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Abstract: Many population-based surveys have binary responses from a large number of individuals
in each household within small areas. One example is the Nepal Living Standards Survey (NLSS II),
in which health status binary data (good versus poor) for each individual from sampled households
(sub-areas) are available in the sampled wards (small areas). To make an inference for the finite
population proportion of individuals in each household, we use the sub-area logistic regression
model with reliable auxiliary information. The contribution of this model is twofold. First, we
extend an area-level model to a sub-area level model. Second, because there are numerous sub-areas,
standard Markov chain Monte Carlo (MCMC) methods to find the joint posterior density are very
time-consuming. Therefore, we provide a sampling-based method, the integrated nested normal
approximation (INNA), which permits fast computation. Our main goal is to describe this hierarchical
Bayesian logistic regression model and to show that the computation is much faster than the exact
MCMC method and also reasonably accurate. The performance of our method is studied by using
NLSS II data. Our model can borrow strength from both areas and sub-areas to obtain more efficient
and precise estimates. The hierarchical structure of our model captures the variation in the binary
data reasonably well.

Keywords: hierarchical Bayesian model; integrated nested normal approximation; MCMC; metropolis
sampler; numerical integration; parallel computing

1. Introduction

The Nepal Living Standard Survey (NLSS) II (see [1]) is a two-stage stratified sampling.
A random sample of wards (areas) were selected from six strata and 12 households (sub-
areas) were selected from each sampled ward. All individuals in each sampled household
were interviewed. One interest is on health status, a binary variable. To make smooth
estimates of the finite population proportion of the individuals with good health in each
household, we focus on hierarchical Bayesian (HB) models with sub-area random effects
to obtain reliable “indirect” estimates for numerous small areas or sub-areas. Most of the
sample surveys are designed to provide reliable “direct” estimates of interests for large
areas or domains (e.g., state level, national level). However, direct estimates are not reliable
for areas or domains for which only small samples or no samples are available—see [2].

In many applications, some areas, e.g., states and wards, are sampled; in each sampled
area, a sample of sub-areas, e.g., counties and households, is further selected. Ref. [3]
proposed a one-fold hierarchical Bayesian logistic regression model and applied the model
to NLSS II data. The main objective is to make an inference for the finite population
proportion of individuals with a specific character for each area. However, the one-fold
model ignores the sub-area level structure in the data. As an extension of [3], we are
particularly interested in small area models that can capture the hierarchical structure of
the NLSS II data in this paper. Although the one-fold basic models are very popular and
in common use in producing reliable estimates, the hierarchical structure of the data and
the consistency between the estimates for different levels may not hold. In particular, the
sampling designs of many population-based surveys were two-stage stratified sampling as
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NLSS II. But if we use a one-fold unit level model to fit the data, the sub-area level effects
will have been ignored. Ref. [4] studied the case that the data follow a normal model
with a two-stage (three-stage) hierarchical structure, while the fitted model has a one-stage
(two-stage) hierarchical structure using posterior predictive p-values. Ref. [5] discussed
the ability to detect a three-stage model when a two-stage model is actually fitted.

Two-fold models are an important extension of basic small area models. Many authors
have considered the problems and proposed these kinds of models. Much of the literature
focuses on continuous data. Ref. [6] proposed a sub-area level model which provides
model-based estimates that account for the hierarchical structure of data. Two-fold sub-area
level models were studied by [2,7–9], and many others. This type of model is an area-level
model which extends the Fay-Harriot model (see [10]) to the sub-area level. Two-fold nested
error regression models were considered by [11,12]. On the other hand, some literature
focus on the categorical data. Ref. [13] described a HB model to make an inference about
the finite population proportion under two-stage clustering sampling. Ref. [14] extended
the Beta-Binomial model to the two-fold model and used Gibbs sampling to obtain the
posterior estimates. Ref. [15] showed that the two-fold Beta-Binomial model is preferable
over the one-fold one if the data have a hierarchical structure. Ref. [16] extended [15]
to accommodate heterogeneous correlations. They used a HB model to make a posterior
inference about the finite population proportion of each area, accounting for intracluster
correlations. Ref. [17] discussed the sub-area Beta-Binomial model and applied the model to
estimate the finite population proportion of healthy individuals in each household covered
by the NLSS II, assuming no covariate was available.

Bayesian logistic regression models with random effects are suitable for handling
binary data with covariates. Ref. [18] discussed discrimination between the logit and the
complementary log-log link functions by using the logistic regression model. Roberts,
Ref. [19], discussed logistic regression for the sample survey data (not small area esti-
mation). Ref. [20] showed how to accelerate the Gibbs sampler for a model with latent
variables introduced earlier by [21] for Bayesian probit analysis. Ref. [22], discussed the
logistic regression model by using the empirical Bayesian approach. Ref. [23] showed
how to analyze binary data with covariates to maintain conjugacy for both the logistic and
Poisson regression models. The analysis of binary data with covariates under nonignorable
nonresponse was discussed by [24]. Ref. [3] proposed a hierarchical Bayesian logistic
regression model for binary data in a small area estimation. This model is a unit level
model without a sub-area effect. Our two-fold sub-area model is an extension of this
logistic regression model. We add the sub-area level random effect into the model which
can capture the hierarchical structure of the sampled data. At the same time, we add more
hyper-parameters into the model, which make the inference more complicated. However,
we propose an approximation method called the integrated nested normal approximation
(INNA), which solves the difficulties.

The other side of our application is that there are numerous small areas (households
and individuals) and MCMC methods, which involve complicated integrals, and cannot
handle them efficiently. “Big data” are defined as data that are too big to comfortably pro-
cess on a single machine [25]. The researchers considered consensus Monte Carlo methods
that split the data across several machines. They proposed algorithms that perform dis-
tributed approximate Bayesian analyses in order to minimize the communication between
computers. The parallel MCMC methods for non-Gaussian posterior distributions were
discussed by [26]. Fortunately, in survey sampling, the design generally uses a stratification
which is not artificial, and, in this case, consensus Monte Carlo may not be needed; it will
be a good idea for a large stratum.

The integration involved in Bayesian inference is usually intractable, which is true for
our logistic regression model. The approximation techniques are desired. The procedure
we used to approximate the posterior density of the parameters of the logistic regression
sub-area model, INNA, is similar to the integrated nested Laplace approximation (INLA)
originally proposed by [27], but they are actually different. INLA is a quite popular algo-
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rithm and an alternative to MCMC for big data analysis if the joint posterior density is very
complicated. It requires posterior modes, and, for numerous small areas, the computation
of modes becomes time-consuming and challenging for the logistic regression model or
any generalized linear mixed models. Yet, INLA has found many useful applications,
such as in Poisson regression by [28], and in spatial point pattern data by [29]. We note
that INLA can be problematic, especially for logistic and Poisson hierarchical regression
models, even if the modes can be computed. Ref. [30], attempted to improve INLA using
a copula-based correction, which adds complexity to INLA. Our approximation method,
INNA, which does not require finding posterior modes, uses a sampling-based procedure
accommodated by the multiplication rule of probability. Instead of finding the posterior
modes, INNA finds the approximate modes in closed form, facilitated by the empirical
logistic transform ([31]) and the second-order Taylor series approximation.

On the other hand, two-fold models can capture the heterogeneity between samples
within not only areas but also sub-areas. Many model-based estimation techniques for
the sampling variances have been considered in the literature, but most of them for the
area-level model: see [32–34].

In Section 2, a full description of a sub-area HB logistic regression model is given. In
Section 3, we describe the integrated nested normal approximation (INNA) computation
method and some theoretical results are provided. The exact MCMC method is presented
in Appendix A. The exact method refers to MCMC methods without further approximation.
In Section 4, we apply the model to the NLSS II data to provide smoothed estimates of
the household proportions of members in good health for both sampled and nonsampled
households. Some comparisons between INNA and the exact method are presented. Finally,
in Section 5, we make concluding remarks and discuss the future work.

2. Sub-Area Logistic Regression Model

In this section, we discuss the sub-area HB logistic regression model at the unit level. In
the NLSS II data, we have binary data (good health versus poor health) for each individual
within a household, and these households are within wards. The observations are available
at the unit level and so is the reliable auxiliary information. However, the model and
method we proposed for small areas and sub-areas is not only for this application on NLSS
II data. It can be also applied to other population-based surveys with binary responses
which contain small areas or/and sub-areas.

