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Abstract: Practitioners often face the situation of comparing any set of k distributions, which may
follow neither normality nor equality of variances. We propose a semiparametric model to compare
those distributions using an exponential tilt method. This extends the classical analysis of variance
models when all distributions are unknown by relaxing its assumptions. The proposed model is
optimal when one of the distributions is known. Large-sample estimates of the model parameters
are derived, and the hypotheses for the equality of the distributions are tested for one-at-a-time and
simultaneous comparison cases. Real data examples from NASA meteorology experiments and social
credit card limits are analyzed to illustrate our approach. The proposed approach is shown to be
preferable in a simulated power comparison with existing parametric and nonparametric methods.

Keywords: constraints; exponential tilt; goodness-of-fit tests; information projection; Kullback–
Leibler divergence; maximum entropy

1. Introduction

Classical applied statistical techniques often depend heavily on the assumption that
observations are normally distributed. The benefit of this assumption is that it helps to
produce exact inferences in many popular methods, such as, t-test, F-test, chi-squared
tests, analysis of variance (ANOVA) models and multivariate analysis. In reality, however,
observations often show departures from normality (or near-normality). Statistical texts
address this issue and discuss remedies, such as the Box-Cox transformations of data to
normality. Developing techniques that use fewer assumptions (normality or others) is an
important area of statistical research. When comparing different populations, this paper
proposes an alternative to the one-way ANOVA by relaxing some of the assumptions.

Previous study described experimental radar reflectivity data obtained from inde-
pendent radars deployed during NASA’s Tropical Rainfall Measuring Mission Kwajalein
Experiment in the republic of the Marshall Islands on 15 July to 12 September 1999 [1]. The
data are skewed, and we investigate whether the data from two radars are from identical
populations. A credit limit data set [2] with three different education levels; graduate
school, university and high school was obtained from the University of California Irvine
repository. The data are skewed with high variability, and we studied whether the three
credit limit populations are identical. Such data have unknown statistical distributions,
and known statistical procedures may fail to work properly.

If gi(x) is the probability density function (pdf) of N(µi, σ2) for i = 1, . . . , k [3], then
one can write

gi(x) = gk(x) exp(αi + βix), i = 1, . . . , k− 1, (1)

where

αi =
µ2

k − µ2
i

2σ2 , βi =
µi − µk

σ2 , i = 1, . . . , k− 1. (2)
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From (1), denoting gk(x) as a reference distribution, one can think of gi(x) as an exponential
distortion or tilt of the reference. Furthermore, using (2), the test of equality of µi’s (as
needed in the one-way ANOVA) reduces to the test of equality of the βi’s to zero, or

H0 : µ1 = · · · = µk ⇐⇒ H0 : β1 = · · · = βk−1 = 0. (3)

Motivated by (3), the same authors proposed a generalization of (1) by replacing gk(x)
with any pdf g(x), x in the exponent of (1) with any known function h(x) and considered
all pdfs gi(x) that can be expressed as exponential tilt pdfs of g(x). In this way, (1)–(2) are
updated as

gi(x) = g(x) exp(αi + βih(x)), (4)

where

αi = − ln
(∫ ∞

−∞
eβih(x) g(x) dx

)
, i = 1, . . . , k− 1, (5)

for some βi ∈ R. Then, H0 : β1 = · · · = βk−1 = 0 can also be used to test for the equality of
any k pdfs g(x), gi(x), 1 ≤ i ≤ k− 1 satisfying (4), which are not necessarily normal.

In classical ANOVA, the parameters of the normal distributions are estimated using the
maximum likelihood method. To estimate the βi parameters in (4), Consider the restricted
class of distributions obtained by multiplicative exponential distortions with gk = g as
a reference and, based on k independent samples, used the profile maximum likelihood
method to estimate g, gi, ∀i in that class [3]. This paper, instead, considers the class C of
all distributions (which are restricted by a given mean for h(X)) and estimates the βi by
minimizing the Kullback–Leibler divergence between g(x) and the class C.

