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Abstract: Zellner’s objective g-prior has been widely used in linear regression models due to its
simple interpretation and computational tractability in evaluating marginal likelihoods. However,
the g-prior further allows portioning the prior variability explained by the linear predictor versus
that of pure noise. In this paper, we propose a novel yet remarkably simple g-prior specification
when a subject matter expert has information on the marginal distribution of the response yi. The
approach is extended for use in mixed models with some surprising but intuitive results. Simulation
studies are conducted to compare the model fitting under the proposed g-prior with that under other
existing priors.

Keywords: prior elicitation; g-priors; linear regression; Bayesian model selection; mixed models;
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1. Introduction

Incorporation of expert opinion has been an integral component of informative priors
for Bayesian models in a wide variety of settings, many of them clinical [1–3]. Even in
a highly regulated industry such as the medical devices field, guidance has existed for
some time for how expert opinion might be incorporated into models [4]. However, the
willingness of regulators to accept expert opinion does not necessarily mean that the
process of obtaining and utilizing such information is straightforward. Existing approaches
for leveraging prior opinions tend to be cumbersome and labor intensive [5–8]. This
paper provides a simple and easy to use method for experts to specify g-priors for a wide
class of mixed models focusing only on the marginal distribution of population responses
y1, . . . , yn.

A linear model is initially considered yi = x′iβ + εi, εi
iid∼ (0, σ2), and prior infor-

mation (m, v) is included such that, marginally, E(yi) = m and var(yi) = v. Here, the
notation of x ∼ (µ, τ2) denotes that a random variable x has mean µ and variance τ2, yi
is the ith response, xi is a p-vector of covariates which usually includes an intercept, and
β = (β1, . . . , βp)′ is the p-vector of regression coefficients. The errors εi are assumed
Gaussian for the bulk of the paper, but this assumption can often be relaxed. Zellner’s
g-prior [9,10] posits

β ∼ Np(β0, gσ2(X′X)−1),

where X is the usual n× p design matrix, yielding a posterior mean that is a weighted
average of the usual ordinary least squares (OLS) estimator β̂ = (X′X)−1X′y and the prior
value β0, i.e., β̃ = g

1+g β̂ + 1
1+g β0. Note that g = 0 gives no weight to the outcome data

y = (y1, . . . , yn)′ and g→ ∞ gives complete weight to the data. The choice of g has received
considerable interest in the literature, and the g-prior has been widely adopted for use in
variable selection e.g., [11,12]. It is not our intent to add to the burgeoning literature on
variable selection here but rather provide a useful prior for model parameters when some
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information about the data generating mechanism is known; in such cases, the “informative
g-prior” developed here is competitive with existing approaches for variable selection
(Section 4.1.2). In this paper, we propose an informative g-prior that can be used by default
when prior information is lacking, or that can reflect available prior information on the
marginal distribution of population responses. For example, if the outcome is cholesterol
level in a certain population and the interest is to investigate how cholesterol level changes
with covariates such as age, gender, ethnicity and body mass index, the expert might find
that, marginally, yi ∼ N(m = 190, v = 52) from various studies. This marginal prior
specification does not rely on any covariates, which makes the prior excitation relatively
easy. The theoretical marginal distribution of the yi’s can be obtained from the population
distribution of covariates xi, the distribution on β, and the value of σ2 through the linear
regression model under a specific form of the g-prior. Then, the g-prior can be derived by
matching moments between this theoretical marginal distribution and the prior distribution
of N(190, 52) to ensure, e.g., E(yi) = 190 and var(yi) = 52. The method is further extended
to provide default priors for mixed models, allowing for random-effects ANOVA, random
coefficient models, etc.

The sampling distribution of the OLS estimator β̂ has covariance σ2(X′X)−1. In a
Bayesian analysis assuming normal errors, the flat prior p(β) ∝ 1 yields the conditional
posterior β|y, X, σ2 ∼ Np(β̂, σ2(X′X)−1). In either case, the covariance σ2(X′X)−1 estimates
σ2

n [µµ′ + Σ]−1, where E(xi) = µ and cov(xi) = Σ. That is, greater variability in xi implies
greater precision in estimating β. Thus, ref. [9] specifies a vague conditional prior for β that
takes advantage of information on distributional shape based solely on X and a flat prior
on σ2. The g-prior developed here further separates how much marginal variability in yi is
explained a priori by the model from that of pure noise σ2; a default specification assumes a
flat uniform prior on this quantity.

Two popular classes of priors for regression models are conditional means priors [13,14]
and power priors [15]. Conditional means priors require a subject matter expert to provide
information on the mean response for several candidate vectors of covariates (that do not
have to be among those actually observed); the usual specification requires the expert to
be able to think about the mean responses independently, but this is not strictly required.
Let the candidate vectors be x̃1, . . . , x̃N, where N ≤ p. The subject matter expert is asked
to provide, say, a 95% interval that contains the mean response x̃′iβ at covariates x̃i, e.g.,
P(ai ≤ x̃i

′β ≤ bi) = 0.95. This information on the conditional means m̃i = x̃′iβ is sum-

marized as m̃i
ind.∼ N(mi, vi), yielding m̃ = X̃β ∼ NN(m, V), where m = (m1, . . . , mN)

and V = diag(v1, . . . , vN). If X̃ is invertible, requiring N = p; then, the induced prior is
simply β ∼ NN(X̃−1m, X̃−1V(X̃−1)′). Ref. [13] propose methods for handling partial prior
information on a subset N < p, i.e., the subject matter expert only need specify a handful of
priors for conditional means. In contrast, the g-prior developed here only requires information
on the marginal distribution of the yi’s, namely (m, v).

Power priors are built from historical regression data having the same covariates
as the current data. Say that the historical data are {x̃i, ỹi}M

i=1 and the current data are
{(xi, yi}n

i=1. The power prior is simply the posterior of β based on a reference prior, raised

to the power α ∈ [0, 1]: p(β, σ2) ∝
[
∏M

i=1 φ(ỹi|x̃′iβ, σ2)
]α

σ−2, where φ(y|m, v) is the density
of a normal random variable with mean m and variance v. The parameter α provides
the “degree of borrowing” from the historical data, with α = 0 giving none and α = 1
treating the historical data the same as the current study data. The choice of α has also
received considerable research [16–18]. In addition to the power and conditional mean
priors, ref. [19] proposed a natural conjugate reference informative prior by taking into
account various degrees of certainty in covariates, and [20] proposed a default prior for
β js by using a normal distribution with mean zero and standard deviation equal to the
standard error of the M-estimator of each β j.

There are several notable limitations for conditional means and power priors. Con-
ditional means priors involve the analyst thinking about various covariate combinations
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and providing information on the mean response for each covariate setting. As the number
of predictors increases, this becomes increasingly difficult; it can be conceptually easier to
think about marginal quantities such as the overall mean m and variance v in the population.
Such marginal information may be available via census or through published summary
data. The power prior requires a historical data set having a superset of the variables under
consideration in the current study, which is often unavailable for new treatments.

One consequence of the proposed priors developed here is that proper, data-driven
priors are given in closed-form with default settings. Thus, standard model comparison via
Bayes factors is possible as no improper priors are used. Difficult-to-elicit prior information
such as the range of a variance component is replaced with the question “How much
variability in the data do you think the model explains?” If the answer to this is “I have
no idea” then a uniform distribution on σ2 is suggested. The proposed priors do not have
closed-form full conditional distributions for all parameters but are easily specified and fit
in R using statistical software Just Another Gibbs Sampler (JAGS) [21] via packages such as
R2jags [22].

Bayesians have long known that injecting a small amount of prior information can
often “fix” pathological MCMC schemes. The g-prior developed here can be viewed as
a ridge prior that takes multicollinearity into account, with the added benefit that the
ridge parameter is automatically chosen by the data. Section 2 introduces the informative
g-prior for linear regression models. Section 3 extends the g-prior for use in mixed models.
Section 4 presents a detailed set of simulation studies exploring the use of the g-prior and
compares to other priors in common use. Section 5 concludes the paper with a discussion
and eye toward future research.