Suppose that there are L small areas (wards) in the finite population and that, within
the ith area, there are Ni sub-areas (households). Within the jth sub-area, there are Mij
individuals. We assume that `(< L) areas are sampled and a simple random sample of
ni(< Ni) households is taken from the ith area. All individuals in the sampled households
are sampled. Here, we assume the survey weights are the same within all households in
each area. Actually, the design is almost self-weighting.

Let yijk, k = 1, . . . , mij, j = 1, . . . , ni, i = 1, . . . . . . , ` denote the binary responses.

Let
˜
y = (yijk, k = 1, . . . , mij, j = 1, . . . , ni, i = 1, . . . . . . , `)′. Let yij = ∑

mij
k=1 yijk be the

number with response 1 and mij be the total number of people who responded. Let

˜
xijk = (1, xijk1, . . . , xijkp)

′ be the (p + 1) vector with p covariates for individuals and an
intercept.

We use P to represent the population proportion and p as the sample proportion. Let
pij be the corresponding sample probability of yij, j = 1, . . . , ni, i = 1, . . . , `.

The primary interests are the finite population proportions of the households, which

are Pij =
1

Mij
∑

Mij
k=1 yijk, j = 1, . . . , Ni, i = 1, .. . . . , ` and the finite population proportions of

the areas, which are Pi =
1
Ni

∑Ni
j=1 ∑

Mij
k=1 yijk, i = 1, . . . . . . , `.
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In the content of the logistic regression model, the two-fold hierarchical Bayesian
logistic regression model for the sub-area means, µij, is

yijk|
˜
β, νi, µij

ind∼ Bernoulli

{
e˜

x′ijk
˜
β+νi+µij

1 + e˜
x′ijk

˜
β+νi+µij

}
, k = 1, . . . , mij,

µij|σ2 iid∼ Normal(0, σ2), j = 1, . . . , ni, (1)

νi|δ2 iid∼ Normal(0, δ2), i = 1, . . . , `,

π(
˜
β, δ2, σ2) ∝

1
(1 + δ2)2

1
(1 + σ2)2 , δ2 > 0, σ2 > 0.

Here, µij, i = 1, . . . , `; j = 1, . . . , ni are the sub-area level random effects, which
are not in the area-level model in [3]. νi, i = 1, . . . , ` are the area random effects and

˜
β = (β0, β1, . . . , βp)′ are the regression coefficients, with σ2, δ2 as the variance of the
random effects, respectively.

In order to apply our approximation method and make an inference for posterior
distribution, we use an equivalent model.

First, we separate
˜
β into β0 and

˜
β(0), where

˜
β(0) = (β1, β2, . . . , βp)T . We set β0 as the

mean of
˜
ν, and then we can omit the intercept term from the covariate

˜
xijk. Second, we

introduce a new parameter, wij = νi + µij, in order to set νi and µij independently and
make it easy to make an inference for both of them. We have

yijk|wij,
˜
β(0)

ind∼ Bernoulli

{
e˜

x′ijk
˜
β(0)+wij

1 + e˜
x′ijk

˜
β(0)+wij

}
, k = 1, . . . , mij,

wij|νi, σ2 ind∼ Normal(νi, σ2), j = 1, . . . , ni, (2)

νi|β0, δ2 iid∼ Normal(β0, δ2), i = 1, . . . , `,

π(
˜
β, δ2, σ2) ∝

1
(1 + δ2)2

1
(1 + σ2)2 , δ2 > 0, σ2 > 0.

The joint posterior density for the parameters is

π(
˜
v,

˜
w,

˜
β, σ2, δ2|

˜
y) ∝

`

∏
i=1

ni

∏
j=1

mij

∏
k=1

[
e(˜

x′ijk
˜
β(0)+wij)yijk

1 + e˜
x′ijk

˜
β(0)+wij

]
×
( 1√

2πσ2

)n
exp

{
−

l

∑
i=1

ni

∑
j=1

(wij − νi)
2

2σ2

}

×
( 1√

2πδ2

)l
exp

{
−

l

∑
i=1

(νi − β0)
2

2δ2

}
1

(1 + σ2)2
1

(1 + δ2)2 . (3)

The posterior density is a non-standard multivariate density, and there are difficulties
in fitting it using MCMC methods, more so when ni, mij are large. This motivates our
approximate methods.

3. Integrated Nested Normal Approximation Method

In this section, we discuss the INNA method for the sub-area HB logistic regression
model. It is an extension of the INNA method in [3]. INNA method is not required to find
the posterior modes. Due to the large amount of sub-areas, it would be time-consuming to
find all posterior modes, which is why we did not choose the popular INLA method. In
detail, we discuss the approximation of the joint posterior density (3).

Notice that the joint posterior density (3) is very complicated and it is the expit part,
`

∏
i=1

ni
∏
j=1

mij

∏
k=1

[
e
(
˜
x′ijk ˜

β(0)+wij)yijk

1+e˜
x′ijk ˜

β(0)+wij

]
, that causes the difficulties. In the following, we discuss how to



Stats 2023, 6 213

approximate this term to normal density functions by using Laplace approximation, the
second-order multivariate Taylor-series approximation and the empirical logistic transform
(ELT). This is the key contribution in the paper. Then we use the multiplication rule to
approximate the joint posterior density,

πa(
˜
w,

˜
ν,

˜
β, σ2, δ2 |

˜
y) ∝ πa(

˜
w |

˜
ν,

˜
β(0), σ2,

˜
y)πa(

˜
ν | β0, δ2,

˜
y)πa(

˜
β(0) |

˜
y)πa(

˜
β, σ2, δ2 |

˜
y),

where the first three densities on the right-hand side are all multivariate normal densi-
ties. Therefore, we can draw samples and make inference through the approximate joint
posterior density.

Let f (
˜
τ) = eh(

˜
τ) denote the density of a vector of parameters

˜
τ. Let

˜
g denote the

gradient vector and H the Hessian matrix at some point
˜
τ∗.

Lemma 1. Let h(
˜
τ) be a logconcave density function with the parameter

˜
τ. Then,

˜
τ approximately

has a multivariate normal distribution,

˜
τ ∼ Normal(

˜
τ∗ − H−1

˜
g,−H−1).

Proof. Simply applying the second-order multivariate Taylor series of h(
˜
τ) at

˜
τ∗ gives

f (
˜
τ) ≈ f (

˜
τ∗) + (

˜
τ −

˜
τ∗)′

˜
g +

1
2
(
˜
τ −

˜
τ∗)′H(

˜
τ −

˜
τ∗).

Due to the logconcavity of h(
˜
τ), its Hessian Matrix −H is posit-definite, which can be the

covariance matrix. Notice that we are not required to use the mode of h(
˜
τ). We do not need to

find the solution of the gradient vector
˜
g = 0. Therefore,

˜
τ∗ does not have to be the solution but

some other point. It is worth noticing that the term, −H−1

˜
g, is a correction to

˜
τ∗.

To illustrate the approximation steps, we start with a simpler model with flat priors
for

˜
β(0) and the

˜
w, according to model (2). That is,

yijk|wij,
˜
β(0)

ind∼ Bernoulli

{
e˜

x′
˜
β(0)+wij

1 + e˜
x′ijk

˜
β(0)+wij

}
, k = 1, . . . , mij, j = 1, . . . , ni, i = 1, . . . , `,

p(
˜
w,

˜
β(0)) = 1. (4)

The joint posterior density is

π(
˜
w,

˜
β(0)|

˜
y) ∝

`

∏
i=1

ni

∏
j=1

mij

∏
k=1

{
e(˜

x′ijk
˜
β(0)+wij)yijk

1 + e˜
x′ijk

˜
β(0)+wij

}
. (5)

The logarithm of the joint posterior density (or log likelihood) is

∆ = h(
˜
τ) =

`

∑
i=1

ni

∑
j=1

mij

∑
k=1

{
(
˜
x′ijk

˜
β(0) + wij)yijk − log(1 + e˜

x′ijk
˜
β(0)+wij)

}
.

