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Abstract: The zero-truncated Poisson distribution (ZTPD) generates a statistical model that could be
appropriate when observations begin once at least one event occurs. The intervened Poisson distribu-
tion (IPD) is a substitute for the ZTPD, in which some intervention processes may change the mean
of the rare events. These two zero-truncated distributions exhibit underdispersion (i.e., their variance
is less than their mean). In this research, we offer an alternative solution for dealing with intervention
problems by proposing a generalization of the IPD by a Lagrangian approach called the Lagrangian
intervened Poisson distribution (LIPD), which in fact generalizes both the ZTPD and the IPD. As
a notable feature, it has the ability to analyze both overdispersed and underdispersed datasets. In
addition, the LIPD has a closed-form expression of all of its statistical characteristics, as well as an
increasing, decreasing, bathtub-shaped, and upside-down bathtub-shaped hazard rate function. A
consequent part is devoted to its statistical application. The maximum likelihood estimation method
is considered, and the effectiveness of the estimates is demonstrated through a simulated study. To
evaluate the significance of the new parameter in the LIPD, a generalized likelihood ratio test is
performed. Subsequently, we present a new count regression model that is suitable for both overdis-
persed and underdispersed datasets using the mean-parametrized form of the LIPD. Additionally,
the LIPD’s relevance and application are shown using real-world datasets.

Keywords: Lagrange expansion; intervened Poisson distribution; Lagrangian intervened Poisson
distribution; regression; inverse transformation method

1. Introduction

In many real-world circumstances, the researcher is unable to see the whole distri-
bution of counts in an experiment. The ZTPD was applied in [1] to explain a chance
process in which the observation apparatus only activates when at least one event occurs.
A new kind of distribution that incorporates the concept of intervention has received much
attention in the literature. The intervened Poisson distribution (IPD) was first developed
in [2] as an alternative to the ZTPD, in which some intervention process alters the mean
of the rare events. It would be interesting to look into the effects of such a decision on the
queuing mechanism. For instance, a store manager might decide to offer more assistance at
a service counter in order to increase the service rate. Healthcare professionals may use
a range of preventive strategies in epidemiological research, such as in cholera instances.
In addition to reliability analysis, queuing problems, and epidemiological research, the
IPD has also been applied in other contexts (see [3–5]). In order to examine scenarios
involving two interventions, the authors in [6] proposed and studied a modified version of
the IPD, which they called the modified IPD. For prevalence reduction, the authors in [7]
presented an alternative to the IPD. According to [2], one important limitation of the IPD is
that it is underdispersed. There is no reason to assume that data generated by any of the
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aforementioned applications will necessarily share this feature. To alleviate this issue, the
authors in [8] introduced a generalization of the IPD, namely the intervened generalized
Poisson distribution (IGPD), which accommodates both underdispersed and overdispersed
(i.e., its variance is greater than its mean) natures. However, its ability to fit some of the
intervention problems is not sufficient (see [8]), which indicates that the literature still has a
gap in how to deal with intervention problems. By suggesting a generalization of the IPD
using a well-known Lagrangian approach and calling it the LIPD, we hope to do more to
close this gap through this endeavor.

Lagrangian expansions, which were first described in [9], are the parent category of
Lagrangian distributions. The discrete Lagrangian family (DLF), a large and significant
class that includes many probability distributions, was introduced in [10,11]. In [11], the
authors showed that, under certain conditions, all the discrete Lagrangian distributions
converge to the normal and inverse Gaussian distributions. Based on these former works,
the DLF has found many applications in probability and statistics; some of its recent
developments are presented below. The Lagrangian Katz family was developed in [12]. The
authors in [13] examined the use of Lagrangian probability distributions for the resolution
of inferential issues in random mapping theory. The authors in [14] used Lagrangian
probability models to create the generalized Poisson gamma dependence model. Using
Lagrangian probability distributions, the authors in [15] exploited collisional turbulent
fluid–particle flows. Furthermore, the authors in [16] discussed the methods for generating
different classes of Lagrangian probability distributions. Our team was very impressed by
the competency of the distributions proposed based on the Lagrangian method, and as a
result, we proposed the Lagrangian version of ZTPD through the work published in [17].
Furthermore, the authors in [18] concentrated on the Lagrangian approach’s construction
of the zero-truncated binomial distribution (ZTBD) and explained how effective it was
in comparison to other zero-truncated distributions. The aforementioned relevance once
more compelled us to develop solutions to intervention problems using a Lagrangian
approach, which we dub the LIPD. The LIPD model was developed primarily for the
following reasons: (i) to offer a flexible generalization of the parent IPD, as well as the ZTPD;
(ii) to accommodate various shapes of the hazard rate function (HRF), including increasing,
decreasing, bathtub, and upside-down bathtub shapes; (iii) to deal with underdispersed
and overdispersed real-world datasets; and (iv) to specifically apply the real-world datasets
generated from the intervention situations.

On the other hand, currently, regression models for count data are gaining much
popularity. In some real-world scenarios, however, the mechanism will only activate
if at least one event occurs. The number of foreign conflicts, daily mishaps, industrial
casualties, and so on, are all examples. As detailed in [19], counting outcomes directly with
a normal linear regression model leads to inefficient, inconsistent, and biased estimation
in many cases. The zero-truncated Poisson regression model (ZTPRM) is used to analyze
positive count data because it is more accurate than the classical Poisson regression model
for such data. The authors in [20] recently created an alternative to the ZTPRM, called
the intervened Poisson regression model (IPRM). The Lagrangian intervened Poisson
regression model (LIPRM), which is an alternative to both the ZTPRM and the IPRM,
is presented in this study. The motivation behind introducing the LIPRM includes its
applicability for situations where the modeled data exclude zero counts, dealing with
intervention problems, and its appropriateness for both underdispersed and overdispersed
count datasets.