2. Prior for Linear Regression Models
2.1. The Prior in [23]

The g-prior in [23] was developed for logistic regression; this section carefully extends
their approach to normal-errors regression, and Section 3 generalizes further to mixed
models. Their g-prior is specified as

β|β0, g, X ∼ Np(β0, gn(X′X)−1), (1)

where g > 0, and X is the usual n× p design matrix. Assume xi
iid∼ H for some distribution

H where xi ∼ (µ, Σ). Noting that xi includes the intercept in the first element, the first
element of µ is one and the first row along with the first column entries of Σ are all zeros.
Given the data X, for any new subject with response y and covariates x ∼ H, assuming x
and β are mutually independent, one has E(x′β) = Ex{Eβ(x′β|x)} = µ′β0, by the law of
iterated expectations. In addition, by the law of total variance, one has

Var(x′β) = Ex{Varβ(x′β|x)}+ Varx{Eβ(x′β|x)}
= Ex{gnx′(X′X)−1x}+ Varx(µ

′β0)

= g · trace
{

n(X′X)−1(Σ + µµ′)
}

p→ g · trace
{
(Σ + µµ′)−1(Σ + µµ′)

}
= gp,

where
p→ denotes convergence in probability, and the limiting statement originates from the

fact that n(X′X)−1 p→ (µµ′ + Σ)−1. Hence, given X, the g-prior in (1) implies that x′β has a
variance approximately equal to gp for any covariate x randomly drawn from its population
H. [23] found that x′β also often approximately follows a normal distribution, and this
approximation is good for a variety of H considered in their simulations, even when some
covariates are categorical. Therefore, it is reasonable to assume that x′β approximately
follows N(µ′β0, gp).
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For the linear normal regression model yi|xi
ind.∼ N(x′iβ, σ2), the g-prior in [23] can

be applied as follows. Assuming a subject matter expert has in hand information on the

distribution of marginal mean responses (i.e., E(yi)
set
= m) in a population, rather than

the distribution of yi, say m ∼ N(µm, σ2
m) with (µm, σ2

m) being chosen to reflect the prior
knowledge about the distribution of m. Then using the prior matching idea in [23], one can
immediately solve for β0 and g in (1) as β0 = µme1 and g = σ2

m/p where e1 = (1, 0, . . . , 0)′.
Although [24] finds the default prior given by [23] for logistic regression to provide the best
predictive performance among several contenders, the performance for linear regression
model has not been well tested. In addition, it is not straightforward to set default values
for (µm, σ2

m) and its extension to linear mixed models is not readily available.
In this paper, we will propose a new g-prior for the linear regression model when

a subject matter expert has information on the marginal distribution of the response yi
rather than E(yi) with reasonable default settings and then extend it for use in linear
mixed models.

2.2. New Prior Development

An easily implemented g-prior is first proposed for use in the linear regression model:

yi|xi, β, σ2 ind.∼ (x′iβ, σ2), i = 1, . . . , n. (2)

Consider the situation where a subject matter expert has information on the marginal
distribution of observations yi that can be synthesized as

yi∼(m, v), m ∼ N(m0, v/km), v−1 ∼ Γ(kv, v0kv), (3)

where m0, v0, km and kv can be obtained from previous studies or published summary data;
details are given in Section 2.3. Here Γ(a, b) denotes the gamma distribution with mean
equal to a/b. The goal here is to develop a particular version of g-prior on (β, σ2) in (2) that
achieves the marginal distribution of yi∼(m, v).

Consider the g-prior in (1). Given σ2, the total expectation formula gives

E(y) = Ex′βEy|x′β(y) = Ex′β(x
′β) = µ′β0,

and the total variance formula gives

var(y) = Ex′βvary|x′β(y) + varx′βEy|x′β(y) = Ex′β(σ
2) + varx′β(x

′β) ≈ σ2 + gp.

For models with an intercept, setting β0 = me1 satisfies the first moment condition
E(yi) = m. The larger σ2 is, the more the prior shrinks β toward the intercept only model
(with an intercept focused on m), and so is conservative in favoring the null of the overall
F-test that no covariates are important.

To match the second moment condition var(yi) = v, set gp + σ2 = v and solve for
g = (v− σ2)/p in (1) when σ2 ≤ v. Since E(yi|σ, m, v) = m and var(yi|σ, m, v) = v for all
σ ≥ 0, the marginal constraint of yi ∼ (m, v) approximately holds for any prior σ2 ∼ p(·)
with support σ2 ∈ [0, v]. In particular, a special case of the generalized beta distribution,

pa,b,v(σ
2) =

Γ(a + b)
Γ(a)Γ(b)v

(
σ2

v

)a−1(
1− σ2

v

)b−1

I[0,v](σ
2), (4)

denoted gb(a, b, v), allows flexibility in specifying how much variability the regression
model explains relative to the total variability v; note E[ v−σ2

v |v] =
b

a+b . If one had prior
information that, say, the amount of variation explained by regression is r0 (similar to R2

in OLS regression, but R2 conditions on X and fixes β = β̂), then the parameters in (4)
could be chosen such that b

a+b = r0 with the total “sample size” n0 going into the prior as
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n0 = a+ b; solving yields a = (1− r0)n0 and b = r0n0. No prior preference gives a = b = 1,
i.e., σ2 ∼ uniform(0, v), a sensible default choice.

Encapsulating the above, a hierarchical prior that maintains yi ∼ (m, v) is

β|σ2, m, v ∼ Np

(
e1m, n

p (v− σ2)(X′X)−1
)

, σ2|v ∼ gb(a, b, v),

m ∼ N(m0, v/km), v−1 ∼ Γ(kv, v0kv).
(5)

This prior provides an intuitive interpretation given v: when σ2 = 0 (b → ∞) the model
explains all variability in yi, when σ2 = v (a → ∞) then the model explains nothing.
Values a, b ∈ (0, ∞) indicates that the truth is somewhere between these two extremes,
with a = b = 1 reflecting no preference on how much variability the model explains.
This formulation of the g-prior can be viewed as a type of ridge regression which further
addresses multicollinearity among predictors, but where the ridge parameter is chosen
automatically. The special form of the g-prior enables easy computation of the amount of
variability the model explains relative to the total v.

Once a distribution (e.g., Gaussian) is assumed for the linear regression model given
in (2), estimates of β and σ2 can be obtained using statistical software such as JAGS [21] via
the R package R2jags [22]; see Supplementary Materials for the R code.

2.3. Hyper-Prior Elicitation for (M, V)

Our prior in (5) requires a specification for hyperparameters m0, v0, km and kv. Suppose
we have historical data yo = (yo1, . . . , yoM) from a similar study population. If we assume

yoi
iid∼ N(m, v), then using a noninformative prior such as p(m, v) ∝ 1/

√
v gives

m|yo, v ∼ N(ȳo, v/M), v−1|yo ∼ Γ(M/2, s2
yo ·M/2), (6)

where s2
yo = ∑n

i=1(yoi − ȳo)2/M. If one believes that the historical data yo come from the
same population as the current observed response data y = (y1, . . . , yn), it is reasonable
to set m0 = ȳo, v0 = s2

yo , km = M and kv = M/2 in (5). If the historical data come from
a population quite different from the current study or the population distribution is not
plausibly normal, one may set lower values for km and kv to put less weight on the historical
data relative to the current data. If historical data are not available, we recommend setting
m0 = ȳ = ∑n

i=1 yi/n, v0 = s2
y = ∑n

i=1(yi − ȳ)2/n, km = 2 and kv = 1 instead of setting
km = kv = 0; this assumes that the unavailable historical data have the sample mean equal
to ȳ and the sample variance equal to s2

y and are given with the weight of two observations.
In real applications, a sensitivity analysis can be performed by setting km to several different
values between 2 and M.

The idea behind our hyperprior elicitation for (m, v) is similar to the power prior [15],
which is defined as the posterior of model parameters given the historical data, raised to
a power α ∈ [0, 1], where α provides the “degree of borrowing” from the historical data.

Consider an intercept-only model yi
iid∼ N(β1, σ2). Note that our prior (5) simply reduces to

β1 = m, σ2 = v, m ∼ N(m0, v/km), v−1 ∼ Γ(kv, v0kv). Given the historical data yo, setting
m0 = ȳo, v0 = s2

yo , km = M and kv = M/2 is exactly the power prior with α = 1. Similarly,
the values of km and kv control the influence of historical data. For the general linear model
in (2), the important difference is that our prior on (β, σ2) does not require any covariates
in the historical data, since it depends on the historical data only through (m, v).
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2.4. Comparing to the Mixture of G Priors

For the linear model in (2) with Gaussian errors, the hyper-g prior in [12] can be
expressed as

β|g, σ2 ∼ Np(me1, gσ2(X′X)−1)

p(m, σ2) ∝ 1/σ2

p(g) =
h− 2

2
(1 + g)−h/2 I(g > 0),

(7)

where h > 2 is set to ensure a proper distribution. Ref. [12] show that the hyper g-prior is
not consistent for model selection when the true model is the null model, and then propose
a hyper-g/n prior as

p(g) =
h− 2

2n
(1 + g/n)−h/2 I(g > 0). (8)

Setting gσ2 = n
p (v− σ2) i.e., σ2/v = 1

gp/n+1 in our prior (5) gives

β|g, σ2 ∼ Np

(
e1m, gσ2(X′X)−1

)
,

m|g, σ2 ∼ N(m0, σ2(gp/n + 1)/km),

σ−2|g ∼ Γ(kv, kv
v0

gp/n+1 ),

1
gp/n + 1

∼ beta(a, b).

(9)

If we set a = h−2
2 , b = 1, km = 0 and kv = 0, it is easy to show that our prior further

becomes
β|g, σ2 ∼ Np

(
e1m, gσ2(X′X)−1

)
,

p(m, σ2) ∝ 1/σ2,

p(g) =
h− 2
2n/p

(1 + gp/n)−h/2 I(g > 0).

(10)

which is similar to the hyper-g/n prior in (8), the only difference being that our g is scaled
by n/p instead of n. Therefore, the proposed prior here naturally leads to a modified
version of the hyper-g/n prior considered in [12] when there is no history information on
(m, v).