Often the criterion of comparison between distributions may be clear from the context
of the data, which helps to formulate the constraint C. In the radar data, we are interested
to know if the mean rain rate is equal in two different radars. In the credit limit data,
we are interested to know if the mean credit limit is the same in three education groups.
The constraints can be multiple criteria as well. Once the constraints are fixed in C, only
those aspects are considered in the comparison between distributions.

This approach matches with the maximum entropy (ME) principle, which may be
stated as follows: when selecting a model for a given situation, it is often appropriate to
express the prior information in terms of the constraints. However, one must be careful so
that no information other than these specified constraints are used in model selection. That
is, other than the constraints that we have, the uncertainty associated with the probability
distribution to be selected should be kept at its maximum [4]. In this paper, we extended
the ME principle to general information projection using the Kullback–Leibler divergence.

We show in Section 2 that the solution (4) is optimum under specified constraints using
h when g is known and, in this way, the proposed approach yields an optimality interpreta-
tion for the exponential tilt models. The proposed approach extends the comparisons of
means in ANOVA to comparisons of means and variances for the normal and other known
distributions using duality. In Section 3, we develop a semi-parametric approach when
g(x) is unknown and derive asymptotic test statistics for testing the equality of populations
for the cases when sample sizes are equal or different.

In Section 4, we present simulation studies that evaluate the performance of the
βi-parameters with respect to the classical ANOVA methods. We also compare the test
statistics developed in Section 4 with existing parametric and nonparametric procedures.
Section 5 shows the details of the proposed methods for the applications with radar data
and credit limit data sets. Section 6 contains discussions on the choice of the function(s)
h for particular cases of reference distributions g(x). The Appendix contains additional
results and proofs.

2. Tilt Optimality Models

Kullback–Liebler (KL) discriminant information or divergence is a measure of ‘dis-
tance’ between two probability distributions. For pdf’s f (x), g(x), the KL discriminant
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information for f (x) against g(x) is given by
∫ ∞
−∞ f (x) ln

(
f (x)
g(x)

)
dx, which is always

nonnegative, and = 0 if and only if f ≡ g.
Let C be a convex set of pdf’s with g /∈ C. If f ∗(x) is the solution to

inf
f (x)∈C

∫ ∞

−∞
f (x) ln

(
f (x)
g(x)

)
dx (6)

then f ∗(x) (information projection) is the closest to g(x) among all pdf’s in C with respect to
the KL distance. Let hi(x) be arbitrary but known functions of x. Define C to be the class of
all pdf’s f where E f (hi(X)) = 0, ∀i—that is,

C =

{
f (x) :

∫ ∞

−∞
hi(x) f (x) dx = 0, ∀i

}
. (7)

In order to solve (6), Fenchel’s duality theorem can be applied as shown by [5]. The
corresponding dual cone is C∗ = {∑k

i=1 βihi(x) : βi ∈ R}.
The dual problem can be shown to be equivalent to

inf
βi∈R,∀i

∫ ∞

−∞
exp(

k

∑
i=1

βihi(x)) g(x) dx. (8)

As the dual problem (8) is a function of scalars only, it could be substantially easier to
solve than the primal problem (6), depending on the form of hi(x). In particular, setting the
derivative of the integral quantity in (8) with respect to βi equal to zero, we obtain

∫ ∞

−∞
hi(x) exp(

k

∑
i=1

βihi(x))g(x) dx = 0, 1 ≤ i ≤ k, (9)

which can be solved easily for βi’s by the Newton–Raphson method. If the solution of (9) is
β̂i, then, from [5], the solution of the primal problem (6), say f ∗(x), is of the form

f ∗(x) =
g(x) exp(∑k

i=1 β̂ihi(x))∫ ∞
−∞ g(x) exp(∑k

i=1 β̂ihi(x)) dx
. (10)

When k = 1, setting β̂ = βi, f ∗(x) = gi(x), (10) can be simplified as (4). The above
derivation explains the exponential structure of gi(x), and (9) verifies that the expo-
nential tilt model gi(x) is in C (see (7)). These developments are summarized in the
following theorem.