Let
˜
τ′ = (

˜
µ′,

˜
β′(0)). In our method, we find a convenient point to expand the log-

likelihood in a second-order multivariate Taylor-series expansion.
To begin with, let ȳij =

1
mij

∑
mij
k=1 yijk. We use the empirical logistic transform zij to get

an estimate of wij, where

ŵ∗ij = zij = log

 ȳij +
1

2mij

1− ȳij +
1

2mij

, i = 1, . . . , `; j = 1, . . . , ni.
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First, we discuss how to find the quasi mode of
˜
β(0). We plug ŵ∗ij into the log likelihood

function ∆ and consider it as a function of
˜
β(0) only as q(

˜
β(0)) , and we get

q(
˜
β(0)) =

`

∑
i=1

ni

∑
j=1

mij

∑
k=1

[
(
˜
x′ijk

˜
β(0) + ŵ∗ij)yijk − log(1 + e˜

x′ijk
˜
β(0)+ŵ∗ij)

]
.

The first derivative of q(
˜
β(0)) is

q′(
˜
β(0)) =

`

∑
i=1

ni

∑
j=1

mij

∑
k=1

˜
xijkyijk − ˜

xijke(˜
x′ijk

˜
β(0)+ŵ∗ij)

1 + e˜
x′ijk

˜
β(0)+ŵ∗ij


=

`

∑
i=1

ni

∑
j=1

mij

∑
k=1

{
˜
xijkyijk − ˜

xijk
[
1 + e−(˜

x′ijk
˜
β(0)+ŵ∗ij)

]−1
}

.

Usually we should set q′(
˜
β(0)) equal to zero and find the modes as the maximum

likelihood estimator (MLE) of
˜
β(0). But here, it is not easy to solve the equation due to

the complexity of q′(
˜
β(0)). We use the first-order Taylor series to approximate it and then

simplify q′(
˜
β(0)) so that we can get quasi-modes of

˜
β(0).

The first-order Taylor expansion of (1 + e˜
x′ijk

˜
β(0)+ŵ∗ij)−1 equals (1 − e−(˜

x′ijk
˜
β(0)+ŵ∗ij)).

Notice that by Taylor series, e−(˜
x′ijk

˜
β(0)+ŵ∗ij) ≈ 1− (

˜
x′ijk

˜
β(0) + ŵ∗ij). Then we can get

q′(
˜
β(0)) ≈

`

∑
i=1

ni

∑
j=1

mij

∑
k=1

{
˜
xijkyijk − ˜

xijk
[
(1− e˜

x′ijk
˜
β(0)+ŵ∗ij)

]}

≈
`

∑
i=1

ni

∑
j=1

mij

∑
k=1

{
˜
xijkyijk − ˜

xijk
[
(1− 1 + (

˜
x′ijk

˜
β(0) + ŵ∗ij))

]}

=
`

∑
i=1

ni

∑
j=1

mij

∑
k=1

{
˜
xijk(yijk − ŵ∗ij)− ˜

xijk ˜
x′ijk

˜
β(0)

}
.

We can get the quasi-modes of
˜
β(0) by solving the equation q′(

˜
β(0)) = 0. That is,

˜
β∗(0) = [

`

∑
i=1

ni

∑
j=1

mij

∑
k=1 ˜

xijk ˜
x′ijk]

−1[
`

∑
i=1

ni

∑
j=1

mij

∑
k=1 ˜

xijk(yijk − ŵ∗ij)].

Second, we obtain quasi-modes for the wij, a refinement of the zi. Plug
˜
β∗(0) into the

likelihood function ∆ and consider it as function wij only:

g(wij) =

mij

∑
k=1

[
(
˜
x′ijk

˜
β∗(0) + wij)yijk − log(1 + e˜

x′ijk
˜
β(0)∗+wij)

]
.

Similarly, after applying Taylor expansion, we get the approximate first derivative
of g(wij)

g′(wij) =

mij

∑
k=1

{
yijk −

[
1 + e−(˜

x′ijk
˜
β∗
(0)+wij)

]−1
}

≈
mij

∑
k=1

{
yijk −

(
1− e−wij e−˜

x′ijk
˜
β∗
(0)
)}

.



Stats 2023, 6 215

We can obtain the approximate posterior mode of wij by solving the equation g′(wij) = 0.

w∗ij = log

∑
mij
k=1 e−˜

x′ijk
˜
β∗
(0)

mij(1− ȳij)

.

Notice that the term 1− ȳij in denominator may cause trouble if ȳij = 1 for some is
and js. Here, we borrow the idea from ELT and make a small adjustment in order to avoid
a zero denominator. That is,

w∗ij ≈ log

 ∑
mij
k=1 e−˜

x′ijk
˜
β∗
(0)

mij(1− ȳij +
1

2mij
)

i = 1, . . . , `, j = 1, . . . , ni.

Let
˜
τ∗′ = (

˜
µ∗′,

˜
β∗′(0)). Next, we evaluate

˜
g and H at the quasi-modes

˜
τ =

˜
τ∗ can also be

obtained as

˜
g =

(
∂∆

∂w11
· · · ∂∆

∂w`n`

∂∆
∂

˜
β(0)

)T

˜
w=

˜
w∗ ,

˜
β(0)=

˜
β∗
(0)

,

H =



∂2∆
∂w2

11
· · · ∂2∆

∂w11∂w`n`

∂2∆
∂w11∂

˜
β(0)

...
...

. . .
...

0 · · · ∂2∆
∂w2

`n`

∂2∆
∂w`n`

∂
˜
β(0)

∂2∆
∂w11∂

˜
β(0)

· · · ∂2∆
∂w`n`

∂
˜
β(0)

∂2∆
∂

˜
β2
(0)


˜
w=

˜
w∗ ,

˜
β(0)=

˜
β∗
(0)

.

The partial derivatives can be expressed in terms of response yijk and covariates
˜
xijk as

∂∆
∂

˜
β(0)

=
`

∑
i=1

ni

∑
j=1

mij

∑
k=1

˜
xijkyijk − ˜

xijke˜
x′ijk

˜
β∗
(0)+w∗ij

1 + e˜
x′ijk

˜
β∗
(0)+w∗ij

,

∂∆
∂wij

=

mij

∑
k=1

(yijk −
e˜

x′ijk
˜
β∗
(0)+w∗ij

1 + e˜
x′ijk

˜
β∗
(0)+w∗ij

),

∂2∆
∂

˜
β2
(0)

= −
`

∑
i=1

ni

∑
j=1

mij

∑
k=1

˜
xijk ˜

x′ijke˜
x′ijk

˜
β∗
(0)+w∗ij

(1 + e˜
x′ij

˜
β∗
(0)+w∗ij)2

,

∂2∆
∂w2

ij
= −

mij

∑
k=1

e˜
x′ijk

˜
β∗
(0)+w∗ij

(1 + e˜
x′ijk

˜
β∗
(0)+w∗ij)2

,

∂2∆
∂µi∂

˜
β(0)

= −
mij

∑
k=1

˜
xijke˜

x′ijk
˜
β∗
(0)+w∗ij

(1 + e˜
x′ijk

˜
β∗
(0)+w∗ij)2

,

where i = 1, . . . , `, j = 1, . . . , ni.

For the convenience of computation, denote
˜
g =

(
˜
g1

˜
g2

)
and H = −

(
D C′

C B

)
,

where

˜
g1 =

(
∂∆

∂w11
· · · ∂∆

∂w`n`

)T
,
˜
g2 =

∂∆
∂

˜
β(0)

,

B = − ∂2∆
∂

˜
β2
(0)

, C = −
(

∂2∆
∂w11∂

˜
β(0)

· · · ∂2∆
∂w`n`

∂
˜
β(0)

)
, D = −


∂2∆
∂w2

11
· · · 0

:
. . . :

0 · · · ∂2∆
∂w2

`n`

.
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Let −H−1 =

(
D C′

C B

)−1

=

(
E F′

F G

)
, where

E = D−1 + D−1C′(B− CD−1C′)−1CD−1, F = −(B− CD−1C′)−1CD−1, G = (B− CD−1C′)−1.

Lemma 2. Assuming that the design matrix is full-rank and 0 < ∑
mij
k=1 yijk < mij,

j = 1, . . . , ni; i = 1, . . . , `, the posterior density,
˜
τ|

˜
y in (5), is logconcave.

Proof. If 0 < ∑
mij
k=1 yijk < mij, i = 1, . . . , `, j = 1, . . . , ni, there are solutions to the gradient

vector set to zero.