An overview of the remaining study sections is provided below: Section 2 gives a
quick overview of the Lagrangian expansion and the IPD. Some important Lagrangian
probability models are discussed in Section 3. In Section 4, the LIPD and its statistical
features are explored. In Section 5, the maximum likelihood (ML) estimation approach is
developed. A generalized likelihood ratio test is elaborated in Section 6 to examine the
importance of an extra parameter of the LIPD. The simulation results of the suggested
estimating method are included in Section 7. In Section 8, the LIPRM is explained. Section 9
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provides empirical examples of the recommended LIPD and LIPRM. Finally, Section 10
provides the conclusion of the article.

2. Some Preliminaries

For the development of the LIPD, we present some fundamental findings in this section.

2.1. Intervened Poisson Distribution

To begin, we consider the definition of the ZTPD. Let X1 be a random variable (RV)
representing the number of occurrences of some rare event, and let us assume that the
event X1 = 0 is not observable. Then, it is plausible that X1 follows the ZTPD with the
following probability mass function (PMF):

g(x1) =
λx1

x1!(eλ − 1)
,

with λ > 0, for those values of x1 on the positive integers, and zero elsewhere.
Following the generation of X1, it is presumable that some intervention transforms

λ into λρ, where ρ ≥ 0. Let X2 be an RV representing the number of instances of the rare
event that occurred after the intervention. It has a Poisson RV with a mean of λρ and is
statistically independent of X1. Assuming that our observational device only has a record
of the RV X = X1 + X2, the distribution of the total number of rare events that occurred can
be assimilated to an IPD with parameters λ and ρ. Then, the PMF of X is presented below.

Definition 1. An RV X is said to follow the IPD, if its PMF is defined as:

Pr(X = x) =
[(1 + ρ)x − ρx]λx

eλρ(eλ − 1)x!
, x = 1, 2, 3, . . . , (1)

with λ > 0 and ρ ≥ 0.

The mean and variance of an RV X that follows the IPD are, respectively, given by

E(X) = λ
(

ρ + 1 + (eλ − 1)−1
)

and
Var(X) = E(X)− eλ

(
λ

eλ − 1

)2
.

Remark 1. The IPD is underdispersed, for all values of λ and ρ (see [2]).

2.2. Lagrange Expansion

In order to present the LIPD, some mathematical background on the Lagrangian
expansion is required.

Let h1(z) and h2(z) be two analytic and successively differentiable functions with
respect to z defined on the interval [−1, 1] such that h1(1) = h2(1) = 1, h1(0) 6= 0, and
h2(0) ≥ 0. Inverting the Lagrange transformation yields the following series expansion:

h2(z)

1− z h′1(z)
h1(z)

=
∞

∑
j=0

cj uj, (2)

where z = uh1(z), c0 = h2(0) and cj = 1
j!

{
Dj
[
(h1(z))

jh2(z)
]}∣∣∣∣

z=0
, with Dj = ∂j

∂zj , and

h′1(z) =
∂h1(z)

∂z .
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The details can be found in [21]. Moreover, if

0 < h′1(1) < 1 and
{

Dj
[
(h1(z))

jh2(z)
]}∣∣∣∣

z=0
≥ 0, j ≥ 0, (3)

the Lagrange expansion (2) defines the DLF. In light of this, an RV X belonging to the DLF
has the PMF shown below:

Pr(X = x) =

(
1− h′1(1)

){
Dx[(h1(z))xh2(z)

]}∣∣∣∣
z=0

x!
, x = 0, 1, 2, . . . (4)

The associated probability-generating function (PGF) is generated by

H(u) =
(1− h′1(z))h2(z)

1− zh′1(z)
h1(z)

, (5)

where z = u h1(z). In order to learn more about this special class, see [21,22].

3. Some Important Members of Discrete Lagrangian Family

Many DLF members can be generated by taking the following exponential function:

h1(z) = eµ(z−1), (6)

with 0 < µ < 1 and various choices of the functions for h2(z) in (4). Some of them are
discussed below:

3.1. Sudha Lagrangian Distribution

Let us take h1(z) as in (6) and h2(z) = z. Based on (4), the PMF of the considered
distribution can be derived as:

g1(x) = (1− µ)
Dx
[
eµx(z−1)z

]∣∣∣
z=0

x!

=
(1− µ)e−xµ(xµ)x−1

(x− 1)!
, x = 1, 2, 3 . . . ,

which is the PMF of the Sudha Lagrangian distribution (see [23]).

3.2. Weighted Delta Poisson Distribution

More generally, if we take h1(z) as in (6) and h2(z) = zn with n ≥ 1, the PMF based
on (4) is obtained as:

g2(x) = (1− µ)
Dx
[
eµx(z−1)zn

]∣∣∣
z=0

x!

= (1− µ)
e−xµ(xµ)x−n

(x− n)!
, x = n, n + 1, n + 2 . . . ,

which corresponds to the PMF of the weighted delta Poisson distribution (see [23]).

3.3. Linear Function Poisson Distribution

If we take h1(z) as in (6) and h2(z) = eλ(z−1) with λ > 0, the PMF based on (4) is
obtained as:

g3(x) = (1− µ)
Dx
[
eµx(z−1)eλ(z−1)

]∣∣∣
z=0

x!

=
(1− µ)(λ + xµ)xe−λ−xµ

x!
, x = 0, 1, 2, . . . ,



Stats 2023, 6 154

which corresponds to the PMF of the linear function Poisson distribution (see [23]).

3.4. Logarithmic Poisson Distribution

If we take h1(z) as in (6) and h2(z) =
log(1−pz)
log (1−p) with 0 < p < 1, the PMF based on (4)

is obtained as:

g4(x) = (1− µ)
Dx
[
eµx(z−1) log(1−pz)

(log (1−p))

]∣∣∣
z=0

x!

=
(1− µ)

− log (1− p)
e−µx(µx)x

x

∑
k=1

(
p

µx

)k

k(x− k)!
, x = 0, 1, 2, . . . ,

which corresponds to the PMF of the logarithmic Poisson distribution (see [23]).
Given the applications of the DLF created with h1(z) = eµ(z−1) and modulating h2(z),

it is worthwhile to investigate other horizon distributions. This served as the foundation
for the amended study distribution, which is displayed below.