Theorem 1. When g(x) is known, the exponential tilt model (4) is the optimum model in the sense
that it is the closest to g(x) among all probability distributions in C from (7) in the KL distance.

The model (10) will be referred to in the sequel as the tilt optimality (TO) model.
Note that, when C in (7) specifies h(x) = x− µi and g(x) = gk(x) ∼ N(µk, σ2), then the
solution gi(x) is found to be N(µi, σ2) as was seen in (1)–(2). When g(x) in (6) is uniform
(or Lebesgue measure), then the minimizing f ∗ is known as the maximum entropy model
(distribution) in C [4].

Theorem A1 in the Appendix A shows that closed form solutions for the dual problem
are obtained for the normal distributions with constraints on both the mean and variance.
However, this may not always be the case. The final solution depends on the form of g(x)
and the restrictions in C.

While (1) compares each gi(x) with gk(x) one-at-a-time, another approach would be
to compare all k distributions simultaneously. For x = (x1, . . . , xk), let X = (X1, . . . , Xk) ∼
g(x) = Nk(µ, Σ) with known µ = (µ1, . . . , µk) and covariance matrix Σ = (σij) with
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σii = σ2
i and σij = 0, elsewhere. Considering equality of the k means (unspecified) with

possibly unequal variances, we define

C = { f (x) : E(Xi) = E(Xi+1), 1 ≤ i ≤ k− 1}. (11)

Following (10), the solution is given by

f ∗(x) =
g(x) e∑k

i=1 β̂i(xi−xi+1)∫ ∞
−∞ g(x) e∑k

i=1 β̂i(xi−xi+1) dx
. (12)

However, a closed form expression is only available when k = 3, 4.
Theorem 2 (proof in Appendix A) considers equality of means as in classical ANOVA

(deals with unknown means and unknown but equal variances) but with unrestricted variances.

Theorem 2. For k = 3 with known reference pdf g(x) = N3(µ, Σ) with the above Σ, we consider
the minimization problem

inf
f (x)∈C

∫
x

f (x) ln
(

f (x)
g(x)

)
dx (13)

with C in (11). The solution to (13) is given by

f ∗(x) = g(x) eα̂1+β̂1(x1−x2)+β̂2(x2−x3) = N3(µ
∗1, Σ) (14)

where α̂1 = − ln
[∫

g(x) eβ̂1(x1−x2)+β̂2(x2−x3)dx
]
,

µ∗ =
µ1σ2

2 σ2
3 + µ2σ2

1 σ2
3 + µ3σ2

1 σ2
2

σ2
1 σ2

2 + σ2
1 σ2

3 + σ2
2 σ2

3
, 1 = (1, 1, 1)′, (15)

β̂1 = −
(

µ1σ2
2 + µ1σ2

3 − µ2σ2
3 − µ3σ2

2
σ2

1 σ2
2 + σ2

1 σ2
3 + σ2

2 σ2
3

)
, β̂2 = −

(
µ1σ2

2 + µ2σ2
1 − µ3σ2

1 − µ3σ2
2

σ2
1 σ2

2 + σ2
1 σ2

3 + σ2
2 σ2

3

)
. (16)

Note that the solution f ∗(x) has the same covariance Σ as the reference g(x); nonethe-
less, Σ influences the mean µ∗ in solution (15) as a weighted average of its elements. When
σ2

1 = σ2
2 = σ2

3 as in one-way ANOVA, then µ∗ = µ1+µ2+µ3
3 ,

β̂1 = −
(

2µ1 − µ2 − µ3

3σ2

)
, β̂2 = −

(
µ1 + µ2 − 2µ3

3σ2

)
. (17)

Theorem 2 can be extended to k = 4 with closed form solutions for β, µ∗, which is tedious [6].
Unique solutions exist for higher k but obtaining their closed forms seems intractable. This
is also the case of extension to a general Σ with σij 6= 0, i 6= j.