Let pijk = e˜
x′ijk ˜

β(0)+wij

1+e˜
x′ijk ˜

β(0)+wij
, k = 1, . . . , mi j, j = 1, . . . , ni, i = 1, . . . , `. Then, A, B and C of

the negative Hessian matrix can be written as,

B = − ∂2∆
∂

˜
β2
(0)

=
`

∑
i=1

ni

∑
j=1

mij

∑
k=1

pijk(1− pijk)˜
xijk ˜

x′ijk,

D = diagonal(dij), dij =
∂2∆
∂w2

ij
=

mij

∑
k=1

pijk(1− pijk),

C = (
˜
cij), ˜

cij =
∂2∆

∂wij∂
˜
β(0)

=

mij

∑
k=1

pijk(1− pijk)˜
xijk,

where j = 1, . . . , ni, i = 1, . . . , `.
It is obvious that D is positive-definite. Thus, to show that −H is positive-definite, we

need to show that its Schur complement of D, S = B−CD−1C′, is positive-definite (e.g., see [35]).
Let ωijk = pijk(1− pijk)/ ∑

mij
k=1 pijk(1− pijk), k = 1, . . . , mij, j = 1, . . . , ni, i = 1, . . . , `. The

Schur complement is

S =
`

∑
i=1

ni

∑
j=1

mij

∑
k=1

pijk(1− pijk)

mij

∑
k=1

ωijk ˜
xijk ˜

x′ijk −
`

∑
i=1

ni

∑
j=1

mij

∑
k=1

pijk(1− pijk)

mij

∑
k=1

ωijk ˜
xijk

mij

∑
k=1

ωijk ˜
x′ijk.

It is now easy to show that

S =
`

∑
i=1

ni

∑
j=1

mij

∑
k=1

ωijk(˜
xijk −

mij

∑
k=1

ωijk ˜
xijk)(˜

xijk −
mij

∑
k=1

ωijk ˜
xijk)

′.

Therefore, −H is positive-definite, and
˜
τ|

˜
y is logconcave.

Finally, according to the Lemmas 1 and 2, we can establish the approximation Theorem.

Theorem 1. Assuming that the design matrix is full-rank and 0 < ∑
mij
k=1 yijk < mij,

j = 1, . . . , ni, i = 1, . . . , `, the posterior density,
˜
τ|

˜
y in (5) is approximately a multivariate normal

density, and the conditional posterior density of
˜
w|

˜
β(0),

˜
y and

˜
β(0)|

˜
y can also be approximated by

multivariate normal distributions.

Proof. The proof is given in Appendix B.

Therefore, we can approximate that logit expit term
`

∏
i=1

ni
∏
j=1

mij

∏
k=1

[
e
(
˜
x′ijk ˜

β(0)+wij)yijk

1+e˜
x′ijk ˜

β(0)+wij

]
into

two multivariate densities by Theorem 1. And then we can get our approximate two-fold
Bayesian logistic regression model.

Recall the posterior density of our two-fold logistic model is

π(
˜
w,

˜
ν,

˜
β, σ2, δ2 |

˜
y) ∝ π(

˜
y|

˜
w,

˜
β(0))π(

˜
w |

˜
ν, σ2)π(

˜
ν | β0, δ2)π(

˜
β(0), β0, σ2, δ2)



Stats 2023, 6 217

The likelihood function π(
˜
y|

˜
w,

˜
β(0)) can be approximated by the multivariate normal

distribution by Theorem 1. Combining the prior values of
˜
w and

˜
ν given by our Bayesian

Logistic model and the results in Theroem 1, we can obtain our INNA model

˜
w|

˜
β(0),

˜
y ∼ Normal{

˜
µw − D−1C′(

˜
β(0) −

˜
µβ), D−1}

˜
β(0)|

˜
y ∼ Normal{

˜
µβ, G}

˜
w|

˜
ν, σ2 ind∼ Normal(

˜
µν, σ2 I),

˜
ν|β0, δ2 iid∼ Normal(β0

˜
j, δ2 I),

π(
˜
β(0), β0, δ2, σ2) ∝

1
(1 + δ2)2

1
(1 + σ2)2 , δ2 > 0, σ2 > 0,

where
˜
µ′ν =

(
ν1, . . . , ν1︸ ︷︷ ︸

n1

· · · ν`, . . . , ν`︸ ︷︷ ︸
n`

)′ and
˜
j is a vector of ones.

Using Bayes’ Theorem and the multiplication rule, the posterior density π(
˜
w,

˜
ν,

˜
β, σ2, δ2 |

˜
y) can be approximated as

πa(
˜
w,

˜
ν,

˜
β, σ2, δ2 |

˜
y) ∝ πa(

˜
w |

˜
ν,

˜
β(0), σ2,

˜
y)πa(

˜
ν | β0, δ2,

˜
y)πa(

˜
β(0) |

˜
y)πa(

˜
β, σ2, δ2 |

˜
y)

= e
− 1

2

{[
˜
w−
(

˜
µw−D−1C′(

˜
β(0)−

˜
µβ)
)]′

D
[

˜
w−
(

˜
µw−D−1C′(

˜
β(0)−

˜
µβ)
)]}

× e
− 1

2

{[
˜
w−

˜
µν

]′
(σ2 I)−1

[
˜
w−

˜
µν

]
+
[

˜
ν−β0

˜
j
]′
(δ2 I)−1

[
˜
ν−β0

˜
j
]
+
[

˜
β(0)−

˜
µβ

]′
G−1

[
˜
β(0)−

˜
µβ

]}

× |D|1/2

|δ2 I|1/2|σ2 I|1/2|G|1/2
1

(1 + σ2)2
1

(1 + δ2)2 (6)

Therefore, we can get the following key result.

Theorem 2. Using the multiplication rule, the joint posterior density, π(
˜
w,

˜
ν,

˜
β, σ2, δ2 |

˜
y) in (6),

can be approximated by

πa(
˜
w,

˜
ν,

˜
β, σ2, δ2 |

˜
y) ∝ πa(

˜
w |

˜
ν,

˜
β(0), σ2,

˜
y)πa(

˜
ν | β0, δ2,

˜
y)πa(

˜
β(0) |

˜
y)πa(

˜
β, σ2, δ2 |

˜
y),

where the first three densities on the right-hand side are all multivariate normal densities.

Proof. The proof is given in Appendix C.

The INNA is actually a random sampler. First, we draw samples for σ2, δ2 from
π(σ2, δ2|

˜
y). The posterior distribution of σ2, δ2|

˜
y does not have standardized form. Here,

we use the grid method and numerical integration to sample σ2 and δ2. Since 0 < σ2 < ∞
and 0 < δ2 < ∞, we make a transformation to φ1 = 1

1+σ2 and φ2 = 1
1+δ2 so that we get

0 < φ1 < 1 and 0 < φ2 < 1. Then, the posterior density of φ1, φ2|
˜
y is

πa(φ1, φ2|
˜
y) ∝


∣∣∣∣ δ2

0
˜
γ′

˜
γ ∆(0)

∣∣∣∣−
1
2

×
l

∏
i=1

(
1

∑ni
j=1 σ2

ij
+

1
δ2

) 1
2 1

|δ2D + δ2

σ2 I|1/2


φ1=

1
1+σ2 , φ2=

1
1+δ2

× exp
{
−1

2
(

˜
µw + D−1C′

˜
µβ)
′(D−1 + σ2 I + δ2 I)−1(

˜
µw + D−1C′

˜
µβ) +

˜
µ′βG−1

˜
µβ

}
× exp

{
−1

2

(
β0 −ω0

˜
β(0) − ˜

ω(0)

)′(
δ2

0
˜
γ′

˜
γ ∆(0)

)(
β0 −ω0

˜
β(0) − ˜

ω(0)

)}
φ1=

1
1+σ2 , φ2=

1
1+δ2

.
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We need to draw φ1, φ2 together. The joint density can be rewritten as

π(φ1, φ2|
˜
y) = π(φ2|φ1)π(φ1|

˜
y) = π(φ2|φ1)

∫ 1

0
π(φ1, φ2|

˜
y)dφ2.