4. Lagrangian Intervened Poisson Distribution

In this section, the definition of the new distribution and some of its primary charac-
teristics are described.

Suppose

h1(z) = eµ(z−1) and h2(z) =
(ezλ − 1)eλρ(z−1)

eλ − 1
, (7)

so that h2(z) is the PGF of the IPD (see [2]) with λ > 0 and ρ ≥ 0.
The corresponding analytic functions given in (7) satisfy the conditions given in

Section 2.2, are completely new in this context, and benefit from interesting functionalities
for modeling purposes. Then, under the following transformation: u = z

h1(z)
= z

eµ(z−1) ,
we have {

Dj((h1(z))
jh2(z)

)}∣∣∣∣
z=0

=

{
Dj
(

eµj(z−1) (e
zλ − 1)eλρ(z−1)

eλ − 1

)}∣∣∣∣
z=0

=
e−(λρ+µj)

eλ − 1

{
(jµ + λ + λρ)j − (jµ + λρ)j

}
.

From the above expression, it is clear that the condition given in (3) is satisfied. Then,
using (4), the corresponding PMF of the LIPD can be derived as:

g(x) =
(1− µ)

x!
Dx

[
eµx(z−1) (e

zλ − 1)eλρ(z−1)

eλ − 1

]∣∣∣∣
z=0

=
(1− µ)e−(λρ+µx)

(eλ − 1)x!

{
(xµ + λ + λρ)x − (xµ + λρ)x

}
.

We formalize this definition below.

Definition 2. A RV X is said to follow the LIPD, if its PMF has the following form:

g(x) =
(1− µ)e−(λρ+µx)

(eλ − 1)x!

{
(xµ + λ + λρ)x − (xµ + λρ)x

}
, x = 1, 2, 3, . . . , (8)

where λ > 0, ρ ≥ 0, and 0 < µ < 1.

A distribution with the PMF given in (8) will be sometimes denoted as LIPD (λ, µ, ρ).
In addition, the RV X that will appear is supposed to follow this distribution. Some special
cases are described below:

• For µ→ 0, the LIPD (λ, µ, ρ) reduces to the IPD.
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• For µ→ 0 and ρ = 0, the LIPD (λ, µ, ρ) reduces to the ZTPD.

Figures 1–3 display the graphical representation of the PMF of the LIPD for differ-
ent parameter values of λ, µ, and ρ, respectively.
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Figure 1. Various shapes of the PMF of the LIPD when λ increases.
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Figure 2. Various shapes of the PMF of the LIPD when µ increases.

The HRF of the LIPD is obtained by substituting the PMF in the following equation:

h(x) = Pr(X = x|X ≥ x) =
g(x)

∑∞
k=x g(k)

. (9)

It is obvious from (9) that finding the closed-form expression of the HRF is difficult. To
identify the diverse forms of the HRF, we draw the corresponding graph in Figure 4.

Figure 4 shows that the LIPD has an increasing, decreasing, bathtub, and upside-down
bathtub-shaped HRF.

Proposition 1. Let X be an RV following the LIPD. Then, the mode of X, denoted by xm, exists
and lies in the following case:

$(xm + 1)
$(xm)

− eµ ≤ xm eµ ≤ $(xm)

$(xm − 1)
, (10)

where $(xm) = (µxm + λ + λρ)xm − (µxm + λρ)xm .
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Figure 3. Various shapes of the PMF of the LIPD when ρ increases.
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Figure 4. Plots of the HRF of the LIPD distribution.

Proof. According to the definition of a mode in a discrete distribution setting, we must
find the integer x = xm for which g(x) has the greatest value. That is, we aim to solve
the following inequalities: g(x) ≥ g(x− 1) and g(x) ≥ g(x + 1), where g(x) can also be
written as:

g(x) =
1− µ

eλ − 1
e−µx−λρ$(x)

x!
, (11)

where $(x) = (λρ + λ + µx)x − (λρ + µx)x.
Obviously, g(x) ≥ g(x− 1) implies that

$(x)
$(x− 1)

≥ x eµ. (12)

Furthermore, g(x) ≥ g(x + 1) implies that

$(x + 1)
$(x)

≤ (x + 1) eµ. (13)

By combining (12) and (13), we obtain (10).
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Proposition 2. The PGF of an RV X following the LIPD is expressed as

H(u) = E(uX) =
(1− µ)(ezλ − 1)eλρ(z−1)

(eλ − 1)(1− µz)
, (14)

where z = ueµ(z−1) with µz < 1.

Proof. By virtue of (5), we immediately get

H(u) =
(1− h′1(1))h2(z)

1− z h′1(z)
h1(z)

=
(1− µ)(ezλ − 1)eλρ(z−1)

(eλ − 1)(1− µz)
,

where z = u eµ(z−1). Thus, the proof is obtained.

Corollary 1. The moment-generating function (MGF) of an RV X following the LIPD is obtained
by putting z = es and u = ek in (14), and we obtain

M(k) = E(ekX) =
(1− µ)(eλ es − 1)eλρ(es−1)

(eλ − 1)(1− µes)
,

where s = k + µ(es − 1) with s < − log(µ).

Corollary 2. The cumulant-generating function (CGF) of an RV X following the LIPD becomes

C(k) = log [M(k)] = log

{
(1− µ)(eλ es − 1)eλρ(es−1)

(eλ − 1)(1− µes)

}
,

where s = k + µ(es − 1) with s < − log(µ).

Proposition 3. Let X1, X2, . . . , Xn be n independently and identically distributed (IID) RVs
following the LIPD. Then, the distribution of the sample sum V = ∑n

k=1 Xk has the following PGF:

Ψ(u) =
(1− µ)n(ezλ − 1)nenλρ(z−1)

(eλ − 1)n(1− zµ)n ,

where z = u eµ(z−1).