2.5. Simple Example

Ref. [25] analyze data on the n = 27 lengths yi (in meters) of dugongs (sea cows)
having ages ai (in years). They fit a nonlinear exponential model for length based on ai;
we consider a linear model by transforming age, i.e., xi = (1, log(ai))

′. An example of a

commonly used vague, proper prior is β0, β1
iid∼ N(0, 102) and σ−2 ∼ Γ(0.01, 0.01). The prior

marginal mean and variance for the response y under this prior can be estimated via Monte

Carlo (MC) by simulating σ−2 ∼ Γ(0.01, 0.01), β ∼ N2(0, 102I2), and y(l)i
iid∼ N(x′iβ, σ2),

i = 1, . . . , 27, l = 1, . . . , 1000, yielding 1000 datasets {y(l)i : i = 1, . . . , n}. The simulation of
σ−2 ∼ Γ(0.01, 0.01) is completed using the method of [26] designed for gamma distributions
with small shape parameters. The average prior sample mean (across the 1000 datasets)
and prior sample variance are around 2 × 10120 and 2 × 10249, respectively. These are
nowhere near the observed sample mean and variance of ȳ = 2.334 and s2

y = 0.073. In
contrast, a similar simulation under our proposed new g-prior in (5) with a = b = 1,
m0 = ȳ, v0 = s2

y, km = 2 and kv = 1 yields an average sample mean of 2.305 with MC
standard deviation of 0.559 and an average sample variance of 0.442 with MC standard
deviation of 3.243. That is, the inference under our prior focuses on a much smaller set of
potential models that could have conceivably generated the observed data. The posterior
estimates for β0, β1, and σ2 under our proposed new g-prior are 1.770 (0.047), 0.273 (0.021),
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and 0.0094 (0.0029), respectively, where the values in parentheses are posterior standard
deviations. The commonly used vague priors specified above yield to similar estimates
but with slightly higher posterior standard deviations: 1.763 (0.047), 0.277 (0.021), and
0.0097 (0.0031).

The use of such prior predictive checks have recently been advocated by [27–29]; in
particular, ref. [27] suggests that analysts “. . . visualize simulations from the prior marginal
distribution of the data to assess the consistency of the chosen priors with domain knowl-
edge.” They further suggest the use of “weakly informative” priors to gently urge the prior
in the direction of providing plausible marginal values. This requires some thought and
visual exploration on the part of the user; the prior developed here provides a safe, default
method for nudging the prior toward domain knowledge in the form of either historical
marginal values or the sample moments seen in the data. The prior mean and variance
exist whether analyst wants to think about them or not; this example illustrates that “vague”
priors are not necessarily noninformative.

2.6. Variable Selection

Consider the Gaussian linear regression model y ∼ Nn(Xβ, σ2In). Using the proposed
g-prior in (5) for Bayesian variable selection requires the calculation of marginal likelihood
for each of the 2p−1 submodels, denoted as Mξ , where ξ = (ξ1, . . . , ξp)′ ∈ {0, 1}p is a
p-dimensional vector of indicators with ξ j = 1 implying that the jth covariate xij is included
in the model. Here we always set ξ1 = 1 so that an intercept is included. Under modelMξ ,
we have y ∼ Nn(Xξ βξ , σ2In), where Xξ is the n× pξ design matrix under modelMξ , and
βξ is the corresponding pξ-vector of regression coefficients. For modelMξ , a default prior
specification for βξ and σ2 is given by

βξ |σ2 ∼ N
(

me1ξ ,
n
pξ

(v− σ2)(X′ξXξ)
−1
)

, σ2 ∼ gb(a, b, v),

m ∼ N(m0, v/km), v−1 ∼ Γ(kv, v0kv),
(11)

where e1ξ = (1, 0, . . . , 0)′ is pξ-dimensional.
To perform the variable selection, we need to calculate the Bayes factors for comparing

each modelMξ with the null modelMN =Me1 . Note that under modelMξ ( 6=MN)
with prior (11), the marginal likelihood given σ2 and (m, v) is

p(y|Mξ , σ2, m, v) =(2π)−
n
2

[
pξ

nv− (n− pξ)σ2

]pξ /2
(σ2)−

n−pξ
2

× exp

−
(SST)pξ

[
1 +

n(v−σ2)(1−R2
ξ)

pξ σ2 + n(ȳ−m)2

SST

]
2[nv− (n− pξ)σ2]

,

(12)

where SST = ∑n
i=1(yi − ȳ)2 and R2

ξ is the usual R-squared under model Mξ . Under
the null model MN : yi ∼ N(β1, σ2), the prior (11) simply reduces to β1 = m, σ2 = v,
m ∼ N(m0, v/km), v−1 ∼ Γ(kv, v0kv). Therefore, the marginal likelihood under the null
model given (m, v) is

p(y|MN , m, v) = (2π)−
n
2 (v)−

n
2 exp

{
− 1

2v

n

∑
i=1

(yi −m)2

}
. (13)

Note that this is a special case of (12) with σ2 = v and pξ = 1.
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When (m, v) is fixed and known, the Bayes factor for comparing any model Mξ

( 6=MN) to the null modelMN is

BF[Mξ :MN |m, v] =
p(y|Mξ , m, v)
p(y|MN , m, v)

, (14)

where p(y|Mξ , m, v) =
∫ v

0 pa,b,v(σ
2)p(y|Mξ , σ2, m, v)dσ2. It is easy to show that the Bayes

factor in (14) is finite for all pξ ≤ p < n. The integrals in p(y|Mξ , m, v) can be numerically
computed using the R function integrate [30].

When the hyperprior on (m, v) in (5) is used, the Bayes factor for comparingMξ to
MN becomes

BF[Mξ :MN ] =
Em,v[p(y|Mξ , m, v)]
Em,v[p(y|MN , m, v)]

, (15)

where the expectation Em,v[·] is taken under the prior for (m, v) in (5). However, the calcula-
tion of expectations Em,v[·] in (15) is considerably more computationally demanding. Based
on the competitive performance of our prior compared to other methods in simulation stud-
ies, we recommend using the Bayes factor in (14) with (m, v) fixed at (m̂, v̂), where m̂ and v̂
are determined as follows. If there is no history information available for (m, v), we simply
use m̂ = ȳ and v̂ = s2

y based on the current marginal data {yi}. If there is some history
information for (m, v) that can be summarized as m ∼ N(m0, v/km), v−1 ∼ Γ(kv, v0kv), we
set (m̂, v̂) = (m̃, ṽ), where (m̃, ṽ) is the posterior mean estimate for (m, v) based on only
the marginal data (y1, . . . , yn); see Section 2.3 for the specification of m0, v0, km and kv with
historical data yo. Note that closed-form formulas for m̃ and ṽ can be derived; see [31] for
the derivations. Once the model is selected, we can apply the prior (5) to fit the model
under the selected model.

Information Paradox

The information paradox [32] refers to the situations when we have very strong infor-
mation supporting a non-null modelMξ , but the Bayes factor BF[Mξ :MN |m, v] does not
go to ∞ as the information aboutMξ accumulate (i.e., R2

ξ → 1). The proposed informative
g prior resolves the information paradox in the sense that BF[Mξ :MN |m, v] → ∞ with
fixed n, pξ ≤ p ≤ (n− 2) and R2

ξ → 1. Note that the denominator in (14) is finite, and by
the mean value theorem for definite integrals, there exists c in (0, v) such that∫ v

0
pa,b,v(σ

2)p(y|Mξ , σ2, m, v)dσ2 = pa,b,v(c)
∫ v

0
p(y|Mξ , σ2, m, v)dσ2.

Therefore, it suffices to show that

lim
R2

ξ→1

∫ v

0
p(y|Mξ , σ2, m, v)dσ2 = ∞ for all pξ ≤ p ≤ (n− 2).

Noting that
∫ v

0 p(y|Mξ , σ2, m, v)dσ2 is an increasing function of R2
ξ , we have

lim
R2

ξ→1

∫ v

0
p(y|Mξ , σ2, m, v)dσ2 =

∫ v

0
(2π)−

n
2

[
pξ

nv− (n− pξ)σ2

]pξ /2
(σ2)−

n−pξ
2

× exp

− (SST)pξ

[
1 + n(ȳ−m)2

SST

]
2[nv− (n− pξ)σ2]

dσ2
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≥
∫ v

0
(2π)−

n
2

[
pξ

nv

]pξ /2
(σ2)−

n−pξ
2

× exp

− (SST)pξ

[
1 + n(ȳ−m)2

SST

]
2[nv− (n− pξ)v]

dσ2

≥ constant
∫ v

0
(σ2)−

n−pξ
2 dσ2 = ∞

for all pξ ≤ p ≤ (n− 2).

3. Mixed Models
3.1. One-Way Random Effects ANOVA

The g-prior developed in Section 2 for regression models can be immediately extended
to mixed models in an analogous fashion. The shrinkage induced by the g-prior yields
familiar exchangeable prior specifications already in widespread use as special cases, as
well as some new default formulations. We first examine the simplest random effects
model, a one-way ANOVA, typically formulated as

yij = β + γi + εij, i = 1, . . . , c, j = 1, . . . , ni, (16)

where εij
iid∼ N(0, σ2), rewritten in matrix form as

yi = 1ni β + 1ni γi + εi, (17)

where yi = (yi1, . . . , yini ), 1ni is a ni-vector of ones, and εi = (εi1, . . . , εini ). Note that
without further constraints, (16) is overparameterized; shrinkage on both the “fixed” and
“random” portions separately is required for identifiability.

