are two limitations that may lead to additional improvements in future work. First,
since the EdgeConv has been used in embedding layers, the extraction of local features
required an increasing computational complexity. Second, θm and θn related to the cur-
rent step in the reward optimization were determined based on a series of experimental
results. To address these two limitations, simplified but efficient embedding layers may be
investigated so that the computing cost and the embedding effectiveness can be better bal-
anced. Additionally, implementing the optimization process with parallel computing and
high-performance computing techniques is also a possible research direction to enhance
the computing efficiency while remaining the embedding quality. Furthermore, regarding
the parameters, an adaptive time-dependent searching strategy may be developed for a
more powerful optimization of the registration.

In conclusion, this paper introduces a point cloud registration method via heuristic
reward reinforcement learning. An improved state-embedding module is also proposed to
extract more local features about related positions from point to point. The heuristic reward
function follows a time-dependent searching strategy, which allows aggressive attempts at
the beginning and tends to be conservative in the end. The new method is evaluated on
ModelNet40, ScanObjectNN, and additional real-world data, and the results confirm the
improvements in terms of multiple evaluation metrics.

Stats 2023, 6 277

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The ModelNet40 and ScanObjectNN are publicly available. Model-
Net40 can be downloaded here: https://modelnet.cs.princeton.edu/, (accessed on 11 January 2023);
The ScanObjectNN can be downloaded here: https://hkust-vgd.github.io/scanobjectnn/, (accessed
on 11 January 2023).

Conflicts of Interest: The author declares no conflict of interest.

References
1. Li, H.; Hartley, R. The 3D-3D registration problem revisited. In Proceedings of the 2007 IEEE 11th International Conference on

Computer Vision, Rio De Janeiro, Brazil, 14–21 October 2007; pp. 1–8.
2. Rusu, R.B.; Blodow, N.; Beetz, M. Fast point feature histograms (FPFH) for 3D registration. In Proceedings of the 2009 IEEE

International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3212–3217.
3. Magnusson, M.; Lilienthal, A.; Duckett, T. Scan registration for autonomous mining vehicles using 3D-NDT. J. Field Robot. 2007,

24, 803–827. [CrossRef]
4. Yang, B.; Zang, Y. Automated registration of dense terrestrial laser-scanning point clouds using curves. ISPRS J. Photogramm.

Remote Sens. 2014, 95, 109–121. [CrossRef]
5. He, B.; Lin, Z.; Li, Y.F. An automatic registration algorithm for the scattered point clouds based on the curvature feature. Opt.

Laser Technol. 2013, 46, 53–60. [CrossRef]
6. Bauer, D.; Patten, T.; Vincze, M. Reagent: Point cloud registration using imitation and reinforcement learning. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14586–14594.
7. Rusu, R.B.; Blodow, N.; Marton, Z.C.; Beetz, M. Aligning point cloud views using persistent feature histograms. In Proceed-

ings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008;
pp. 3384–3391.

8. Johnson, A.E. Spin-Images: A Representation for 3-D Surface Matching. Ph.D. Thesis, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, USA, 1997.

9. Tombari, F.; Salti, S.; Stefano, L.D. Unique signatures of histograms for local surface description. In European Conference on
Computer Vision; Springer: Berlin/Heidelberg, Germany, 2010; pp. 356–369.

10. Oomori, S.; Nishida, T.; Kurogi, S. Point cloud matching using singular value decomposition. Artif. Life Robot. 2016, 21, 149–154.
[CrossRef]

11. Taati, B.; Greenspan, M. Local shape descriptor selection for object recognition in range data. Comput. Vis. Image Underst. 2011,
115, 681–694. [CrossRef]

12. Papazov, C.; Haddadin, S.; Parusel, S.; Krieger, K.; Burschka, D. Rigid 3D geometry matching for grasping of known objects in
cluttered scenes. Int. J. Robot. Res. 2012, 31, 538–553. [CrossRef]

13. Hong, S.; Ko, H.; Kim, J. VICP: Velocity updating iterative closest point algorithm. In Proceedings of the 2010 IEEE International
Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 1893–1898.

14. Yang, J.; Li, H.; Jia, Y. Go-icp: Solving 3d registration efficiently and globally optimally. In Proceedings of the IEEE International
Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 1457–1464.

15. Censi, A. An ICP variant using a point-to-line metric. In Proceedings of the 2008 IEEE International Conference on Robotics and
Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 19–25.

16. Aiger, D.; Mitra, N.J.; Cohen-Or, D. 4-points congruent sets for robust pairwise surface registration. In ACM SIGGRAPH 2008
Papers; ACM: New York, NY, USA, 2008; pp. 1–10.

17. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.

18. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings
of the 31st Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017;
Volume 30.

19. Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. Pointcnn: Convolution on x-transformed points. In Proceedings of the 32nd
Conference on Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 2–8 December 2018; Volume 31.

20. Wu, W.; Qi, Z.; Fuxin, L. Pointconv: Deep convolutional networks on 3d point clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9621–9630.