Proof. Based on the PGF of the LIPD given in (14), the PGF of the RV V becomes

Ψ(u) = E(uV) = [H(u)]n =
(1− µ)n(ezλ − 1)nenλρ(z−1)

(eλ − 1)n(1− µz)n .

This completes the proof.

Proposition 4. For any integer r ≥ 1, the rth factorial moment of an RV X following the LIPD is
given by

µ[r] = E[X(X− 1) . . . (X− r + 1)]

=

Dr
(
(ezλ − 1)eλρ(z−1)

)
eλ − 1

+ µ
∑r

i=1(r− i + 1)µ[r−i]Di
(

u eµ(z−1)
)

1− µ


∣∣∣∣
u=z=1

,
(15)

where z = u eµ(z−1).
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Proof. By definition, the rth factorial moment is obtained by successively differentiating
H(u) given in (5) in r times with respect to u and by putting u = z = 1. Thus, it is given by

H(u) =
(1− h′1(1))h2(z)

1− u h′1(z)
,

implying that
(1− uh′1(z))H(u) = (1− h′1(1))h2(z).

Taking the first derivative with respect to u on both sides, we obtain

H(u)D1(1− uh′1(z)) + H′(u)(1− uh′1(z)) = (1− h′1(1))D1h2(z). (16)

Again, by taking the derivative of (16) with respect to u on both sides, we obtain

H(u)D2(1− uh′1(z)) + 2D2(1− uh′1(z))H′(u) + (1− uh′1(z))H′′(u)

= (1− h′1(1))D2h2(z).

Proceeding like this, we obtain that the rth derivative is of the following form:

Dr(H(u)) =
(1− h′1(1))Dr(h2(z))−∑r

i=1(r− i + 1) Di(1− uh′1(z)) Dr−i(H(u))
1− u h′1(z)

(17)

Substituting h1(z) = eµ(z−1), h2(z) = (ezλ−1)eλρ(z−1)

eλ−1 , and z = u = 1 in (17), we obtain
(15).

Proposition 5. The mean (µ
′
1) and variance (σ2) of an RV X following the LIPD are

µ
′
1 = E(X) =

λ

(1− µ)(1− e−λ)
+

λρ(1− µ) + µ

(1− µ)2

and

σ2 = Var(X) =
µ(µ + 1)
(1− µ)4 +

(
eλ(λ + λρ)2 − λ2ρ2)(1− µ) +

(
eλ(λ + λρ)− λρ

)
(eλ − 1)(1− µ)3

−
{

eλ(λ + λρ)− λρ
}2

(eλ − 1)2(1− µ)2 ,

respectively.

Proof. The first two factorial moments can be obtained by using (15) as follows:

E(X) =
h′2(1)

1− h′1(1)
+

h′′1 (1) + h′1(1)− (h′1(1))
2

(1− h′1(1))
2

=
λ

(1− µ)(1− e−λ)
+

λρ(1− µ) + µ

(1− µ)2

and

E[X(X− 1)] =
h′2(1) + h′′1 (1) + 4h′2(1)h

′
1(1) + 2(h′1(1))

2

(1− h′1(1))
2

+
h′′′1 (1) + h′′1 (1) + 3h′2(1)h

′′
1 (1) + 5h′1(1)h

′′
1 (1)

(1− h′1(1))
3

+
3(h′′1 (1))

2

(1− h′1(1))
4 .

Furthermore, we have
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Var(X) = E[X(X− 1)] + E(X)− [E(X)]2

=
h′′2 (1) + h′2(1)− (h′2(1))

2

(1− h′1(1))
2 +

(1 + h′2(1))(h
′′
1 (1) + h′1(1)− (h′1(1))

2)

(1− h′1(1))
3

+
h′′′1 (1) + h′1(1)h

′′
1 (1) + 2h′′1 (1)

(1− h′1(1))
3 +

2(h′′1 (1))
2

(1− h′1(1))
4

=
µ(µ + 1)
(1− µ)4 +

(
eλ(λ + λρ)2 − λ2ρ2)(1− µ) +

(
eλ(λ + λρ)− λρ

)
(eλ − 1)(1− µ)3

−
{

eλ(λ + λρ)− λρ
}2

(eλ − 1)2(1− µ)2 ,

where h′1(1), h′′1 (1), h′′′1 (1), h′2(1), h′′2 (1) denote the values of the successive derivatives of
h1(z) and h2(z), respectively, evaluated at the special value z = 1, hence the proof.

Proposition 6. The index of dispersion (InD) and coefficient of variation (CoV) of an RV X
following the LIPD are

InD =

µ(µ+1)
(1−µ)4 +

(eλ(λ+λρ)2−λ2ρ2)(1−µ)+(eλ(λ+λρ)−λρ)

(eλ−1)(1−µ)3 − {eλ(λ+λρ)−λρ}2

(eλ−1)2(1−µ)2

λ
(1−µ)(1−e−λ)

+ λρ(1−µ)+µ

(1−µ)2

and

CoV =

√
µ(µ+1)
(1−µ)4 +

(eλ(λ+λρ)2−λ2ρ2)(1−µ)+(eλ(λ+λρ)−λρ)

(eλ−1)(1−µ)3 − {eλ(λ+λρ)−λρ}2

(eλ−1)2(1−µ)2

λ
(1−µ)(1−e−λ)

+ λρ(1−µ)+µ

(1−µ)2

,

respectively.

Proof. The proof is omitted for the sake of brevity.

The skewness and kurtosis coefficients are employed, respectively, to measure the
asymmetry and flatness of a distribution. These coefficients are required to determine the
shape of any distribution. The mean, variance, CoV, InD, skewness, and kurtosis of X for
different values of the parameters are summarized in Table 1.

It can be seen from Table 1 that the LIPD is both underdispersed (InD < 1) and
overdispersed (InD > 1). It should be noted that the LIPD has various kurtosis levels and is
mostly right-skewed.