Noting that ni(1′ni
1ni )

−1 = 1 for all i, a g-prior on the first portion is

β|g1 ∼ N(β0, g1).

Similarly, a g-prior on the second portion is

γ1, . . . , γc|g2
iid∼ N(0, g2).

This prior is the same as assuming exchangeable random effects, e.g., γ1, . . . , γc|σ2
r

iid∼
N(0, σ2

r ), where σ2
r = g2; placing a prior on g2 is the same as placing a prior on σ2

r . The
g-prior as a ridge prior is evident here, with model identifiability achieved by shrinking γi
towards 0. The amount of shrinkage is controlled a priori via the parameter g2. There are ob-
vious links from the g-prior to ridge regression, shrinkage priors, and penalized likelihood.

The prior on σr has received considerable interest; suggestions include the half-Cauchy
prior and uniform priors [33], as well as approximations to Jeffreys’ prior, e.g., σ−2

r ∼
Γ(0.001, 0.001), which permeated Bayesian literature in the 1990’s. Ref. [34] advocate a
data-driven prior that is similar in spirit to what is presented here. Ref. [35] considers
a shrinkage prior for σ2

r induced by a uniform prior on σ2/(σ2 + σ2
r ). Ref. [36] uses a

g-prior for ANOVA with diverging number of parameters. In contrast, we will build a prior
that facilitates the borrowing of history information on the overall marginal mean m and
variance v of the data yij.

3.2. Linear Mixed Models

Now consider the linear mixed model

yij = x′ijβ + z′ijγi + εij, or equivalently, yi = Xiβ + Ziγi + εi, (18)
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where εij
iid∼ N(0, σ2), γi is a k-vector of random effects, Xi = [xi1 · · · xini ]

′, Zi = [zi1 · · · zini ]
′.

In this setting, i = 1, . . . , c denotes the data cluster associated with γi and j = 1, . . . , ni are
the number of repeated measures within cluster i; the total sample size is n = ∑c

i=1 ni. The
variability in model (18) is portioned to Xiβ, Ziγi and εi. The first two components will
have dependent g-priors, inducing differing amounts of shrinkage across the two regression
models; the second portion is further shrunk toward zero. Set γ = (γ′1, . . . , γ′c)

′. Again, the
goal here is to develop a prior on (β, γ, σ2) that incorporates the marginal information of
yij ∼ (m, v), where a hyperprior on (m, v) can be extracted from historical data or expert
option. The usual g-prior on β for cluster i is

β|g1∼Np

(
me1, g1ni(X′iXi)

−1
)

.

Let µix = E(xij|i) and Σix = cov(zij|i) denote by mean and covariance of xij for

cluster i, then X′iXi/ni
p→ (µixµ′ix + Σix). Similarly, let µx = E(xij) and Σx = cov(xij)

denote the overall mean and covariance across all clusters, set X = [X′1 · · ·X′c]′, then

X′X/n = 1
n ∑c

i=1 X′iXi
p→ [µxµ′x + Σx]. Noting that the same coefficient β is used for all

clusters, the overall g-prior for β can be set as

β|g1∼Np

(
me1, g1n(X′X)−1

)
. (19)

The usual g-prior on γi for cluster i is

γi|g2
ind.∼ Nk

(
0, g2ni(Z′iZi)

−1
)
≈ Nk

(
0, g2(µiµ

′
i + Σi)

−1
)

, (20)

where µi = E(zij|i), Σi = cov(zij|i). Denote by µ = E(zij) and Σ = cov(zij) the overall
mean and covariance of zij across all clusters. If the zijs come from the same population,
i.e., µ1 = · · · = µc = µ and Σ1 = · · ·Σc = Σ, (20) is equivalent to

γ1, . . . , γc|g2
iid∼ Nk(0, Ω),

where Ω = g2[µµ′ + Σ]−1. This final expression lies at the heart of hundreds of mixed
model analyses; the derivation here clarifies that this is exactly what the g-prior gives us

when zij
iid∼ (µ, Σ). Define Z = [Z′1 · · ·Z′c]′. Noting that Z′Z/n = 1

n ∑c
i=1 Z′iZi

p→ [µµ′ + Σ],
a sensible default prior is

γi|g2
iid∼ Nk

(
0, g2n(Z′Z)−1

)
, (21)

assuming µ1 = · · · = µc = µ and Σ1 = · · ·Σc = Σ is approximately correct.
Let tk(r, µ, Σ) be the k-dimensional multivariate t distribution with degrees of freedom

r, mean µ for r > 1, and covariance r
r−2 Σ for r > 2. Taking r/g2 ∼ χ2

r under the default
prior (21), the induced marginal prior on γi is a multivariate t distribution see [37], given by

γi ∼ tk(r, 0, n(Z′Z)−1).

It is tempting to seek out a more flexible model via the Wishart distribution, but note
if instead γi|Ω ∼ Nk(0, Ω), and Ω ∼ W−1

k (r + k − 1, nr(Z′Z)−1), the same marginal
distribution is induced on γi. Here, W−1

k (r, R) is an inverted-Wishart distribution with the
usual parameters (r, R), r > (k− 1). One can play around with different settings for various
hyperparameters, but the end result is typically a multivariate t distribution or something
close. For example, ref. [38] proposed a default random effects specification for generalized

linear models; under the normal errors model their proposal is γi|Ω
iid∼ Nk(0, Ω) where

Ω|σ2 ∼ W−1(k, kR), R = wcσ2(Z′Z)−1, where w > 0 is an inflation factor. Their induced
marginal prior is γi ∼ tk(1, 0, kwcσ2(Z′Z)−1). Note that our specification is not conditional
on σ2, otherwise, all these priors induce a multivariate t-distribution with similar covariance
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structures. Ref. [38] compare their approach to the approximate uniform shrinkage prior
of [39]. Ref. [40] extended half-t prior [33] to the multivariate setting so that the prior on
the covariance matrix induces half-t priors on standard deviations and uniform priors
on correlations.

We proceed to build a prior that reflects the prior knowledge on the overall marginal
mean m and variance v of the data yij. Under prior (20) or (21) along with (19), we have
m = E(yij) as before and now

v = var(yij) = var(x′ijβ) + var(z′ijγi) + var(εij) ≈ g1 p + g2k + σ2.

Certainly σ2 ≤ v and g2k ≤ v− σ2 are reasonable bounds. The following default specifica-
tion enforces the mean and variance constraint of yij ∼ (m, v):

β|g, σ2 ∼ Np

(
me1, n

p (v− σ2 − gk)(X′X)−1
)

.

γi|g
iid∼ Nk

(
0, gn(Z′Z)−1

)
g|σ2 ∼ gb

(
a1, b1, v−σ2

k

)
σ2 ∼ gb(a2, b2, v)

m ∼ N(m0, v/km), v−1 ∼ Γ(kv, v0kv).

(22)

A uniform prior on σ2 is specified a2 = b2 = 1; a uniform prior on g obtains from
a1 = b1 = 1. When covariates zij come from quite different subpopulations across clusters,

we recommend replacing the prior on γi in (22) with γi|g
ind.∼ Nk

(
0, gni(Z′iZi)

−1). The
proposed prior (22) enables easy computation of the approximate amount of variation
explained by random effects (i.e., gk/v) and fixed effects (i.e., (v− σ2 − gk)/v) relative to
the total v.

The priors on the fixed and random effect portions of the model are tied together
and correlated; this is necessary to a priori conserve marginal variance. Ref. [41] note that,
although variance components are usually modeled independently in the prior, typically
as inverse-gamma, uniform, or half-Cauchy, they are “linked as they are components of the
total variation in the response. . . ” and suggests modeling them jointly as we do here, though
via generalized multivariate gamma or multivariate log-normal distributions.

3.3. Hyper-Prior Elicitation for (M, V) in Mixed Models

Our prior in (22) requires specifying hyperparameters m0, v0, km and kv
in the hyperprior for (m, v). Suppose the historical data are yo = {yoij|i = 1, . . . , co; j =
1, . . . , noi}∼(m, v). Set M = ∑co

i=1 noi. We need to extract sensible hyper-parameter values
m0, v0, km and kv so that the hyper-prior for (m, v) in (22) is close to the true posterior of
(m, v) based on the historical data. Assume that the historical data can be approximately

fit by the one-way random ANOVA: yoij = m + γi + εij, γi
iid∼ N(0, σ2

or), εij
iid∼ N(0, σ2

o ).
Unbiased estimates for m, σ2

or and σ2
o can be obtained using restricted maximum likelihood

(REML) via the R function lmer in package lme4 [42], denoted as m̂o, σ̂2
or and σ̂2

o . Then
v̂o = σ̂2

o + σ̂2
or is an unbiased estimate of v, and ρ̂o = σ̂2

or/v̂o is an estimate of the intraclass
correlation coefficient. Based on some simulation trials, we find that the following posterior
distributions approximately hold

m|yo, ρ̂o, v ∼ N(m̂o, v
nom

), v−1|yo, ρ̂o ∼ Γ( nov
2 , v̂y

nov
2 ), (23)

where nom = M/(1+ ρ̂o/(noλ − 1)) and nov = M/(1+ ρ̂2
o/(noλ − 1)) can be interpreted as

the effective sizes to account for the intraclass dependency, where noλ = co/ ∑i
1

noi
. Simple

simulations (not shown here) reveal that the posterior distributions in (23) often provide
us empirical coverage probabilities for (m, v) around 0.95, and the confidence width for v
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is much narrower than the methods proposed in [43]. Further investigation is needed to
understand the reason behind this. Fortunately, we use this approximate posterior to only
select a reasonable hyperprior for (m, v) but not for our actual posterior inference based on
the current data.