We plug each grid of φ1 ∈ (0, 1) into
∫ 1

0 π(φ1, φ2|
˜
y)dφ2 and then use numerical inte-

gration to get the density of (φ1|
˜
y). After we plug all the 100 grids, we can get 100 value

of π(φ1|
˜
y) and then draw φ1 from them, i.e. φ

(h)
1 . Next, we plug φ

(h)
1 into π(φ2|φ1) and

use grid method to draw φ
(h)
2 . We repeat those steps 10,000 times to get the sample of

(φ
(h)
1 , φ

(h)
2 ), h = 1, . . . , 10, 000. Once we get samples for φ1, φ2, we transform them back

to σ2 and δ2 respectively. Second, given σ2, δ2, we can simply draw samples of
˜
β from

the approximate multivariate normal distribution πa(
˜
β | σ2, δ2,

˜
y). Third, we can draw

samples of νi independently given
˜
β, δ2 and data from the approximate normal distribution

πa(
˜
ν|β0, δ2,

˜
y). Finally, samples of wij independently given

˜
ν,

˜
β, σ2 can be obtained from

the approximate normal distribution πa(
˜
w|

˜
ν,

˜
β(0), σ2,

˜
y). Notice that the last three steps are

very simple, just drawing samples from normal densities. In addition, wij and νi are all
independent so that we can draw them simultaneously. Therefore, those latter steps permit
fast computing.

In order to check if INNA method can provide resonal results, we apply the MCMC
logistic regression exact method to the sub-area model. The idea of exact method is to get
full conditional posterior distributions for all of the parameters in the model, and then get a
large number of independent samples of each parameter with its full conditional posterior
density. Details are given in Appendix A.

There are two differences between these two methods. First, both methods are
sampling-based. The approximate method implements random samples and the exact
method uses numerical integration method and Markov chains. Second, πa(

˜
β, σ2, δ2 |

˜
y)

is used for the INNA method. In the exact method, a Metroplis step is used for the
π(

˜
β, σ2, δ2 |

˜
y). This is very time-consuming in the exact method. On the other hand, the

exact method actually uses the INNA method. We use M-H sampler draw samples for
˜
ν

and
˜
w, respectively. Proposal functions are πa(

˜
ν |

˜
β(0), β0, σ2,

˜
y) and πa(

˜
w |

˜
ν,

˜
β(0), σ2,

˜
y),

respectively, from the INNA method.

4. Numerical Example
4.1. Nepal Living Standards Survey II

The performance of our method is studied using the Nepal Living Standard Survey
(NLSS II), conducted in the years 2003–2004. The main objective of the NLSS II is to
track changes in and the progress of national living standards and social indicators of the
Nepalese population. It is an integrated survey which covers samples from the whole
country and runs throughout the year.

The NLSS II gathers information on a variety of aspects. It has collected data on
demographics, housing, education, health, fertility, employment, income, agricultural
activity, consumption, and various other areas. The sampling design of NLSS II is two-stage
stratified sampling. Nepal is stratified into Primary Sampling Units (PSUs) and, within
each PSU, there are a number of households (sub-area) selected. All household members in
the sample were interviewed.

In detail, the NLSS II has records for 20,263 individuals from 3912 households (sub-
areas) from 326 PSUs (areas) from a population of 60,262 households and about two million
Nepalese. A sample of PSUs was selected from the strata using probability proportional to
size (PPS) sampling and 12 households were systematically selected from each PSU. The
survey is self-weighted and some adjustments were made after conducting the survey for
non-responses or missing data. For simplicity, in this paper, we assume all samples have
the same weight. Table 1 shows the distribution of all samples by stratum.



Stats 2023, 6 219

Table 1. Distribution of wards and households in the sample.

Strata Mountains Kathemandu Urban Hill Rural Hills Urban Tarai Rural Tarai Total

PSU 32 34 28 96 34 102 326
Households 384 408 336 1152 408 1224 3912
Individuals 1949 1954 1467 5755 2104 7034 20,263

We chose four relevant covariates which can influence health status from the same
NLSS II survey for our two-fold logistic regression model. They are age, nativity, sex and
religion. We created binary variables for nativity (Indigenous = 1, Non-indigenous = 0) and
religion ((Hindu = 1, Non-Hindu = 0), sex (Male = 1, Female = 0). Table 2 shows the details
of these four covariates. In the model fitting, we standardized the age covariate. Older age
and a child’s age are more vulnerable times than younger age. Indigenous people can have
different health statuses from migrated people.

Table 2. The descriptives of 4 covariates.

Covariates Frequency Percentage

Age 0–14 7765 38.32
15–59 10,951 54.04
60+ 1547 7.64

Gender Male 9763 48.18
Female 10,500 51.82

Nativity Indigeous 11,903 41.25
Non-Indigous 8,360 58.75

Religion Hingdu 16,378 80.83
Non-Hingdu 3385 19.17

According to the 2001 census data, only about 0.091% of households and only 0.904%
of PSU were sampled. The NLSS II was designed to provide reliable estimates only at
the stratum level, or even larger areas than the stratum. It cannot give estimates in small
areas (PSU or household level) since the sample sizes are too small. Therefore, we need
to use statistical models to fit the available data and find reliable estimates in small areas.
In our study, we chose the binary variable, health status, from the health section of the
questionnaire.

4.2. Numerical Comparison

We used data from NLSS II to illustrate our sub-area logistic regression model. We
predicted the household proportions of members in good health for 18,924 households
(sampled and non-sampled). Bayesian bootstrap by [36] was applied to get non-sampled
auxiliary information. This analysis was based on 1224 sample households from 102 wards
(PSUs) in strata 6. Our primary purposes were to show that our model can provide good
estimates and to compare the approximate method with the exact method when there are
random effects at the household level.

We used Rcpp [37] and RcppArmadillo [38] packages in R [39] to fit the model based
on both the approximation, INNA, method and the exact method to this NLSS II dataset.
For the INNA method, we began with 10,000 iterations and a burn-in of 1000 and we kept
only every ninth sample. Finally, 1000 samples were obtained for constructing the posterior
distributions of all the parameters. The exact method was very time-consuming, taking
about 30 h to finish. However, the INNA approximation method can get samples in 8 min.
When we have a large number of areas or sub-areas, the approximation method will make
enormous savings.

Convergence diagnostics were conducted. The convergences of the hyperparameters
(

˜
β, σ2, δ2) were monitored by the Geweke test of stationarity [40] and the effective sample

sizes. The p-values and effective sample sizes are shown in Table 3, resulting in good
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convergence for both methods. Table 3 also shows the posterior means (PMs) and associated
posterior standard deviations (PMs) of the hyperparameters. The PMs are very close
between these two methods. The PSDs are slightly larger for the exact method than for the
INNA method, but they are reasonably close.

Table 3. Posterior means (PM), associated posterior standard deviations (PSD), Geweke test p-values
and effective sample sizes (ESS) of hyperparameters based on the INNA and exact method.

Method INNA Exact

Estimator PM PSD p-Value ESS PM PSD p-Value ESS

β0 0.802 0.323 0.688 780 0.840 0.405 0.264 1000
β1 0.675 0.015 0.759 857 0.654 0.016 0.156 858
β2 0.302 0.017 0.453 894 0.313 0.019 0.655 1000
β3 −0.862 0.017 0.605 915 −0.824 0.017 0.418 863
β4 −0.338 0.013 0.718 937 −0.360 0.011 0.839 1000
σ2 115.248 35.601 0.408 1000 108.959 38.719 0.615 911
δ2 30.002 1.146 0.448 731 29.034 1.697 0.490 780

In Figures 1–3, we compare the PMs, PSDs and posterior coefficient of variations
(PCVs) in the household level as our primary purpose. We can see that the PMs are very
close, nearly lying on the 45-degree line through the origin. The PSDs are slightly spread out
and thicker, but all points still lie on the 45-degree line and so do the PCVs. Overall, these
approximations are acceptable in the data analysis. Figures 4–6 we compare respectively to
the PMs, PSDs and PCVs at the ward level. The plots of the PMs are still very good. Notice
that other two plots of PSDs and PCVs are more spread out than those in the household
level. Again, though, the approximate method and the exact method are reasonably close.

We also compare the approximate method with the exact method using the five num-
ber summaries (the minimum values, the first quartiles, the median, the third quartiles,
and the maximum values) with respect to the PMs, PSDs and PCVs of the finite population
proportions at the household level and ward level in Tables 4 and 5. The PMs from both
methods at the household level have larger variations than those at the ward level. The
PCVs at the ward level are generally much smaller than at the household level. The sum-
maries of the PMs, PSDs and PCVs within households and wards between the approximate
and exact methods are very close.