Table 1. Mean, variance, CoV, InD, skewness, and kurtosis coefficients of the LIPD distribution for
different values of the parameters.

µ

0.01 0.02 0.03 0.04 0.05

λ = 2 ρ = 0.1

Mean 1.9590 1.9895 2.0208 2.0531 2.0862
Variance 1.8617 1.9382 2.0188 2.1037 2.1932

CoV 0.6964 0.6997 0.7030 0.7064 0.7098
InD 0.9503 0.9742 0.9989 1.0246 1.0512

Skewness 3.2757 3.2447 3.2135 3.1823 3.1509
Kurtosis 9.6539 9.4461 9.2392 9.0332 8.8281

λ = 3 ρ = 0.1

Mean 3.1926 3.2357 3.2799 3.3253 3.3718
Variance 3.0671 3.1785 3.2954 3.4180 3.5468

CoV 0.5485 0.5509 0.5534 0.5559 0.5585
InD 0.9606 0.9823 1.0047 1.0278 1.0519

Skewness 2.7212 2.6950 2.6686 2.6421 2.6155
Kurtosis 6.2383 6.0874 5.9371 5.7874 5.6383
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Table 1. Cont.

µ

0.01 0.02 0.03 0.04 0.05

λ = 2 ρ = 0.2

Mean 2.1610 2.1936 2.2270 2.2614 2.2968
Variance 2.0678 2.1507 2.2379 2.3298 2.4265

CoV 0.6654 0.6685 0.6717 0.6749 0.6782
InD 0.9568 0.9804 1.0049 1.0302 1.0564

Skewness 3.1444 3.1145 3.0845 3.0544 3.0241
Kurtosis 8.8581 8.6616 8.4658 8.2709 8.0769

λ = 3 ρ = 0.2

Mean 3.4956 3.5418 3.5892 3.6378 3.6876
Variance 3.3763 3.4973 3.6241 3.7571 3.8967

CoV 0.5256 0.5280 0.5203 0.5328 0.5353
InD 0.9658 0.9874 1.0097 1.0328 1.0567

Skewness 2.6439 2.6176 2.5912 2.5645 2.5378
Kurtosis 5.8118 5.6633 5.5161 5.3697 5.2240

5. Estimation

Here, we use the maximum likelihood (ML) method to estimate the parameters of the
LIPD via data because these parameters are intended to be unknown in practice.

Let Y1, Y2, . . . , Yn be n IID RVs from the LIPD(λ, µ, ρ) (with unknown λ, µ, and ρ)
and y1, y2, . . . , yn be n observations. Following that, the appropriate likelihood function is
provided by

L(Θ; y) =
(1− µ)ne−nλρ−µ ∑n

i=1 yi ∏n
i=1[(µyi + λ + λρ)yi − (µyi + λρ)yi ]

(eλ − 1)n ∏n
i=1 yi!

.

Therefore, the log-likelihood function is given by

Ln = log(L(Θ; y)) = n log(1− µ)− nλρ− µ
n

∑
i=1

yi

+
n

∑
i=1

log[(µyi + λ + λρ)yi − (µyi + λρ)yi ]

− n log(eλ − 1)−
n

∑
i=1

log (yi!).

(18)

The values λ̂, µ̂, and ρ̂ obtained by maximizing Ln with respect to λ, µ, and ρ, respectively,
are the ML estimates (MLEs). Upon differentiating the log-likelihood function given in (18)
with respect to the parameters λ, µ, and ρ, respectively, and equating to zero, we obtain the
following likelihood equations:

∂Ln

∂λ
= −nρ− n eλ

eλ − 1
+

n

∑
i=1

(1 + ρ)yi(µyi + λ + λρ)yi−1 − ρyi(µyi + λρ)yi−1

(µyi + λ + λρ)yi − (µyi + λρ)yi
= 0

∂Ln

∂µ
=
−n

1− µ
−

n

∑
i=1

yi +
n

∑
i=1

y2
i (µyi + λ + λρ)yi−1 − y2

i (µyi + λρ)yi−1

(µyi + λ + λρ)yi − (µyi + λρ)yi
= 0

and
∂Ln

∂ρ
= −nλ +

n

∑
i=1

λyi(µyi + λ + λρ)yi−1 − (µyi + λρ)yi−1

(µyi + λ + λρ)yi − (µyi + λρ)yi
= 0.

The MLEs λ̂, µ̂, and ρ̂ are the solutions of these equations.
Here, in order to obtain these MLEs, we maximize the log-likelihood function for

numerical optimization. In this study, the “L-BFGS-B” optimization technique of the fitdist
function defined in the fitdistrplus package of the R programming software is employed for
numerical optimization purposes. For more information on the package fitdistrplus, one
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can go through the link “https://CRAN.R-project.org/package=fitdistrplus (accessed on
5 November 2022)”.

6. Generalized Likelihood Ratio Test

In this section, we employ the generalized likelihood ratio test (GLRT) to examine the
importance of an extra parameter included in the LIPD. See [24] for more information.

To test whether the additional parameter µ of the LIPD (λ, µ, ρ) is significant, we use
the GLRT method. Here, the considered hypotheses are

H0 : µ = 0 versus H1 : µ 6= 0.

In the case of the GLRT, the test statistic is given as:

−2 log λ∗ = 2
(
log(L(Θ̂; y))− log(L(Θ̂∗; y))

)
, (19)

where Θ̂∗ is the MLE of Θ under the hypothesis H0. The test statistic shown in (19) is
asymptotically distributed as the chi-squared distribution with one degree of freedom.

7. Simulation Study

To evaluate the performance of the estimates obtained using the ML estimation ap-
proach, we ran a quick simulation exercise in this section. Here, we simulated an LIPD
random sample of values using the inverse transformation method (see [25]). The following
is the inverse transform algorithm for generating such a sample:

Step 1: Generate a random number from uniform distribution U(0, 1).

Step 2: i = 1, p = (1−µ)e−(λρ+µ)λ

(eλ−1) , and F = p, where p is the probability that X = i and F is
the probability that X is less than or equal to i.