Beyond the one-way ANOVA, the above approach allows us to simultaneously compare
both the means and variances of k independent normal distributions (Theorem A2).

3. Semiparametric Approach

For an unknown data generating process, however, the true form of g(x) in (13)
(with C in (11)) may not be known. Then, gi(x) in the solution (4) becomes not well-
defined (replacing x with x). Note that the model (10) now becomes a ‘semiparametric
tilt optimality restricted model’ because, along with the parametric component β, there
is also the nonparametric component g(x), about which no distributional assumption is
made. Using the sample, we define a discrete version of C expressed as moment constraints.
Assuming that these sample (moment) constraints represent the corresponding population
(moment) constraints efficiently and consistently, the resulting model is expected to perform
well.
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The dual problem corresponding to (13) is

inf
βi∈R,∀i

∫
x

e∑k−1
i=1 βi(xi−xi+1) g(x)dx. (18)

The relevant score equations are∫
x
(xi − xi+1) e∑k−1

i=1 βi(xi−xi+1) g(x)dx = 0, 1 ≤ i ≤ k− 1. (19)

To study the asymptotic properties of the model (similar in spirit to [7]), we consider
the cases when the sample sizes are equal and when they are different.

3.1. Equal Sample Sizes

Suppose k independent random samples {xij 1 ≤ j ≤ n}, 1 ≤ i ≤ k, each of size n, are
available from independent populations with unknown means µi and unknown variances
σ2

i , 1 ≤ i ≤ k, respectively. If we rearrange all the nk sample values as (x1, . . . , xn), where
xj = (x1j, . . . , xkj)

′, 1 ≤ j ≤ n, then xj’s form a random sample from a multivariate
distribution (say, pdf g(x)), with mean µ = (µ1, . . . , µk)

′ and covariance diag(σ2
1 , . . . , σ2

k ).
Let p̂ = ( p̂1, . . . , p̂n)′ be the empirical distribution that has mass p̂j = 1

n at each
xj, 1 ≤ j ≤ n. The constraint of equality of k means, C in (11), is discretized below as
K, appropriately, using the probability mass function (pmf) q = (q1, . . . , qn) and sample
values xij’s as

K =

{
q :

n

∑
j=1

(xij − xi+1,j)qj = 0, 1 ≤ i ≤ k− 1

}
.

Here, the primal problem (6) becomes (replacing pdfs with pmfs) infq∈K ∑n
j=1 qj ln

(
qj
p̂j

)
,

and the dual problem is infβi∈R,∀i ∑n
j=1 p̂j exp

[
∑k−1

i=1 βi(xij − xi+1,j)
]
. The score equations

for the dual problem are

n

∑
j=1

p̂j(xij − xi+1,j) exp

[
k−1

∑
i=1

βi(xij − xi+1,j)

]
= 0, 1 ≤ i ≤ k− 1. (20)

Suppose βn = (βni, 1 ≤ i ≤ k− 1) solve the score Equation (20). Then, the primal
solution q̂∗j is given by

q̂∗j =
p̂j exp

[
∑k−1

i=1 βni(xij − xi+1,j)
]

∑n
j=1 p̂j exp

[
∑k−1

i=1 βni(xij − xi+1,j)
] , j = 1, . . . , n.

For arbitrary δ = (δ1, . . . , δk−1)
′, define

hj(δ) =
k−1

∑
i=1

δi(xij − xi+1,j), 1 ≤ j ≤ n,

mn(δ) = (mnr(δ) : 1 ≤ r ≤ k− 1), Σn(δ) = (σnrs(δ); 1 ≤ r, s ≤ k− 1),
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mnr(δ) =
1
n ∑n

j=1 (xrj − xr+1,j)e
hj(δ)

1
n ∑n

j=1 ehj(δ)
, and

σnrs(δ) =
1
n ∑n

j=1
[
(xrj − xr+1,j)−mnr(δ)

][
(xsj − xs+1,j)−mns(δ)

]
ehj(δ)

1
n ∑n

j=1 ehj(δ)
.