Table 4. Comparison of posterior inference about the finite population proportions using the five-
number summaries at the household level.

Households Min Q1 Mean Q3 Max

PM INNA 0.049 0.541 0.565 0.584 0.981
Exact 0.050 0.542 0.566 0.584 0.984

PSD INNA 0.040 0.246 0.441 0.465 0.500
Exact 0.038 0.248 0.442 0.466 0.501

PCV INNA 0.041 0.379 0.762 0.852 1.549
Exact 0.039 0.384 0.768 0.852 1.577
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Table 5. Comparison of posterior inference about the finite population proportions using five-number
summaries at the ward level.

Wards Min Q1 Mean Q3 Max

PM INNA 0.449 0.537 0.563 0.589 0.684
Exact 0.450 0.537 0.564 0.590 0.683

PSD INNA 0.056 0.059 0.063 0.066 0.077
Exact 0.058 0.061 0.064 0.066 0.077

PCV INNA 0.095 0.103 0.113 0.121 0.163
Exact 0.097 0.103 0.113 0.122 0.165

We conclude that the approximation method at the household level is reasonable. The
approximation is desirable because one can perform the computations in real time.

Figure 1. Comparison of the INNA method and the exact method using the PSDs of the household
proportions.
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Figure 2. Comparison of the INNA method and the exact method using the PSDs of the household
proportions.

Figure 3. Comparison of the INNA method and the exact method using the CVs of the household
proportions.
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Figure 4. Comparison of the INNA method and the exact method using the PMs of the ward
proportions.

Figure 5. Comparison of the INNA method and the exact method using the PSDs of the ward
proportions.
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Figure 6. Comparison of the INNA method and the exact method using the CVs of the ward
proportions.

5. Conclusions and Future Work

The sub-area HB logistic regression model can be applied to analyze the binary re-
sponse variable. This model is an extension of the HB logistic regression area-level model,
which ignores the actual hierarchical structure of the data. We propose an approximation
method, INNA, to fit the model. For large datasets, it is very unrealistic to use the MCMC
method to fit the model. We propose the approximation method, INNA, which saves
time significantly because there is no need to compute numerous modes. In the numerical
example, we can show that INNA can provide reliable estimates as well. An illustrative
example of the NLSS II is presented in order to compare the approximation method and
the exact method. It shows that, when there are a large number of areas and sub-areas, the
approximation method can be efficient and it can also provide reasonable estimates.

INNA is a method for approximate Bayesian inference based on Laplace’s method, the
second-order multivariate Taylor-series approximation and the empirical logistic transform
(ELT). It can be applied to all HB logistic regression models, for which it can be a fast and
accurate alternative to the Markov chain Monte Carlo methods. The comparison and model
results illustrate the performance of the INNA methods based on the sub-area model.

There will be many future works on the two-fold small areas model. First, in this
paper, we assume equal survey weights since the NLSS II is a self-weighted sampling.
However, after the data are collected, the sampling weights are usually adjusted for various
characteristics or based on nonresponse as well. Incorporating those survey weights into
the model is also very important. Generally, we need to consider these weights in the
model. The NLSS II is a national population-based survey. We should rescale the sample
weights to sum to an equivalent sample size. That is, we consider the adjusted weight as

w∗ijk = n̂(
wijk

`
∑

i=1

ni
∑

j=1

mij
∑

k=1
wijk

), where n̂ =
(

`
∑

i=1

ni
∑

j=1

mij
∑

k=1
wijk)

2

`
∑

i=1

ni
∑

j=1

mij
∑

k=1
w2

ijk

as an equivalent sample. Introducing the
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sampling weights, we can obtain an updated normalized likelihood function. Based on the
updated likelihood function and the same prior in the two-fold model, we can have a full
Bayesian analysis on the updated model and then project the finite population proportion
of the family members with good health in each household.

Second, we focus on the binary data. Actually, there are four options in the health status
questionnaire. The Multinomial-Dirichlet model can be an extension of the polychotomous
data. Third, the two-fold sub-area level models can also be extended to three-fold models if
the data have an additional hierarchical structure; actually, the NLSS II has this structure
(households within wards, wards within districts). Fourth, in our models, we consider
parametric priors. Introducing the Dirichlet process as a prior might make our method
more robust to its specifications.
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Appendix A. Exact Method for Sub-Area Logistic Regression Model

Recall that the joint posterior distribution of our two-fold logistic regression model is
the joint posterior density for the parameters is

π(
˜
v,

˜
w,

˜
β, σ2, δ2|

˜
y) ∝

`

∏
i=1

ni

∏
j=1

mij

∏
k=1

[
e(˜

x′ijk
˜
β(0)+wij)yijk

1 + e˜
x′ijk

˜
β(0)+wij

]
×
( 1√

2πσ2

)n
exp

{
−

l

∑
i=1

ni

∑
j=1

(wij − νi)
2

2σ2

}

×
( 1√

2πδ2

)l
exp

{
−

l

∑
i=1

(νi − β0)
2

2δ2

}
1

(1 + σ2)2
1

(1 + δ2)2 .

We can see that the form of the joint posterior density is very complicated. It is very
time consuming to draw all the posterior samples if applying the exact MCMC method.
But the exact method will provide reliable estimates of all parameters, so in order to test
the performance of our approximation method, we need to apply MCMC method on our
model and then compare the performance of two methods. We use Metropolis-Hastings
sampler to draw samples for

˜
β, σ2, δ2 together and then draw

˜
ν given

˜
β, σ2, δ2 samples. At

last, we use MH method to draw
˜
w given

˜
ν,

˜
β, σ2, δ2 samples.

In order to draw samples for
˜
β, σ2, δ2 together, we need to integrate out

˜
w and

˜
v. First,

we integrate out
˜
w from the joint posterior density π(

˜
v,

˜
w,

˜
β, σ2, δ2|

˜
y) to get

π(
˜
ν,

˜
β, σ2, δ2|

˜
y) ∝

∫
Ω

`

∏
i=1

{
ni

∏
j=1

[ mij

∏
k=1

e(˜
x′ijk

˜
β(0)+µi+wij)yij

1 + e˜
x′ijk

˜
β(0)+µi+wij

]
1√

2πσ2
e−

(wij−νi)
2

2σ2

}
d

˜
w

×
( 1√

2πδ2

)l
exp

{
−

l

∑
i=1

(νi − β0)
2

2δ2

}
1

(1 + σ2)2
1

(1 + δ2)2 .

Notice that the integrant is not any simple distribution function, so we use Monte
Carlo numberical integration to approximate the integrals. Let zw

ij =
wij−νi

σ . Notice that
zw

ij follows standard normal distribution. For standard normal density, 99.7% of data will
fall within 3 standard deviations of the mean, which corresponds to the interval [−3, 3].
Therefore, we bounded the integration domain to [−3, 3] and divide the interval to M equal
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subintervals [pa−1, pa], a = 1, . . . , M. Then we can get an approximate but very accurate
joint density

π(
˜
ν,

˜
β, σ2, δ2|

˜
y) ∝

`

∏
i=1

ni

∏
j=1


M

∑
a=1

∫ pa

pa−1

e

mij
∑

k=1
(
˜
x′ijk

˜
β(0)+wij)yijk

mij

∏
k=1

[
1 + e˜

x′ijk
˜
β(0)+wij

] 1√
2πσ2

e−
(wij−νi)

2

2σ2 dwij


×
( 1√

2πδ2

)l
exp

{
−

l

∑
i=1

(νi − β0)
2

2δ2

}
1

(1 + σ2)2
1

(1 + δ2)2

∝
`

∏
i=1

ni

∏
j=1


M

∑
a=1

∫ pa

pa−1

e

mij
∑

k=1
(
˜
x′ijk

˜
β(0)+σzw

ij+νi)yijk

mij

∏
k=1

[
1 + e˜

x′ijk
˜
β(0)+σzw

ij+νi
] 1√

2π
e−

(zw
ij )

2

2 dzw
ij


×
( 1√

2πδ2

)l
exp

{
−

l

∑
i=1

(νi − β0)
2

2δ2

}
1

(1 + σ2)2
1

(1 + δ2)2

Let z̄w
a = pa−pa−1

2 , which is the midpoint of each interval [pa−1, pa], a = 1, . . . , M. We
use midpoint rule to approximate the definite integrals. We divide the interval [−3, 3]
into 100 subintervals, and so we use 100 midpoints to get the approximate joint posterior
distribution