Step 3: If U < F, set X = i, and stop.

Step 4: p = e−µ p
(i+1) ×

(
µ(i+1)+λ(1+ρ)

)i+1
−
(

µ(i+1)+λρ
)i+1(

µi+λ(1+ρ)
)i
−
(

µi+λρ
)i , F = F + p, i = i + 1.

Step 5: Go to Step 3.

The iteration process is repeated N = 1000 times. The specification of the parameter
values is as follows:

(i) λ = 0.73, µ = 0.18, ρ = 0.32;
(ii) λ = 0.121, µ = 0.065, ρ = 0.075.

Thus, we compute the average of the mean-squared error (MSE) and average absolute
bias using the MLEs.

The average absolute bias of the obtained estimates is equal to 1
1000 ∑1000

i=1 |θ̂i − θ|, and
the average MSE of the obtained estimates is equal to 1

1000 ∑1000
i=1 (θ̂i − θ)2, in which i is the

number of iterations, θ ∈ {λ, µ, ρ}, and θ̂ is the MLE of θ.
Table 2 provides a summary of the study for the samples of sizes 50, 125, 500, and 1000.

As the sample size increases, it can be seen that the MSE in both cases of the parameter sets
is in decreasing order, and the MLEs of the parameters go closer to their original parameter
values, indicating the consistency property of the MLEs.

Table 2. The MLE simulation results for the three parameters λ, µ, and ρ.

Parameter Set Sample Size Parameters Estimates Absolute Bias MSE

λ = 0.73, µ = 0.18, ρ = 0.32 n = 50
λ 0.6164 0.1135 0.0910
µ 0.2225 0.0425 0.0067
ρ 0.1876 0.1323 0.1579

https://CRAN.R-project.org/package=fitdistrplus


Stats 2023, 6 162

Table 2. Cont.

Parameter Set Sample Size Parameters Estimates Absolute Bias MSE

n = 125
λ 0.6928 0.0371 0.0625
µ 0.2131 0.0331 0.0031
ρ 0.3353 0.0846 0.1439

n = 500
λ 0.7586 0.0286 0.0425
µ 0.1894 0.0094 0.0007
ρ 0.3032 0.0167 0.0986

n = 1000
λ 0.7213 0.0086 0.0390
µ 0.1829 0.0029 0.0003
ρ 0.3240 0.0040 0.0901

λ = 0.121, µ = 0.065, ρ = 0.075 n = 100
λ 0.1825 0.1315 0.0317
µ 0.0347 0.0303 0.0018
ρ 0.1185 0.0935 0.0829

n = 250
λ 0.1496 0.0986 0.0203
µ 0.0384 0.0265 0.0014
ρ 0.1006 0.0756 0.0527

n = 500
λ 0.1339 0.0829 0.0155
µ 0.0433 0.0216 0.0010
ρ 0.0898 0.0648 0.0473

n = 1000
λ 0.1239 0.0029 0.0005
µ 0.0643 0.0007 0.0001
ρ 0.0798 0.0048 0.0003

8. Lagrangian Intervened Poisson Regression Model

When modeling a discrete response variable with related variables, a Poisson regres-
sion model is the first thing that immediately comes to mind. It is clear that the Poisson
regression model generates inaccurate results when the response variable is either overdis-
persed or underdispersed, with the exception of the situation of equidispersion. Mixed
Poisson models, generalized Poisson models, and other models have all been put out to
deal with these dispersions. However, there are many instances where count data do not
contain any zeros; the authors in [26,27] provided examples using data on hospital stay
length. The ZTPRM performed admirably in this situation. We now present the LIPRM, a
novel count regression model based on the LIPD that offers additional choices for predict-
ing overdispersed and underdispersed zero-truncated counts. In this paper, we consider
the National Health Insurance Scheme (NHIS) data of Nigeria, which is overdispersed.
For these data, we can see that the LIPRM performs well when compared to the ZTPRM,
zero-truncated negative binomial regression model (ZTNBRM), and IPRM.

We can use the log-link function to link the covariates, say of the number of k, to the
mean of the response RV X as:

θ = E(X) = eyTα, (20)

where yT = (y1, y2, . . . , yk) is the vector of k covariates and α = (α0, α1, . . . , αk)
T is the

unknown vector of regression coefficients. Now, by considering the notations involved for
the LIPD(λ, µ, ρ) and the following re-parametrization:

ρ =
θ(1− µ)2 − µ

λ(1− µ)
−
(
1− e−λ

)−1,

where λ > 0, 0 < µ < 1, the PMF of the LIPD can be re-expressed as:

h(x|λ, µ, θ) =
(1− µ)e−(λρ+µx)

(eλ − 1)x!
[(xµ + λ + λρ)x − (xµ + λρ)x]. (21)



Stats 2023, 6 163

Based on n independent observations of the regression model, say (x1, yT
1 ), (x2, yT

2 ), . . . ,
(xn, yT

n ), and substituting (20) in (21), Xi|yT
i follows the LIPRM(λ, µ, θi), where yT

i =
(yi1, yi2, . . . , yik), with the following PMF:

h(xi|yT
i , λ, µ) =

(1− µ)e−(λwi+µxi)

(eλ − 1)xi!
[(xiµ + λ + λwi)

xi − (xiµ + λwi)
xi ],

where

wi =
eyT

i α(1− µ)2 − µ

λ(1− µ)
−
(
1− e−λ

)−1.

The log-likelihood function of the LIPRM based on a sample of n independent observations
(x1, yT

1 ), (x2, yT
2 ), . . . , (xn, yT

n ) is expressed as

log L =
n

∑
i=1

{
log(1− µ)− (λwi + µxi)− log (eλ − 1)− log (xi!)

}
+

n

∑
i=1

{
log
[
(xiµ + λ + λwi)

xi − (xiµ + λwi)
xi
]}

.
(22)

In this study, we employed the optim function in the R programming language under
the L-BFGS-B algorithm to determine the MLEs of the parameters, just as we did in
Section 5.