If one believes that the historical data yo come from the same population as the current
observed response data y = {yij|i = 1, . . . , c; j = 1, . . . , ni}, it is reasonable to set m0 = m̂o,
v0 = v̂o, km = nom and kv = nov/2 in the hyperprior of (m, v) in (22). Setting lower values
for km and kv puts less weight on the historical data relative to the current data. If the
historical data are not available, we recommend setting m0 = m̂, v0 = v̂, km = 2 and kv = 1,
where m̂ and v̂ are the REML estimates of (m, v) based on the current response data y.

For the random effects one-way ANOVA model (16), the prior (22) reduces to β|g, σ2 ∼
N(m, v− σ2− g), γi ∼ N(0, g), g|σ2 ∼ gb(a1, b1, v− σ2) and σ2 ∼ gb(a2, b2, v). In addition,
the prior information of yij ∼ (m, v) indicates σ2 + g = v which further leads to β = m.
Therefore, it is easy to show that the prior (22) for the random effects one-way ANOVA
model finally reduces to

γi ∼ N(0, g), σ2

v ∼ beta(a2, b2),

β ∼ N(m0, v/km), v−1 ∼ Γ(kv, v0kv).
(24)

If we set a2 = b2 = 1 and km = kv = 0, the prior in (24) is equivalent to

γi ∼ N(0, g), σ2

σ2+g ∼ uniform(0, 1), p(β, σ2) ∝ 1
σ2 , (25)

which is exactly the shrinkage prior considered in [35]. That is, our prior naturally reduces
to a well-known shrinkage prior for the random one-way ANOVA when there is no history
information available for (m, v).

3.4. Rats Data Example

In the rat data example from WinBUGS manual [44], 30 rats’ weights (in kg) were
measured weekly for five weeks. Let yij be the weight of the ith rat measured in week j and
aij be the corresponding age, i = 1, . . . , 30, j = 1, . . . , 5. Consider the mixed model (18) with

x′ij = (1, aij), z′ij = (1, aij) and γi = (γi1, γi2)
′ iid∼ Nk(0, Ω), where Ω = diag(σ2

r1, σ2
r2). Typi-

cally vague priors are used, e.g., γi1 ∼ N(0, σ2
r1), γi2 ∼ N(0, σ2

r2), σ2
r1, σ2

r2
iid∼ Γ−1(0.01, 0.01).

The marginal mean and variance for the response yij under this prior can be estimated
via Monte Carlo (MC) by simulating σ2

r1, σ2
r2, γi1, γi2, β = (β0, β1)

′ ∼ N2(0, 102I2), and

y(l)ij
iid∼ N(x′ijβ + z′ijγi, σ2), i = 1, . . . , 30, j = 1, . . . , 5, l = 1, . . . , 1000, yielding 1000 datesets

{y(l)ij : i = 1, . . . , 30, j = 1, . . . , 5}, where σ2 ∼ Γ−1(0.01, 0.01). The average prior sample

mean (across the 1000 datasets) and prior sample variance are around 2.5× 10162 and ∞
(as reported in R), respectively. These substantially differ from the observed sample mean
and variance of ȳ = 0.243 and s2

y = 0.004. In contrast, a similar simulation under our
proposed new g-prior in (22) with a1 = b1 = a2 = b2 = 1, m0 = 0.243, v0 = 0.004, km = 2
and kv = 1 yields an average sample mean of 0.249 with MC standard deviation of 0.144
and an average sample variance of 0.024 with MC standard deviation of 0.120. That is, the
inference under our prior focuses on a much smaller set of potential models around those
that could have conceivably generated the observed marginal data. The posterior estimates
for β0, β1, and σ2 under our proposed new g-prior are 0.1073 (0.0051), 0.0062 (0.0002), and
0.00004 (0.000006), respectively, where the values in parentheses are posterior standard
deviations. The commonly used vague priors specified above yield to similar estimates
but with much higher posterior standard deviations: 0.1067 (0.0059), 0.0061 (0.0049), and
0.00006 (0.000009).
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3.5. Model Fitting via Block MCMC

Although the previous section portions variability due to Xβ and Ziγi separately,
Ref. [45] note that updating (β′, γ′)′ in one large block virtually eliminates problematic
MCMC mixing, as β and γ are often highly correlated in the posterior. An optimal approach
considers the full model (18) jointly

y =
[

X Z̃
][ β

γ

]
+ ε, (26)

where Z̃ = block-diag(Z1, . . . , Zc)
de f
= block-diag{Zi|i = 1, . . . , c}. Under the prior (22), the

full conditional for (β′, γ′)′ is[
β
γ

]∣∣∣y, σ2, g ∼ Np+ck(µn, Σn),

where

µn =
1
σ2 Σn

{[
X′

Z̃′

]
y +

[
pσ2

n(v−σ2−gk)X′Xmei

0

]}

Σn = σ2


 (

1 + pσ2

n(v−σ2−gk)

)
X′X X′Z̃

Z̃′X block-diag
{

Z′iZi +
wiσ

2

gn Z′Z|i = 1, . . . , c
} 

−1

.

The full conditionals for σ2 and g do not correspond to any known distributions, so an
adaptive Metropolis algorithm [46] can be used.

4. Simulation Study

In all simulation studies, for each MCMC run, 5000 scans were thinned from 20,000
after a burn-in period of 2000 iterations; convergence diagnostics deemed this more than
adequate. We use posterior means as the point estimates for all parameters. R functions
to implement linear and linear mixed models using the proposed priors are provided in
Supplementary Materials.

4.1. Simulation I: Fixed Effects Model

Simulations were carried out to evaluate the proposed methodology and compare it to
the benchmark prior, local empirical Bayes (EB) approach and a hyper-g prior considered
in [12]. Data were generated from the Gaussian regression model

yi = β′xi + εi, εi
iid∼ N(0, σ2), i = 1, . . . , n,

where β = (β1, β2, . . . , βp)′ and xi = (1, xi2, . . . , xip)
′. Let Xc be the usual centered design

matrix for (xi2, . . . , xip)
′. The benchmark and EB methods consider the following priors

(β2, . . . , βp)
de f
= β∗ ∼ Np−1(0, gσ2(X′cXc)

−1)

β1 ∼ N(0, 1010)

σ2 ∼ Γ−1(0.001, 0.001),

(27)
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where g = max{n, (p − 1)2} is set for the benchmark method and g = max{0, R2(n −
p)/(1− R2)/p} is used for the EB approach, where R2 is the R-squared value under the
considered model. The hyper-g is given by

β∗ ∼ Np−1(0, gσ2(X′cXc)
−1)

β1 ∼ N(0, 1010)

σ2 ∼ Γ−1(0.001, 0.001)
g

1 + g
∼ beta(1, h/2− 1),

(28)

where we set h = 3 in all simulations which is the same as the setting used in [12].

4.1.1. Parameter Estimation

First we evaluate the performance for estimating model parameters using various

methods. We generated (xi2, . . . , xip)
′ iid∼ Np−1(1, Σρ), where Σρ has diagonals being 1 and

off-diagonals being ρ. We set p = 3, σ2 = 1, ρ = 0.9, and β = (0.3, 0.3, 0.3)′, yielding
R-squared values around 0.26. The true marginal mean and variance of yi are given by
mT = E(yi) = β1 + β2 + β3 = 0.9 and vT = var(yij) = σ2 + (β2, β3)Σρ(β2, β3)

′ = 1.342,
respectively. We implemented our proposed prior in (5) with a = b = 1.

To evaluate how historical data can improve the parameter estimation accuracy, we
additionally generated yois of size M = 50 in the same way as generating yis and considered
three settings of the hyperprior for (m, v): (V1) new-true, when infinite historical data
available, m0 = mT , v0 = vT , km = 1010 and kv = 1010, i.e., (m, v) is fixed at the truth
(mT , vT); (V2) new-hist, when a small set of historical data available, m0 = ȳo, v0 = s2

yo ,
km = M and kv = M/2; (V3) new-none, when no historical data available, m0 = ȳ, v0 = s2

y,
km = 2 and kv = 1.