π(
˜
ν,

˜
β, σ2, δ2|

˜
y) ≈

`

∏
i=1

ni

∏
j=1


100

∑
a=1

e

mij
∑

k=1
(
˜
x′ijk

˜
β(0)+σz̄w

a +νi)yijk

mij

∏
k=1

[
1 + e˜

x′ijk
˜
β(0)+σz̄w

a +νi
](Φ(a)−Φ(a− 1)

)
×
( 1√

2πδ2

)l
exp

{
−

l

∑
i=1

(νi − β0)
2

2δ2

}
1

(1 + σ2)2
1

(1 + δ2)2

Similarly, let zν
i = νi−β0

δ and z̄ν
b =

pb−pb−1
2 , b = 1, . . . , 100. We use the midpoint rule

to approximate the definite integral with respect to
˜
ν and then get the posterior density of

˜
β, σ2, δ2|

˜
y

π(
˜
β, σ2, δ2|

˜
y) ≈

`

∏
i=1


100

∑
b=1

 ni

∏
j=1

 100

∑
a=1

e

mij
∑

k=1
(
˜
x′ijk

˜
β(0)+β0+z̄w

a δ+z̄ν
b σ)yijk

mij

∏
k=1

[
1 + e˜

x′ijk
˜
β(0)+β0+z̄w

a δ+z̄ν
b σ
]∆(Φ(pa))


∆(Φ(pb))


× 1

(1 + σ2)2
1

(1 + δ2)2 .

We propose to draw samples from
˜
β, σ2, δ2 jointly by applying M-H sampler. Target

function is π(
˜
β, σ2, δ2|

˜
y). We set the proposal function as

 ˜
β

log σ2

log δ2

|
˜
y ∼ Normal


 ¯

˜
β

a
log σ̄2

a
log δ̄2

a

, σ2
t Σa

,
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where t
σ2

t
∼ χ2

t , Chi-square on t degree of freedom, i.e.

 ˜
β

log σ2

log δ2

|
˜
y ∼ Student’s t. Here t

is tuning constant.
We also use M-H sampler draw samples for

˜
ν and

˜
w respectively. Proposal functions

are πa(
˜
ν |

˜
β(0), β0, σ2,

˜
y) and πa(

˜
w |

˜
ν,

˜
β(0), σ2,

˜
y) respectively from the INNA method.

The target function to draw
˜
ν is

π(
˜
ν|

˜
β, σ2, δ2,

˜
y) ∝

`

∏
i=1

ni

∏
j=1


100

∑
a=1

e

mij
∑

k=1
(
˜
x′ijk

˜
β(0)+σz̄w

a +νi)yijk

mij

∏
k=1

[
1 + e˜

x′ijk
˜
β(0)+σz̄w

a +νi
](Φ(a)−Φ(a− 1)

)
×
( 1√

2πδ2

)l
exp

{
−

l

∑
i=1

(νi − β0)
2

2δ2

}
.

After we get samples for
˜
ν, we can use M-H sampler to draw

π(
˜
w|

˜
ν,

˜
β(0), σ2,

˜
y) ∝

`

∏
i=1

ni

∏
j=1

mij

∏
k=1

[
e(˜

x′ijk
˜
β(0)+wij)yijk

1 + e˜
x′ijk

˜
β(0)+wij

]
×
( 1√

2πσ2

)n
exp

{
−

l

∑
i=1

ni

∑
j=1

(wij − νi)
2

2σ2

}
.

Appendix B. Proof of Theorem 1

Proof. By Lemma 2, the posterior density is logconcave. Then according to Lemma 1, the
posterior distribution

˜
τ|

˜
y is approximately a multivariate normal distribution.

By Lemma 1, evaluating all quantities at
˜
τ∗, the mean is(

˜
µw

˜
µβ

)
=

˜
τ∗ − H−1

˜
g =

(
˜
w∗

˜
β∗(0)

)
+

(
E F′

F G

)(
˜
g1

˜
g2

)
=

(
˜
w∗ + E

˜
g1 + F′

˜
g2

˜
β∗(0) + F

˜
g1 + G

˜
g2

)
.

Also, the covariance matrix is

−H−1 =

(
D C′

C B

)−1

=

(
E F′

F G

)
.

Therefore, by Lemma 1, the approximate joint posterior density of
˜
w,

˜
β(0)|

˜
y is

(
˜
w

˜
β(0)

)
|
˜
y ∼ Normal

{(
˜
µw

˜
µβ

)
,
(

E F′

F G

)}
.

Finally, using the property of the multivariate normal density, the conditional pos-
terior density of

˜
w|

˜
β(0),

˜
y and

˜
β(0)|

˜
y can also be approximated by multivariate normal

distributions,

˜
w|

˜
β(0),

˜
y ∼ Normal{

˜
µw − D−1C′(

˜
β(0) −

˜
µβ), D−1} and

˜
β(0)|

˜
y ∼ Normal{

˜
µβ, G},

where

˜
µw =

˜
w∗ + E

˜
g1 + F′

˜
g2 and

˜
µβ =

˜
β∗(0) + F

˜
g1 + G

˜
g2.

Appendix C. Proof of Theorem 2

Proof. First, look at the exponent terms containing
˜
w in the above approximate posterior

density function
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[
˜
w−

(
˜
µw − D−1C′(

˜
β(0) −

˜
µβ)
)]′

D
[

˜
w−

(
˜
µw − D−1C′(

˜
β(0) −

˜
µβ)
)]

+
[

˜
w−

˜
µν

]′
(σ2 I)−1

[
˜
w−

˜
µν

]
= Σ′

˜
w(D +

1
σ2 I)Σ

˜
w +

[
˜
µw − D−1C′

(
˜
β(0) −

˜
µβ

)
−

˜
µν

]′
(D−1 + σ2 I)−1

[
˜
µw − D−1C′

(
˜
β(0) −

˜
µβ

)
−

˜
µν

]
,

where Σ
˜
w =

[
˜
w− (D + 1

σ2 I)−1
(

D
˜
µw − C′(

˜
β(0) −

˜
µβ) +

1
σ2

˜
µν

)]
.

Then it can show that the πa(
˜
w |

˜
ν,

˜
β(0), σ2,

˜
y) is

˜
w|

˜
ν,

˜
β(0), σ2,

˜
y

app∼ Normal
{
(D +

1
σ2 I)−1

(
D

˜
µw − C′(

˜
β(0) −

˜
µβ) +

1
σ2

˜
µν

)
, (D +

1
σ2 I)−1

}
.

Notice that (D + 1
σ2 I) is diagonal matrix. Then given

˜
ν,

˜
β(0), σ2,

˜
y, all wijs are indepen-

dent. This is an important result because parallel computation can be done for wij, which
accommodates time-consuming and massive storage challenges in big data analysis. This
result holds for the exact conditional posterior density of the µij. Since

˜
w has a multivariate

normal distribution, we can integrate out
˜
w from the joint approximate posterior density

πa(
˜
w,

˜
ν,

˜
β, σ2, δ2 |

˜
y), and obtain the joint posterior density of

˜
ν,

˜
β, σ2 and δ2

πa(
˜
ν,

˜
β, σ2, δ2 |

˜
y) ∝ e

− 1
2

{[
˜
µν−D−1C′

(
˜
β(0)−

˜
µβ

)
−

˜
µw

]′
(D−1+σ2 I)−1

[
˜
µν−D−1C′

(
˜
β(0)−

˜
µβ

)
−

˜
µw

]}

× e
− 1

2

{[
˜
ν−β0

˜
j
]′
(δ2 I)−1

[
˜
ν−β0

˜
j
]
+
[

˜
β(0)−

˜
µβ

]′
G−1

[
˜
β(0)−

˜
µβ

]}

× |D|1/2

|δ2 I|1/2|D + 1
σ2 I|1/2|G|1/2

1
(1 + σ2)2

1
(1 + δ2)2 .

Next, we will show that the approximate conditional posterior density of νi is also
normal distribution and all νis are independent as well. Here we consider each νi. Let
∑`

i=1 ∑ni
j=1 = n, (σ2

ij)n×n = D−1 + σ2 I , (
˜
tij)n×1 = D−1C and (µwij)n×1 =

˜
µw.