21. Liu, Y.; Fan, B.; Xiang, S.; Pan, C. Relation-shape convolutional neural network for point cloud analysis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8895–8904.

22. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds. ACM
Trans. Graph. 2019, 38, 1–12. [CrossRef]

https://modelnet.cs.princeton.edu/
https://hkust-vgd.github.io/scanobjectnn/
http://doi.org/10.1002/rob.20204
http://doi.org/10.1016/j.isprsjprs.2014.05.012
http://doi.org/10.1016/j.optlastec.2012.04.027
http://doi.org/10.1007/s10015-016-0265-x
http://doi.org/10.1016/j.cviu.2010.11.021
http://doi.org/10.1177/0278364911436019
http://doi.org/10.1145/3326362

Stats 2023, 6 278

23. Aoki, Y.; Goforth, H.; Srivatsan, R.A.; Lucey, S. Pointnetlk: Robust & efficient point cloud registration using pointnet. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 7163–7172.

24. Wang, Y.; Solomon, J.M. Deep closest point: Learning representations for point cloud registration. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3523–3532.

25. Zhu, T.; Ma, M.H. Deriving the Optimal Strategy for the Two Dice Pig Game via Reinforcement Learning. Stats 2022, 5, 805–818.
[CrossRef]

26. Zhu, T.; Zhu, W. Quantitative trading through random perturbation Q-network with nonlinear transaction costs. Stats 2022, 5,
546–560. [CrossRef]

27. Liao, R.; Miao, S.; de Tournemire, P.; Grbic, S.; Kamen, A.; Mansi, T.; Comaniciu, D. An artificial agent for robust image registration.
In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31.

28. Ma, K.; Wang, J.; Singh, V.; Tamersoy, B.; Chang, Y.J.; Wimmer, A.; Chen, T. Multimodal image registration with deep context
reinforcement learning. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham,
Switzerland, 2017; pp. 240–248.

29. Ye, Z.; Xiao, K.; Ge, Y.; Deng, Y. Applying simulated annealing and parallel computing to the mobile sequential recommendation.
IEEE Trans. Knowl. Data Eng. 2018, 31, 243–256. [CrossRef]

30. Ye, Z.; Xiao, K.; Deng, Y. A unified theory of the mobile sequential recommendation problem. In Proceedings of the 2018
IEEE International Conference on Data Mining (ICDM), Singapore, 17–20 November 2018; IEEE: New York, NY, USA, 2018;
pp. 1380–1385.

31. Xiao, K.; Ye, Z.; Zhang, L.; Zhou, W.; Ge, Y.; Deng, Y. Multi-user mobile sequential recommendation for route optimization. ACM
Trans. Knowl. Discov. Data 2020, 14, 1–28. [CrossRef]

32. Guo, P.; Ye, Z.; Xiao, K.; Zhu, W. Weighted aggregating stochastic gradient descent for parallel deep learning. IEEE Trans. Knowl.
Data Eng. 2022, 34, 5037–5050. [CrossRef]

33. Guo, P.; Xiao, K.; Ye, Z.; Zhu, H.; Zhu, W. Intelligent career planning via stochastic subsampling reinforcement learning. Sci. Rep.
2022, 12, 1–16. [CrossRef] [PubMed]

34. Guo, P.; Xiao, K.; Ye, Z.; Zhu, W. Route optimization via environment-aware deep network and reinforcement learning. ACM
Trans. Intell. Syst. Technol. 2021, 12, 1–21. [CrossRef]

35. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

36. Yew, Z.J.; Lee, G.H. Rpm-net: Robust point matching using learned features. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11824–11833.

37. Uy, M.A.; Pham, Q.H.; Hua, B.S.; Nguyen, T.; Yeung, S.K. Revisiting point cloud classification: A new benchmark dataset and
classification model on real-world data. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul,
Republic of Korea, 27 October–2 November 2019; pp. 1588–1597.

38. Li, J.; Chen, B.; Yuan, M.; Zhao, Q.; Luo, L.; Gao, X. Matching Algorithm for 3D Point Cloud Recognition and Registration Based
on Multi-Statistics Histogram Descriptors. Sensors 2022, 22, 417. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/stats5030047
http://doi.org/10.3390/stats5020033
http://doi.org/10.1109/TKDE.2018.2827047
http://doi.org/10.1145/3360048
http://doi.org/10.1109/TKDE.2020.3047894
http://doi.org/10.1038/s41598-022-11872-8
http://www.ncbi.nlm.nih.gov/pubmed/35585154
http://doi.org/10.1145/3461645
http://doi.org/10.3390/s22020417
http://www.ncbi.nlm.nih.gov/pubmed/35062378

	Introduction
	Related Work
	Methodology
	Point Cloud Registration Network and ReAgent
	Feature Extraction and an Improved State-Embedding Module
	Heuristic Reward Function in RL

	Experimental Results
	Registration on ModelNet40
	Robustness Test
	Experiment on ScanobjectNN and Other Real-World Data

	Discussion and Conclusions
	References