9. Applications and Empirical Study

To show the usage of the LIPD, we utilize three real datasets in this section: The first is
the well-known intervened data (student enrollment) used by [8] to prove the performance
of the IGPD. The second is the COVID-19 data, and the third is the NHIS data. The form of
the HRF of the datasets was determined using a graphical method based on the total time on
test (TTT). The associated HRF has a decreasing, increasing, or upside-down bathtub shape
if the empirical TTT plot is convex, concave, convex then concave, or concave then convex,
respectively (see [28]). We employed the RStudio software for numerical evaluations of
these datasets.

9.1. Student Enrollment Data

The following data were collected over a five-year period regarding student enrollment,
in particular senior Mathematics and Statistics courses at the University of Calgary: 1, 2, 3,
3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 13, 13, 14,
16, 16, 17, 17, 17, 18, 19, 20, 24, 24, 24, 24, 27, 31, 33, 35, 37.

These data are available in [4], and the author in [8] examined them as well. Stu-
dents enrolled in these courses either during an advanced registration period, which was
restricted, or during a subsequent open registration period, which was unrestricted. A
course must have been offered if at least one student enrolled in it during the advanced
registration period. Therefore, it is appropriate to take into account the LIPD model. Table 3
shows the descriptive measures of the data, which include sample size n, minimum (min),
first quartile (Q1), median (Md), third quartile (Q3), maximum (max), and interquartile
range (IQR). The empirical InD of the data is equal to 7.71. As a result, our model employed
to describe the current dataset is capable of dealing with overdispersion.

Table 3. Descriptive statistics for the student enrollment dataset.

Statistic n min Q1 Md Q3 max IQR

Values 56 1 4 7 17 37 13

In addition, Figure 5 shows an empirical TTT plot of the data, and it reveals an
increasing HRF.
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Figure 5. TTT plot for the student enrollment dataset.

To demonstrate the LIPD’s potential benefit, the distributions given in Table 4 were
considered for comparison.

Table 4. The considered competitive distributions.

Distributions Abbreviation Reference

zero-truncated Poisson distribution ZTPD -
intervened Poisson distribution IPD [2]
zero-truncated generalized binomial distribution ZTGBD -
zero-truncated generalized negative binomial distribution ZTGNBD [23]
intervened generalized Poisson distribution IGPD [8]

We compare the competitive distributions to the recommended distribution using
the statistical methods presented, specifically the negative log-likelihood (−logL), Akaike
information criterion (AIC), Bayesian information criterion (BIC), and χ2 statistic. The
corresponding MLEs and goodness-of-fit (GOF) results are shown in Table 5. According to
Table 5, the LIPD’s GOF statistical values are lower than those of the other distributions
under consideration. Therefore, the proposed model is the best choice for analyzing the
provided intervention dataset.

Table 5. MLEs and GOF values for the student enrollment dataset.

Model MLEs −log L χ2 d f AIC BIC

ZTPD λ = 10.9646 311.4949 3924.5470 5 624.9899 627.6503

ZTGBD
λ = 19.7818

192.1601 185.4118 3 390.3202 396.5015µ = 0.1689
ρ = 4.0671

ZTGNBD
λ = 19.8175

192.1601 185.3881 3 390.3201 396.5015µ = 0.1687
ρ = 3.0725

IPD ρ = 10.965 311.4949 2998.871 4 626.99 631.1108
λ = 0.0000012

IGPD
λ = 3.3266

192.06 187.4251 3 390.12 395.79µ = 0.6607
ρ = 0.0647

LIPD
λ = 0.0781

191.5816 181.3314 3 389.1631 395.3444µ = 0.6159
ρ = 20.0777
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In the case of the GLRT, the calculated value based on the test statistic in (19) is
2(−191.5816+ 311.4949) = 119.9133 (p-value = 0.00003). As a result, at any level > 0.00003,
the null hypothesis is rejected in favor of the alternative hypothesis. Hence, we conclude
that the additional parameter µ in the LIPD is significant in light of the test procedure
outlined in Section 6.

9.2. COVID-19 Dataset

In 2019, a fresh coronavirus (COVID-19) was found in Wuhan, China. After identifying
such a virus, it spread rapidly on a daily basis. To stop the virus from spreading further,
various preventive actions (treatment interventions) were taken by health service agencies.
Due to various interventions, we would be able to control the very large spread to some
extent. Here, we consider a dataset of daily newly reported COVID-19 instances from
Rwanda in East Africa, recorded between 11 October 2021 and 15 December 2021. Since the
data were collected at the end of 2021, we may assume that several treatment interventions
have already been applied, and hence, it is reasonable to assume the LIPD for the dataset.
The data are as follows: 98, 46, 95, 86, 61, 80, 61, 17, 36, 32, 39, 36, 37, 29, 20, 57, 43, 42, 51, 63,
53, 17, 29, 38, 55, 34, 44, 33, 16, 31, 22, 19, 28, 35, 43, 11, 12, 16, 19, 7, 6, 11, 10, 15, 23, 22, 26, 8,
14, 5, 14, 5, 13, 19, 10, 13, 10, 15, 20, 15, 53, 39, 28, 50, 79, 50.

These data are accessible at http://covid19.who.int/data (accessed on 24 August 2022).
Table 6 shows the descriptive measures of the data. The empirical InD of the data is equal
to 15.3522. As a result, our model employed to describe the current dataset is capable of
dealing with overdispersion.

Table 6. Descriptive statistics for the COVID-19 dataset.

Statistic n min Q1 Md Q3 max IQR

Values 66 5 15 28.50 43.75 98 28.75

In addition, Figure 6 shows an empirical TTT plot of the data, which reveals an
increasing HRF.
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Figure 6. TTT plot for the COVID-19 dataset.