Let θ be a generic parameter and θ̂ be an estimate. The mean squared error (MSE) for θ̂
is defined as MSE = ‖θ̂− θ‖2 = ∑j(θ̂j − θj)

2. The bias for θ̂ is defined as ∑j(θ̂j− θj). Table 1
reports the average bias and MSE values and coverage probabilities with interval widths
across 500 Monte Carlo (MC) replicates. When n = 100, our method without using history
information (new-none) performs very similarly to the other three completing methods.
When a little history information is available, our prior (new-hist) has significantly lower
MSE values and reduced interval widths on estimating σ2 without compromising the
coverage probabilities; the performance for estimating β js is also slightly better than other
approaches. When the true information on (m, v) is available, the estimation performance
under our prior (new-true) is further improved comparing to new-hist. Regarding the
estimation bias, we can see that all informative priors lead to biased estimates with a
general trend that higher informativeness of the prior leads to larger biases. As the sample
size increases to n = 500, although our methods (new-hist and new-true) still outperform
other priors, the differences become smaller.
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Table 1. Simulation I: Average biases (MSEs), coverage probabilities (interval widths) across 500 MC
replicates in the simulation study for parameter estimation. Here, new-true, new-hist and new-none
corresponds to the three hyperprior versions (V1), (V2) and (V3), respectively.

Bias (MSE) Coverage (Width)

Method β1 (β2, β3)′ σ2 β1 β2 β3 σ2

n = 100

new-true 0.041 (0.0196) −0.050 (0.0894) −0.012 (0.0092) 0.94 (0.55) 0.97 (0.86) 0.96 (0.86) 0.98 (0.43)
new-hist 0.038 (0.0202) −0.045 (0.0906) −0.011 (0.0157) 0.95 (0.56) 0.98 (0.88) 0.97 (0.87) 0.96 (0.51)

new-none 0.022 (0.0205) −0.031 (0.0948) 0.011 (0.0206) 0.95 (0.57) 0.98 (0.90) 0.97 (0.90) 0.95 (0.57)
benchmark −0.012 (0.0194) 0.003 (0.1049) 0.006 (0.0205) 0.96 (0.57) 0.97 (0.91) 0.96 (0.92) 0.95 (0.57)

EB 0.018 (0.0212) −0.027 (0.0961) 0.023 (0.0219) 0.94 (0.56) 0.97 (0.90) 0.96 (0.90) 0.95 (0.58)
hyper-g 0.037 (0.0231) −0.047 (0.0906) 0.034 (0.0229) 0.95 (0.59) 0.97 (0.89) 0.97 (0.89) 0.95 (0.60)

n = 500

new-true 0.010 (0.0043) −0.012 (0.0216) 0.004 (0.0034) 0.96 (0.25) 0.95 (0.40) 0.94 (0.40) 0.96 (0.24)
new-hist 0.010 (0.0044) −0.012 (0.0217) −0.001 (0.0038) 0.95 (0.25) 0.94 (0.40) 0.94 (0.40) 0.96 (0.24)

new-none 0.007 (0.0044) −0.008 (0.0219) 0.003 (0.0041) 0.95 (0.25) 0.95 (0.40) 0.94 (0.40) 0.96 (0.25)
benchmark 0.000 (0.0043) −0.002 (0.0223) 0.003 (0.0041) 0.95 (0.25) 0.94 (0.40) 0.94 (0.40) 0.96 (0.25)

EB 0.006 (0.0044) −0.007 (0.0219) 0.006 (0.0042) 0.95 (0.25) 0.94 (0.40) 0.94 (0.40) 0.96 (0.25)
hyper-g 0.009 (0.0045) −0.011 (0.0217) 0.008 (0.0042) 0.95 (0.26) 0.95 (0.40) 0.94 (0.40) 0.95 (0.25)

4.1.2. Variable Selection

For a given p ≥ 2, we generated (xi2, . . . , xip)
′ de f
= x∗i as follows: (i) simulate x∗i

iid∼
Np−1(1, Σρ); (ii) set the even elements of x∗i to be binary by setting them to 0 if less than
1 and to be 1 if greater than 1. We set ρ = 0.7, p = 16 and β = (β′l , 0′), where βl is the
first l elements of β for l = 1, 2, 3, 4, 7, 10, 13, 16. That is, among the p = 16 covariates
(including the intercept), there are l of them having non-zero coefficients. For each given
l, we generated σ2 ∼ beta(400, 100) and βl ∼ Nl(2e1, n

l (X
′
lXl)

−1(1− σ2)), where Xl is the
design matrix for (1, xi1, . . . , xil). These settings yield R-squared values ranging from 0.11
to 0.30 for l = 1, 2, 3, 4, 7, 10, 13, 16. For our method, we additionally generated yois of size
M = 50 in the same way as generating yis and considered the same three versions of the
hyper prior for (m, v) as in Section 4.1.1: (V1) new-true; (V2) new-hist; (V3) new-none. To
compare our methods to the benchmark, EB and hyper-g approaches, we considered the
following three cases under each prior: (C1) implement the variable selection procedure
and obtain OLS estimation using the selected model; (C2) obtain Bayesian estimation using
the true model; (C3) obtain Bayesian estimation using the full model. Here (C1) is used to
compare the pure variable selection performance, (C2) is used to compare the predictive
performance under the true model, and (C3) is used to compare the overall predictive
performance when the model contains noisy covariates. For all Bayesian methods, posterior
means β̂ were used for estimating β.

Table 2 reports the average values of ‖Xβ− Xβ̂‖2/n across 200 MC replicates with
n = 100. When OLS is used for fitting the selected model, the three versions of our methods
perform very similarly, indicating that the history information on (m, v) has little influence
on variable selection accuracy. Comparing to EB and hyper-g priors, our methods perform
slightly better when the true model size is small (l ≤ 2), and perform very similarly when
l ≥ 3. The benchmark prior works much better when the true model size is less than or
equal to 7, but performs much worse when the true model size increases. The reason is that
the benchmark prior sets g = max(n, (p− 1)2) = 225 which leads to a more flat prior on β.
When Bayesian estimation is used under the true or full model and there is some history
information available on (m, v), our methods (both new-hist and new-true) outperform the
other methods, and the benchmark prior is the worst due to its large choice of g. The only
case where new-hist and new-true do not perform better is when the full model is fit but the
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null model is the truth i.e., l = 1 under (C3), for which more historical data (see new-true)
will help. Even when we don’t have any history information on (m, v), the results under
(C2) and (C3) show that our method performs slightly better than other methods, especially
when l ≥ 4.

Table 2. Simulation I: Average ‖Xβ−Xβ̂‖2/n values across 200 MC replicates in the simulation study
for variable selection.

Method Size = 1 Size = 2 Size = 3 Size = 4 Size = 7 Size = 10 Size = 13 Size = 16

(C1) OLS estimation using the selected model

new-true 0.064 0.076 0.079 0.095 0.108 0.116 0.130 0.138
new-hist 0.062 0.074 0.078 0.095 0.107 0.116 0.130 0.137

new-none 0.056 0.072 0.079 0.094 0.107 0.116 0.130 0.137
benchmark 0.025 0.046 0.052 0.071 0.100 0.126 0.145 0.159

EB 0.110 0.087 0.081 0.095 0.108 0.115 0.130 0.137
hyper-g 0.094 0.081 0.079 0.093 0.107 0.114 0.131 0.138

(C2) Bayesian estimation using the true model

new-true 0.000 0.012 0.020 0.029 0.042 0.058 0.069 0.078
new-hist 0.007 0.013 0.021 0.030 0.044 0.061 0.072 0.083

new-none 0.010 0.015 0.023 0.032 0.047 0.063 0.074 0.085
benchmark 0.010 0.016 0.024 0.034 0.057 0.079 0.103 0.127

EB 0.010 0.016 0.025 0.034 0.049 0.065 0.076 0.088
hyper-g 0.010 0.016 0.025 0.034 0.048 0.064 0.075 0.086

(C3) Bayesian estimation using the full model

new-true 0.017 0.050 0.060 0.069 0.072 0.078 0.079 0.078
new-hist 0.028 0.056 0.065 0.073 0.077 0.082 0.083 0.083

new-none 0.026 0.058 0.067 0.075 0.079 0.083 0.084 0.085
benchmark 0.154 0.132 0.126 0.131 0.131 0.127 0.129 0.127

EB 0.018 0.057 0.069 0.078 0.082 0.087 0.087 0.088
hyper-g 0.023 0.057 0.067 0.075 0.080 0.084 0.085 0.086

4.2. Simulation II: Random One-Way ANOVA

Data are generated from the random one-way ANOVA model

yij = β1 + γi + εij, γi
iid∼ N(0, σ2

r ), εij
iid∼ N(0, σ2), i = 1, . . . , c, j = 1, . . . , ni.

where we set β1 = 2, c = 10, σ2 = 1. In addition, we consider σ2
r = 0.25, 0.5 and

ni ∼ dis-unif [10, 15], where dis-unif [a, b] represents a discrete uniform distribution with
support being all integers with [a, b]. The true marginal mean and variance of yij are given
by mT = E(yij) = β1 = 2 and vT = var(yij) = σ2 + σ2

r , respectively. We implement our
proposed default prior in (22) with a1 = b1 = a2 = b2 = 1 and the hyper-prior settings
recommended in Section 3.3. Then σ2

r can be estimated from the posterior samples of g.
We additionally generate {yoij|i = 1, . . . , 10; j = 1, . . . , 10} in the same way as gen-

erating yijs and consider three versions of the hyper prior for (m, v): (V1) new-true,
m0 = mT , v0 = vT , km = 1010 and kv = 1010; (V2) new-hist, m0 = m̂o, v0 = v̂o,
km = nom and kv = nov/2; (V3) new-none, m0 = m̂, v0 = v̂, km = 2 and kv = 1; see
Section 3.3 for the definitions of these hyper-parameters. We also compare our meth-
ods to the σr ∼ uniform(0, 102) prior [33], the σ2

r ∼ uniform(0, 104) prior [47], the
σ2

r ∼ Γ−1(0.001, 0.001) prior [47] and the σ2/(σ2 + σ2
r ) ∼ uniform(0, 1) shrinkage prior [35].