(21)

By (20) and (21), mn(βn) = 0, a vector of zeroes of length k− 1. Furthermore, by Taylor’s
expansion of mn(βn) around β (β = (β1, . . . , βk−1)),

0 = mn(βn) = mn(β) + Σn(wn)(βn − β), (22)

where wn satisfies max{ |wn − βn|, |wn − β| } ≤ |βn − β|. As n→ ∞, by the strong law of
large numbers, βn → β, wn → β, and

1
n

n

∑
j=1

(xrj − xr+1,j)
a (xsj − xs+1,j)

b ehj(wn) −→
∫
(xr − xr+1)

a(xsj − xs+1,j)
beh(β)g(x)dx, (23)

a, b = 0, 1, 1 ≤ r, s ≤ k− 1, with probability 1 where h(β) = ∑k−1
i=1 βi(xi − xi+1).

By (21) and (23), it follows that, when µ1 = . . . = µk,

mnr(wn) −→
∫
(xr − xr+1)eh(β)g(x)dx∫

eh(β)g(x)dx
= 0,

σnrs(wn) −→ σrs =

∫
(xr − xr+1)(xs − xs+1)eh(β)g(x)dx∫

eh(β)g(x)dx
,

(24)

1 ≤ r, s ≤ k− 1, with probability 1. Let Σ = (σrs). As n→ ∞, by the central limit theorem
√

n(mn(β)− 0) −→ N(0, Σ∗), (25)

where Σ∗ = (σ∗rs),

σ∗rs =

∫
(xr − xr+1)(xs − xs+1)e2h(β)g(x)dx(∫

eh(β)g(x)dx
)2 . (26)

By (22)–(26),

√
n
(

βn − β
)
=
[
Σn(wn)

]−1√n
(
mn(βn)−mn(β)

) D−→ N
(
0, Σ−1Σ∗Σ−1),

as n → ∞. The above developments are summarized in the following theorem. This
theorem establishes the asymptotic normality of the parameters of the proposed model
when sample sizes are equal.

Theorem 3. For a general reference pdf g, assume that the solution of (13), f ∗(x), exists and∫
eh(β) f ∗(x)dx < ∞ where h(β) = ∑k−1

i=1 βi(xi − xi+1) for β in an open neighborhood of 0. When∫
(xi − xi+1)(xj − xj+1)e2h(β)g(x)dx < ∞, ∀i, j, and all sample sizes are equal to n,

√
n(βn − β)

D−→ N(0, Σ−1Σ∗Σ−1)

as n→ ∞ where Σ, Σ∗ are defined in (24) and (26), respectively.
When µ1 = . . . = µk, or equivalently, β = 0, the quantity nβ

′
n(Σ

−1Σ∗Σ−1)−1βn has an
asymptotic chi-square distribution with k− 1 degrees of freedom as n→ ∞.
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Thus, the test statistic
χ1 = nβ

′
n(Σ̂

−1Σ̂∗Σ̂−1)−1βn (27)

can be used for testing the hypothesis H0 : β = 0 where σrs, σ∗rs are estimated by σnrs(βn),
σ∗nrs(βn), respectively, (since Σ = Σ∗, we replaced σnrs(βn), σ∗nrs(βn) by (σnrs(βn)+σ∗nrs(βn))/2).

σnrs(βn) =
1
n ∑n

j=1
[
(xrj − xr+1,j)

][
(xsj − xs+1,j)

]
e∑k−1

i=1 βni(xij−xi+1,j)

1
n ∑n

j=1 e∑k−1
i=1 βni(xij−xi+1,j)

,

σ∗nrs(βn) =
1
n ∑n

j=1
[
(xrj − xr+1,j)

][
(xsj − xs+1,j)

]
e2 ∑k−1

i=1 βni(xij−xi+1,j)(
1
n ∑n

j=1 e∑k−1
i=1 βni(xij−xi+1,j)

)2 .