We compare the competitive distributions to the suggested distribution using the
statistical techniques provided, specifically the −logL, AIC, BIC, and χ2 statistic value.
Table 7 displays the corresponding MLEs and GOF results, respectively. The LIPD’s MLEs
and GOF statistic values are less than the other examined distributions. As a result, the
suggested model is the most appropriate for modeling the given intervention dataset.
Furthermore, the LIPD provides information on how effective various preventive actions
taken by health service agencies were.

http://covid19.who.int/data
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Table 7. MLEs and GOF values for the COVID-19 dataset.

Model MLEs −log L χ2 d f AIC BIC

ZTPD λ = 32.7871 636.744 439.98 5 1275.488 1277.677

ZTGBD
λ = 10.9120

286.645 350.86 3 579.291 585.860µ = 0.5095
ρ = 1.6295

ZTGNBD
λ = 10.9112

286.6457 350.8655 3 579.2915 585.8604µ = 0.5095
ρ = 0.6295

IPD ρ = 0.1646 636.744 439.43 4 1277.488 1281.867
λ = 28.1515

IGPD
λ = 2.0806

286.5185 353.4297 3 579.037 585.606µ = 0.7644
ρ = 2.5693

LIPD
λ = 0.8959

286.353 348.9881 3 578.7059 585.2749µ = 0.7324
ρ = 5.0437

In the case of the GLRT, the calculated value based on the test statistic in (19) is
2(−286.353 + 636.744) = 350.391 (p-value = 0.00001). As a result, at any level > 0.00001,
the null hypothesis is rejected in favor of the alternative hypothesis. Hence, we conclude
that the additional parameter µ in the LIPD is significant in light of the test procedure
outlined in Section 6.

9.3. National Health Insurance Scheme

Data from the NHIS with no zero counts were collected from a health facility in Ota,
Ogun State, Nigeria, for this study. A sample of 1647 patients under the NHIS was obtained
from July 2016 to July 2017. There have been encounters (visits to the doctor), which is
the response variable (Nencounter). If a patient was ever admitted for the period, it was
indicated by the class (Eclass), which reads (in-patient = 1, out-patient = 0). The predictor
(follow-up) indicates whether a patient received routine checkups or not (follow-up = 1,
no follow-up = 0). The gender (sex) of the patients reads (male = 1, female = 0). Another
predictor was Ndiagnosis, which represents the number of diagnoses a patient had during
the period of the encounter. The last predictor included was the biological age of the patient.
The data can be found on the Mendeley Elsevier website, https://data.mendeley.com/
datasets/z7wznk53cf/8 accessed on 15 November 2022. Furthermore, the dataset was
utilized in [29], and the authors found that, following the dispersion test, the data were
underdispersed with some dispersion parameter, φ = 0.7806. For i = 1, 2, . . . , 1647, the fit
non-linear regression model is given by

θi = exp(α0 + α1yi1 + α2yi2 + α3yi3 + α4yi4 + α5yi5).

The following regression models were used to compare the LIPRM:

• The ZTPRM given in [30].
• The ZTNBRM created in [31].
• The IPRM elaborated in [20].

Table 8 compares the performance of the LIPRM to that of the ZTPRM, ZTGPRM,
and IPRM, as well as provides real-world summaries, such as the standard errors (SEs),
p-values, negative log-likelihood (−logL), AIC, and BIC values. According to this table,
the LIPRM has the lowest values across all model selection criteria, indicating that it is the
best count regression model among the ZTPRM, ZTGPRM, and IPRM. Evidently, we also
find that our model, which is applied to explain the current dataset, is perfectly suited to
handling this underdispersion.

https://data.mendeley.com/datasets/z7wznk53cf/8
https://data.mendeley.com/datasets/z7wznk53cf/8
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Table 8. The results of the regression models for the NHIS of Nigeria (SEs in brackets).

Covariates ZTPRM ZTNBRM IPRM LIPRM
Estimate p-Value Estimate p-Value Estimate p-Value Estimate p-Value

α0 0.0673 <0.001 −0.1446 <0.001 1.1981 <0.001 0.1787 <0.001
(0.0379) (0.0541) (0.0019) (0.0327)

α1 0.1028 <0.001 −0.0947 <0.001 0.0154 <0.001 0.0154 <0.001
(0.0297) (0.0409) (0.0345) (0.0253)

α2 0.0018 <0.001 0.0045 <0.001 0.0017 <0.001 0.0017 <0.001
(0.0007) (0.0011) (0.0019) (0.0006)

α3 −0.1982 <0.001 −0.07849 <0.001 −0.1406 <0.001 −0.1406 <0.001
(0.0408) (0.0560) (0.0217) (0.0329)

α4 0.8705 <0.001 −1.2214 <0.001 0.1352 <0.001 0.1826 <0.001
(0.0827) (0.1937) (0.0109) (0.1046)

α5 0.2919 <0.001 0.3802 <0.001 0.1352 <0.001 0.2866 <0.001
(0.0045) (0.0106) (0.0109) (0.0043)

−logL 8379.31 3043.18 6579.37 2455.76
AIC 16,770.63 6102.36 13,172.74 4927.51
BIC 16,778.56 6112.09 13,181.25 4937.25

10. Conclusions

The LIPD, which extends the IPD and may be either underdispersed or overdispersed,
was described using the Lagrangian method. There are a number of important LIPD
characteristics that were identified, and it was found that they are more flexible than the
IPD characteristics. We delivered specific expressions for the factorial moments: mean,
variance, dispersion, skewness, kurtosis, mode, probability-generating function, moment-
generating function, and cumulant-generating function. Using the classical ML method,
the distribution parameters were determined. The LIPD was compared to the well-known
IPD, IGPD, and some other competing distributions, and it was found that the LIPD was
superior to competing models for the considered datasets. A new regression model for
count data based on the LIPD was proposed and compared with its competitive regression
models based on a real dataset. Three different real-world datasets—the first involving
student enrollment data, the second involving COVID-19 data, and the third involving
data from a health insurance scheme—were combined to show how the novel model may
be applied.
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