For these alternative priors, the typical priors N(0, 103) and Γ−1(0.001, 0.001) are used on
β1 and σ2, respectively.

Table 3 reports the average bias and MSE values and coverage probabilities with
interval widths across 500 MC replicates, where the coverage probabilities for γis are



Stats 2023, 6 185

defined as the average coverage across all γis for i = 1, . . . , c. Our approach with new-hist
or new-true has significantly lower MSE values and narrower interval widths for estimating
all model parameters while maintaining coverage probabilities around the nominal level
95% than other methods in all cases. Even when history information on (m, v) is not
available, our method with new-none still has much lower MSE values for estimating σ2

r
and narrower confidence interval widths than all other priors. Note that the induced prior
under new-true essentially assumes that the prior variance of β1 is zero, so we didn’t report
the coverage probability for β1 here.

Table 3. Simulation II: Average biases (MSEs), coverage probabilities (interval widths) across 500 MC
replicates in the simulation study for random one-way ANOVA model.

Bias (MSE) Coverage (Width)

Method β1 γi σ2 σ2
r β1 γi σ2 σ2

r

σ2
r = 0.25, ni ∼ sample(10, 15)

new-true −0.000 (0.000) −0.015 (0.619) −0.010 (0.007) 0.010 (0.007) - 0.94 (0.94) 0.97 (0.34) 0.97 (0.34)
new-hist −0.000 (0.018) −0.0003 (0.711) −0.0001 (0.012) 0.055 (0.019) 0.96 (0.55) 0.95 (1.05) 0.95 (0.46) 0.97 (0.57)

new-none 0.018 (0.035) −0.145 (0.796) 0.002 (0.015) 0.094 (0.034) 0.96 (0.78) 0.95 (1.15) 0.96 (0.51) 0.98 (0.85)
unif σr 0.017 (0.035) −0.139 (0.814) 0.019 (0.016) 0.140 (0.067) 0.97 (0.84) 0.95 (1.20) 0.95 (0.52) 0.96 (1.13)
unif σ2

r 0.018 (0.035) −0.145 (0.801) 0.015 (0.016) 0.267 (0.140) 0.98 (0.96) 0.98 (1.30) 0.95 (0.52) 0.95 (1.64)
gamma 0.017 (0.035) −0.133 (0.846) 0.026 (0.017) 0.057 (0.040) 0.94 (0.77) 0.93 (1.12) 0.96 (0.53) 0.93 (0.88)
shrink 0.018 (0.035) −0.142 (0.796) 0.007 (0.015) 0.125 (0.046) 0.97 (0.83) 0.96 (1.19) 0.96 (0.51) 0.98 (0.99)

σ2
r = 0.5, ni ∼ sample(10, 15)

new-true −0.0000 (0.000) −0.0006 (0.685) 0.012 (0.011) −0.0012 (0.011) - 0.94 (1.01) 0.96 (0.43) 0.96 (0.43)
new-hist −0.0000 (0.029) 0.003 (0.892) 0.010 (0.013) 0.056 (0.045) 0.96 (0.71) 0.95 (1.20) 0.96 (0.49) 0.95 (0.89)

new-none 0.024 (0.059) −0.206 (1.092) 0.007 (0.015) 0.109 (0.079) 0.96 (0.98) 0.96 (1.34) 0.95 (0.51) 0.98 (1.32)
unif σr 0.023 (0.059) −0.199 (1.099) 0.018 (0.016) 0.264 (0.211) 0.97 (1.14) 0.97 (1.46) 0.96 (0.52) 0.97 (2.02)
unif σ2

r 0.023 (0.059) −0.195 (1.092) 0.016 (0.016) 0.471 (0.434) 0.99 (1.27) 0.98 (1.57) 0.96 (0.52) 0.95 (2.90)
gamma 0.022 (0.059) −0.185 (1.115) 0.021 (0.016) 0.135 (0.127) 0.96 (1.05) 0.96 (1.38) 0.95 (0.53) 0.95 (1.61)
shrink 0.024 (0.059) −0.205 (1.092) 0.011 (0.015) 0.168 (0.112) 0.97 (1.07) 0.96 (1.41) 0.95 (0.52) 0.98 (1.57)

4.3. Simulation III: Random Intercept Model

Data were generated from the mixed model

yij = β′xij + γi + εij, γi
iid∼ N(0, σ2

r ), εij
iid∼ N(0, σ2), i = 1, . . . , c, j = 1, . . . , ni,

where β = (β1, β2, . . . , βp)′, xij = (1, xij2, . . . , xijp)
′ and (xij2, . . . , xijp)

′ iid∼ Np−1(1, Σρ). We
set p = 3, ρ = 0.9, β = (0.5, 0.5, 0.5), c = 10, σ2 = 1. In addition, we consider σ2

r = 0.25, 0.5
and ni ∼ dis-unif [10, 15]. The true marginal mean and variance of yij are given by mT =

E(yij) = β1 + β2 + β3 = 1.5 and vT = var(yij) = σ2 + σ2
r + (β2, β3)Σρ(β2, β3)

′ = 1.95 + σ2
r ,

respectively. The prior settings are the same as those used in Section 4.2.
Table 4 reports the average bias and MSE values and coverage probabilities with

interval widths across 500 MC replicates. Our approach with new-hist or new-true has
significantly lower MSE values and narrower interval widths for estimating all model
parameters while maintaining coverage probabilities around the nominal level 95% than
other methods in all cases. Even when history information on (m, v) is not available, our
method with new-none still has much lower MSE values for estimating (β2, β3) and σ2

r
with slightly narrower confidence interval widths than all other priors.
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Table 4. Simulation III: Average biases (MSEs), coverage probabilities (interval widths) across 500 MC replicates in the simulation study for random intercept model.

Bias (MSE) Coverage (Width)

Method β1 (β2, β3) γi σ2 σ2
r β1 β2 β3 γi σ2 σ2

r

σ2
r = 0.25, ni ∼ sample(10, 15)

new-true 0.025 (0.034) −0.0032 (0.085) 0.053 (0.772) 0.038 (0.017) 0.084 (0.022) 0.98 (0.81) 0.95 (0.82) 0.95 (0.82) 0.96 (1.15) 0.96 (0.52) 0.98 (0.64)
new-hist 0.028 (0.035) −0.0034 (0.085) 0.046 (0.787) 0.029 (0.017) 0.083 (0.026) 0.97 (0.82) 0.94 (0.81) 0.94 (0.81) 0.96 (1.14) 0.96 (0.52) 0.98 (0.70)

new-none 0.025 (0.043) −0.0034 (0.085) 0.076 (0.828) 0.027 (0.017) 0.106 (0.039) 0.94 (0.83) 0.94 (0.81) 0.94 (0.81) 0.95 (1.15) 0.97 (0.53) 0.97 (0.88)
unif σr −0.0011 (0.042) 0.002 (0.090) 0.074 (0.846) 0.027 (0.018) 0.154 (0.075) 0.96 (0.93) 0.94 (0.83) 0.94 (0.83) 0.96 (1.22) 0.96 (0.53) 0.96 (1.15)
unif σ2

r −0.0011 (0.041) 0.002 (0.090) 0.072 (0.832) 0.022 (0.017) 0.273 (0.146) 0.98 (1.03) 0.94 (0.82) 0.95 (0.83) 0.97 (1.31) 0.97 (0.53) 0.93 (1.55)
gamma −0.0010 (0.042) 0.001 (0.090) 0.075 (0.941) 0.052 (0.022) 0.039 (0.043) 0.94 (0.84) 0.94 (0.84) 0.95 (0.84) 0.92 (1.12) 0.95 (0.57) 0.96 (0.94)
shrink −0.0010 (0.041) 0.001 (0.090) 0.072 (0.827) 0.015 (0.016) 0.138 (0.052) 0.96 (0.93) 0.94 (0.82) 0.94 (0.82) 0.96 (1.21) 0.97 (0.52) 0.97 (1.00)