Look at the exponent only containing νi, i = 1, . . . , `. in the πa(
˜
ν,

˜
β, σ2, δ2 |

˜
y)

`

∑
i=1

ni

∑
j=1

1
σ2

ij

[
νi − µwij + ˜

t′ij(
˜
β(0) −

˜
µβ)
]2

+
1
δ2

`

∑
i=1

(νi − β0)
2

=
`

∑
i=1

(
1

∑ni
j=1 σ2

ij
+

1
δ2 )
−1

νi −

(
1

∑
ni
j=1 σ2

ij

)[
µ̄wi − ¯

˜
t′i(

˜
β(0) −

˜
µβ)
]
+ 1

δ2 β0

1
∑

ni
j=1 σ2

ij
+ 1

δ2


2

+
`

∑
i=1

(
1

1/ ∑ni
j=1 σ2

ij
+ δ2

)−1{
µ̄wi − ¯

˜
t′i(

˜
β(0) −

˜
µβ)− β0

}2

+
`

∑
i=1

ni

∑
j=1

1
σ2

ij

{
(¯
˜
ti − ˜

tij)
′(

˜
β(0) −

˜
µβ)− (µ̄wi − µwij)

}2
,

where µ̄wi =
1
ni

∑ni
j=1 µwij and ¯

˜
ti =

1
ni

∑ni
j=1 ˜

tij.
Then it is easy to see that

νi|β0, σ2, δ2,
˜
y

app∼ Normal


(

1
∑

ni
j=1 σ2

ij

)[
µ̄wi − ¯

˜
t′i(

˜
β(0) −

˜
µβ)
]
+ 1

δ2 β0

1
∑

ni
j=1 σ2

ij
+ 1

δ2

,
1

∑ni
j=1 σ2

ij
+

1
δ2

.
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Similarly, we can use parallel computing to draw νi, i = 1, . . . , ` as well since all of
them are independent given

˜
β(0), β0, σ2, δ2. Then we can integrate out

˜
ν from the joint

approximate posterior density πa(
˜
ν,

˜
β, σ2, δ2 |

˜
y) and obtain the joint posterior density of

˜
β, σ2 and δ2

πa(
˜
β, σ2, δ2|

˜
y) ∝ exp

−1
2

`

∑
i=1

(
1

1/ ∑ni
j=1 σ2

ij
+ δ2

)−1[
µ̄wi − ¯

˜
t′i(

˜
β(0) −

˜
µβ)− β0

]2


× exp

{
−1

2

`

∑
i=1

ni

∑
j=1

1
σ2

ij

[
{(¯

˜
ti − ˜

tij)
′(

˜
β(0) −

˜
µβ)− (µ̄wi − µwij)

]2
}

×
l

∏
i=1

(
1

∑ni
j=1 σ2

ij
+

1
δ2

) 1
2 1
|δ2 I|1/2|D + 1

σ2 I|1/2

1
(1 + σ2)2

1
(1 + δ2)2

= e−
1
2

(
˜
µw−D−1C′(

˜
β(0)−

˜
µβ)−β0

˜
j
)′
(D−1+σ2 I+δ2 I)

−1(
˜
µw−D−1C′(

˜
β(0)−

˜
µβ)−β0

˜
j
)

× e−
1
2

(
˜
β(0)−

˜
µβ

)′
G−1

(
˜
β(0)−

˜
µβ

)

×
l

∏
i=1

(
1

∑ni
j=1 σ2

ij
+

1
δ2

) 1
2 1

|δ2D + δ2

σ2 I|1/2

1
(1 + σ2)2

1
(1 + δ2)2 .

Next we assume that the conditional posterior density of
˜
β|σ2, δ2,

˜
y has an approximate

multivariate normal density,(
β0

˜
β(0)

)
|σ2, δ2,

˜
y ∼ Normal

{(
ω0

˜
ω(0)

)
,
(

δ2
0

˜
γ′

˜
γ ∆(0)

)−1}
,

which is denoted by πa(
˜
β | σ2, δ2,

˜
y). The density function is

πa(
˜
β | σ2, δ2,

˜
y) ∝

∣∣∣∣( δ2
0

˜
γ′

˜
γ ∆(0)

)∣∣∣∣
1
2

× e
− 1

2

 β0 −ω0

˜
β(0) − ˜

ω(0)

′ δ2
0

˜
γ′

˜
γ ∆(0)

 β0 −ω0

˜
β(0) − ˜

ω(0)



So the exponent terms are(
β0 −ω0

˜
β(0) − ˜

ω(0)

)′(
δ2

0
˜
γ′

˜
γ ∆(0)

)(
β0 −ω0

˜
β(0) − ˜

ω(0)

)
.

Consider the exponent terms containing
˜
β(0) and β0(

˜
µw − D−1C′(

˜
β(0) −

˜
µβ)− β0

˜
j
)′(

D−1 + σ2 I + δ2 I
)−1(

˜
µw − D−1C′(

˜
β(0) −

˜
µβ)− β0

˜
j
)

+
(

˜
β(0) −

˜
µβ

)′
G−1

(
˜
β(0) −

˜
µβ

)
=

˜
β′(0)

[
CD−1(D−1 + σ2 I + δ2 I)−1D−1C′ + G−1

]
˜
β(0) +

˜
j′(D−1 + σ2 I + δ2 I)−1

˜
jβ2

0

− 2
[
(

˜
µw + D−1C′

˜
µβ)
′(D−1 + σ2 I + δ2 I)D−1C′ +

˜
µ′βG−1

]
˜
β(0)

− 2
[
(

˜
µw + D−1C′

˜
µβ)
′(D−1 + σ2 I + δ2 I)−1

˜
j
]

β0 + 2CD−1(D−1 + σ2 I + δ2 I)−1

˜
jβ0

˜
β(0)

+ (D−1C′
˜
µβ +

˜
µw)

′(D−1 + σ2 I + δ2 I)−1

˜
jβ0

˜
β(0)

(
˜
µw + D−1C′

˜
µβ)
′(D−1 + σ2 I + δ2 I)−1(

˜
µw + D−1C′

˜
µβ) +

˜
µ′βG−1

˜
µβ.
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We know those two exponent parts are equal, so we have

∆(0) = CD−1(D−1 + σ2 I + δ2 I)−1D−1C′ + G−1,

δ2
0 =

˜
j′(D−1 + σ2 I + δ2 I)−1

˜
j,

˜
γ = CD−1(D−1 + σ2 I + δ2 I)−1

˜
j,(

ω0

˜
ω(0)

)
=

(
δ2

0
˜
γ′

˜
γ ∆(0)

)−1( (
˜
µw + D−1C′

˜
µβ)
′(D−1 + σ2 I + δ2 I)−1

˜
j

(
˜
µw + D−1C′

˜
µβ)
′(D−1 + σ2 I + δ2 I)D−1C′ +

˜
µ′βG−1

)
.

That is,
˜
β|σ2, δ2,

˜
y approximately follows multivariate normal distribution,

(
β0

˜
β(0)

)
|σ2, δ2,

˜
y ∼ Normal

{(
ω0

˜
ω(0)

)
,
(

δ2
0

˜
γ′

˜
γ ∆(0)

)−1}
,

Then we can easily integrate out
˜
β from the joint density of

˜
β, σ2, δ2|

˜
y, and get the

posterior density of σ2, δ2|
˜
y

πa(σ
2, δ2|

˜
y) ∝

∣∣∣∣ δ2
0

˜
γ′

˜
γ ∆(0)

∣∣∣∣−
1
2

×
l

∏
i=1

(
1

∑ni
j=1 σ2

ij
+

1
δ2

) 1
2 1

|δ2D + δ2

σ2 I|1/2

1
(1 + σ2)2

1
(1 + δ2)2

× exp
{
−1

2
(

˜
µw + D−1C′

˜
µβ)
′(D−1 + σ2 I + δ2 I)−1(

˜
µw + D−1C′

˜
µβ) +

˜
µ′βG−1

˜
µβ

}
× exp

{
−1

2

(
β0 −ω0

˜
β(0) − ˜

ω(0)

)′(
δ2

0
˜
γ′

˜
γ ∆(0)

)(
β0 −ω0

˜
β(0) − ˜

ω(0)

)}
.
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