(28)

Clearly, the above developments can be extended for simultaneous mean and variance
comparisons for k populations by modifying the C in (11).

3.2. Different Sample Sizes

The simultaneous approach developed above for equal sample sizes does not allow
the sample sizes to be different. To that end, we consider k− 1 independent one-at-a-time
population optimization problems by adopting the development in Section 2 reversing the
roles of g(x) = gk(x) and gi(x) in (4), along with setting h(x) = x, and, finally, we combine
the k− 1 results. Both procedures work for equal sample sizes.

For 1 ≤ i ≤ k− 1, consider the ith problem as finding the pdf f (x) in

C = { f (x) : E[X] = µk}, (29)

which is the closest to gi(x), assuming that µk is known. Following similar steps as in
Section 2, the pdf in (29), which is the closest to gi(x), is given by

f ∗i (x) = gi(x) exp(γi + ηix), γi = − ln
(∫ ∞

−∞
eηix gi(x) dx

)
, (30)

i = 1, . . . , k− 1, where ηi solves∫ ∞

−∞
(x− µk) exp(ηix)gi(x) dx = 0. (31)

If ηi = 0, then f ∗i (x) = gi(x), ∀x, ∀i.
To develop the corresponding k− 1 sample optimization problems, suppose indepen-

dent random samples {xij 1 ≤ j ≤ ni}, 1 ≤ i ≤ k are available from k populations with
the means µi, 1 ≤ i ≤ k, respectively. Although we assume that µk is known, in reality, it
maybe unknown. Thus, we suggest choosing the kth sample as the one that is the largest in

size. Let x̄k =
∑

nk
j=1 xij

nk
be the mean of the kth sample. Then, take µk = x̄k (see Section 6).

For the ith (1 ≤ i ≤ k− 1) sample optimization problem, let p̂i = ( p̂i1, . . . , p̂i,ni ) be an
empirical distribution that has mass p̂ij =

1
ni

at each xij, 1 ≤ j ≤ ni. Let the ith sample
version of C in (29), say Ki, containing qi = (qi1, . . . , qi,ni ), be defined as

Ki =

{
qi :

ni

∑
j=1

(xij − x̄k)qij = 0

}
, 1 ≤ i ≤ k− 1.

The ith (1 ≤ i ≤ k− 1) sample version of (6) and its dual problem becomes

inf
qi∈Ki

ni

∑
j=1

qij ln
( qij

p̂ij

)
, and, inf

ηi∈R

ni

∑
j=1

p̂ij exp
[
ηi(xij − x̄k)

]
,
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respectively. The ith score equation is

ni

∑
j=1

p̂ij(xij − x̄k) exp
[
ηi(xij − x̄k)

]
= 0. (32)

Suppose ηni solves (32). Then, the primal solution q̂∗ij is given by

q̂∗ij =
p̂ij exp

[
ηni (xij − x̄k)

]
∑n

j=1 p̂ij exp
[
ηni (xij − x̄k)

] , j = 1, . . . , ni.

For arbitrary ψi ∈ R, 1 ≤ i ≤ k− 1, define

hij(ψi) = ψi(xij − x̄k), mni (ψi) =

1
ni

∑ni
j=1 (xij − x̄k)e

hij(ψi)

1
ni

∑ni
j=1 ehij(ψi)

, and

σ2
ni
(ψi) =

1
ni

∑ni
j=1

[
(xij − x̄k)−mni (ψi)

]2ehij(ψi)

1
ni

∑ni
j=1 ehij(ψi)

.