σ2
r = 0.5, ni ∼ sample(10, 15)

new-true 0.023 (0.046) −0.0032 (0.086) 0.071 (0.976) 0.035 (0.017) 0.055 (0.028) 0.97 (0.94) 0.94 (0.82) 0.95 (0.82) 0.96 (1.28) 0.96 (0.52) 0.99 (0.82)
new-hist 0.025 (0.050) −0.0032 (0.086) 0.061 (1.018) 0.028 (0.017) 0.069 (0.048) 0.97 (0.96) 0.94 (0.81) 0.94 (0.82) 0.96 (1.29) 0.96 (0.52) 0.98 (1.00)

new-none 0.019 (0.066) −0.0031 (0.086) 0.109 (1.129) 0.029 (0.018) 0.131 (0.090) 0.93 (0.99) 0.94 (0.82) 0.95 (0.82) 0.95 (1.31) 0.96 (0.53) 0.96 (1.38)
unif σr −0.0014 (0.065) 0.002 (0.091) 0.107 (1.134) 0.025 (0.018) 0.292 (0.238) 0.97 (1.21) 0.94 (0.83) 0.95 (0.83) 0.97 (1.48) 0.97 (0.53) 0.95 (2.07)
unif σ2

r −0.0015 (0.065) 0.002 (0.091) 0.107 (1.127) 0.023 (0.017) 0.481 (0.445) 0.98 (1.33) 0.94 (0.83) 0.94 (0.83) 0.98 (1.59) 0.97 (0.53) 0.93 (2.73)
gamma −0.0014 (0.066) 0.001 (0.091) 0.106 (1.208) 0.042 (0.021) 0.133 (0.145) 0.94 (1.11) 0.94 (0.84) 0.95 (0.84) 0.95 (1.40) 0.95 (0.57) 0.96 (1.74)
shrink −0.0013 (0.065) 0.002 (0.091) 0.102 (1.127) 0.019 (0.017) 0.192 (0.126) 0.96 (1.15) 0.94 (0.83) 0.95 (0.83) 0.96 (1.43) 0.97 (0.53) 0.97 (1.60)
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4.4. Simulation IV: Linear Mixed Model

Data were generated from the mixed model

yij = β′xij + γ′izij + εij, γi
iid∼ Nk(0, Ωi), εij

iid∼ N(0, σ2), i = 1, . . . , c, j = 1, . . . , ni,

where β = (β1, β2, β3)
′ = (0.5, 0.5, 0.5)′, xij = (1, xij2, xij3)

′ ind∼ N3(1, Σi), k = 2,
γi = (γi1, γi2)

′, zij = (1, xij2)
′, and Ωi = g(11′ + Σi)

−1
[1:2,1:2]. Here we set σ2 = 1, c = 10,

Σi = diag(0, 1, 1) for i = 1, . . . , 5 and Σi = diag(0, 4, 4) for i = 6, . . . , 10. Under this setting,

we have the total random effective variance equal to var(z′ijγ) = gk = 2g
de f
= σ2

r . We
consider σ2

r = 0.5, 1 and ni ∼ dis-unif [10, 15].
We implement our proposed default prior in (22) with a1 = b1 = a2 = b2 = 1 and

a more general version of it with γi|g
ind.∼ Nk

(
0, gni(Z′iZi)

−1) (denoted as new-i below).
Regarding the hyperprior of (m, v), we only consider new-hist and new-none as defined in
Section 4.2, considering that the true marginal mean and variance of yij are not available in

closed forms. We then compare our methods to the prior proposed in [38]: γi|Ω
iid∼ Nk(0, Ω)

where Ω|σ2 ∼W−1(k, kR), R = cσ2(Z′Z)−1.
Table 5 reports the average bias and MSE values and coverage probabilities with

interval widths across 500 MC replicates, where the coverage probabilities for γij’s are
defined as the average coverage across all γij’s over i = 1, . . . , c for each j = 1, 2. Comparing
our default prior in (22) with its more general version new-i, the new-i method has lower
MSE values for estimating most model parameters and is markedly better for estimating
γij and σ2

r . Comparing to our default prior (22) and the prior in [38] (both assuming
homogeneous covariance for γi), our prior has much lower MSE values and narrower
interval widths for estimating γi js while maintaining coverage probabilities around the
nominal level 95%. When the more general prior new-i is used, our method consistently
performs better than [38] on estimating all model parameters.
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Table 5. Simulation IV: Average biases (MSEs), coverage probabilities (interval widths) across 500 MC replicates in the simulation study for general mixed model.

Here, the suffix -i refers to the prior in (22) with γi|g
ind.∼ Nk

(
0, g ni

wi
(Z′iZi)

−1
)

; KN refers to the prior introduced in [38].

Bias (MSE) Coverage (Width)

Method β1 (β2, β3) γi σ2 σ2
r β1 β2 β3 γ1i γ2i σ2 σ2

r

σ2
r = 0.5, ni ∼ sample(10, 15)

new-hist 0.084 (0.048) −0.0071 (0.020) −0.160 (2.078) 0.037 (0.019) 0.093 (0.063) 0.96 (0.90) 0.94 (0.49) 0.96 (0.23) 0.93 (1.40) 0.91 (0.80) 0.95 (0.55) 0.95 (0.98)
new-hist-i 0.077 (0.049) −0.0062 (0.018) −0.184 (2.045) 0.030 (0.018) 0.038 (0.043) 0.94 (0.86) 0.92 (0.45) 0.96 (0.23) 0.94 (1.46) 0.94 (0.90) 0.96 (0.55) 0.96 (0.87)
new-none 0.086 (0.056) −0.0069 (0.021) −0.189 (2.129) 0.035 (0.019) 0.119 (0.091) 0.94 (0.92) 0.94 (0.50) 0.95 (0.23) 0.93 (1.41) 0.91 (0.81) 0.95 (0.56) 0.94 (1.16)

new-none-i 0.081 (0.057) −0.0063 (0.019) −0.211 (2.101) 0.026 (0.019) 0.045 (0.053) 0.92 (0.87) 0.91 (0.46) 0.96 (0.23) 0.94 (1.47) 0.94 (0.90) 0.96 (0.55) 0.96 (0.97)
KN 0.010 (0.050) 0.005 (0.019) −0.167 (2.209) 0.046 (0.019) - 0.96 (0.95) 0.95 (0.53) 0.96 (0.23) 0.93 (1.40) 0.91 (0.81) 0.96 (0.55) -

σ2
r = 1, ni ∼ sample(10, 15)

new-hist 0.091 (0.074) −0.103 (0.035) 0.096 (2.735) 0.019 (0.019) 0.125 (0.165) 0.96 (1.11) 0.89 (0.60) 0.95 (0.23) 0.94 (1.62) 0.90 (0.94) 0.94 (0.55) 0.93 (1.47)
new-hist-i 0.080 (0.070) −0.0089 (0.028) 0.068 (2.544) 0.013 (0.019) 0.010 (0.114) 0.95 (1.06) 0.91 (0.57) 0.95 (0.23) 0.95 (1.66) 0.94 (1.01) 0.94 (0.54) 0.95 (1.32)
new-none 0.086 (0.091) −0.0096 (0.036) 0.083 (2.848) 0.021 (0.020) 0.240 (0.330) 0.94 (1.16) 0.90 (0.63) 0.95 (0.23) 0.94 (1.66) 0.91 (0.97) 0.94 (0.55) 0.91 (1.98)

new-none-i 0.080 (0.087) −0.0088 (0.029) 0.055 (2.670) 0.013 (0.019) 0.057 (0.172) 0.92 (1.09) 0.90 (0.58) 0.95 (0.23) 0.94 (1.67) 0.94 (1.02) 0.94 (0.55) 0.92 (1.61)
KN −0.0014 (0.088) 0.002 (0.035) 0.104 (3.050) 0.053 (0.023) - 0.95 (1.23) 0.93 (0.70) 0.95 (0.23) 0.93 (1.68) 0.91 (1.00) 0.94 (0.58) -
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5. Discussion

Prior elicitation plays an important role in Bayesian inference. We have proposed a
novel, yet remarkably simple class of informative g-priors for linear mixed models elicited
from existing information on the marginal distribution of the responses. The prior is firstly
developed for the linear regression model (2) assuming that a subject-matter expert has

information on the marginal distribution yi
iid∼ (m, v). A simple, intuitive interpretation of

the prior is obtained: when σ2 = v the model explains nothing (i.e., reduces to the null
model), when σ2 = 0 the model explains all variability in responses; furthermore, the
use of a generalized beta prior on σ2 ∈ [0, v] allows one to specify the prior information
on the amount of variation explained by the considered model. The proposed prior also
naturally reduces to a modified version of the hyper-g/n prior introduced in [12] when
there is no history information available for (m, v). Under the Gaussian linear regression
models with the proposed g-prior, Bayes factors for comparing all possible submodels
can be easily computed for the purpose of variable selection and do not encounter the
information paradox commonly seen in Zellner’s g-priors with fixed g. Our approach is
further extended for use in linear mixed models. Interesting relationships between the
proposed g-priors and some other commonly used priors in mixed models are discussed.
For example, under the random effect one-way ANOVA, the proposed prior (22) with a
reference hyper prior on (m, v) reduces exactly to the shrinkage prior of [35]. Posterior
sampling for all considered models can be obtained using JAGS via R. Finally, extensive
simulation studies reveal that the proposed g-prior outperforms almost all other approaches
under consideration when some history information on (m, v) is available. Even without
historical data, better performance of the proposed new g-prior over other priors is still
seen in many settings. Interesting generalizations of the proposed idea may include
additive penalized B-spline regression, variable selection in the linear mixed models and
prior elicitation for generalized linear mixed models. Recently, Ref. [48] proposed two
informative priors for the between-cluster slope in a multilevel latent covariate model.
However, extension of their methods to multiple covariates has not been investigated.
It would be interesting to extend the proposed g-prior here to general multilevel latent
covariate models.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/stats6010011/s1, R functions to fit the linear and linear mixed models.
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