(33)

By (32), mni (ηni ) = 0, ∀i. Using Taylor’s expansion of mni (ηni ) around ηi,

0 = mni (ηni ) = mni (ηi) + σ2
ni
(wni )(ηni − ηi), (34)

where wni is such that max{ |wni − ηni |, |wni − ηi| }≤ |ηni − ηi|. With hi = ηi(x− x̄k), by the
strong law of large numbers, as ni → ∞, ηni → ηi, wni → ηi ∀i and

1
ni

ni

∑
j=1

(xij − x̄k)
a ehij(wni ) −→

∫
(x− x̄k)

aehi gi(x)dx, (35)

a = 0, 1, 2, 1 ≤ i ≤ k− 1, with probability 1.
From (31),

∫
(x− x̄k)ehi gi(x)dx = 0. When µi = µk, by (33) and (35), it follows that, as

ni → ∞,

mni (wni ) −→
∫
(x− x̄k)ehi gi(x)dx∫

ehi gi(x)dx
= 0, σ2

ni
(wni ) −→ σ2

i =

∫
(x− x̄k)

2ehi gi(x)dx∫
ehi gi(x)dx

, (36)

1 ≤ i ≤ k− 1, with probability 1. As ni → ∞, by the central limit theorem

√
ni(mni (ηi)− 0) −→ N(0, σ2∗

i ), (37)

where

σ∗2i =

∫
(x− x̄k)

2e2hi gi(x)dx[∫
ehi gi(x)dx

]2 . (38)

By (34), (35) and (37),

√
ni
(
ηni − ηi

)
=

√
n
(
mni (ηni )−mni (ηi)

)
σ2

ni
(wni )

D−→ N

(
0,

σ∗2i
σ4

i

)
, (39)

as ni → ∞, 1 ≤ i ≤ k− 1.
Next, we combine the results from the k− 1 sample-optimization problems.

Theorem 4. For a general reference pdf g, assume that the solution of (13) subject to (29), f ∗i (x),
exists and

∫
eηix f ∗i (x)dx < ∞ for some ηi in an open neighborhood of 0, 1 ≤ i ≤ k− 1. Assume
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∫
x2eηix f ∗i (x)dx < ∞, ∀i. Since all k samples are independent,

√
ni(ηni−ηi)

σ∗i /σ2
i

D→ N(0, 1), as
ni → ∞.

Then, under H0 : ηi = 0, 1 ≤ i ≤ k − 1, ∑k−1
i=1

niη
2
ni

σ∗2i /σ4
i

has an asymptotic chi-square

distribution with k− 1 degrees of freedom as ni → ∞, ∀i. Thus, the test statistic

k−1

∑
i=1

niη
2
ni

σ∗2ni
(ηni )/σ4

ni
(ηni )

(40)

can be used for testing the hypothesis H0 : ηi = 0, 1 ≤ i ≤ k− 1, where we replaced σ∗2i , σ2
i by

σ∗2ni
(ηni ), σ2

ni
(ηni ), respectively, with

σ∗2ni
(ηni ) =

1
ni

∑ni
j=1(xij − x̄k)

2e2ηni (xij−x̄k)[
1
ni

∑ni
j=1 eηni (xij−x̄k)

]2 , σ2
ni
(ηni ) =

1
ni

∑ni
j=1(xij − x̄k)

2eηni (xij−x̄k)

1
ni

∑ni
j=1 eηni (xij−x̄k)

. (41)

Since σ∗2i = σ2
i under H0, we replace each of σ∗2ni

(ηni ), σ2
ni
(ηni ) by a common estimate σ∗∗2ni

(ηni ) =

(σ∗2ni
(ηni ) + σ2

ni
(ηni ))/2, and then calculate a pooled estimate of variance σ̂2 = (∑k−1

i=1 niσ
∗∗2
ni

(ηni )/

∑k−1
i=1 ni over k− 1 populations. With this substitution, the test statistic from (40) is simplified as

χ2 = σ̂2
k−1

∑
i=1

niη
2
ni

. (42)

The above developments can be extended for simultaneous mean and variance com-
parisons for k populations by modifying the C in (29).

For one h:

1
n

n

∑
j=1

eβnh(xj) − 1
2n

∑n
j=1 h2(xj)e

2βnh(xj)

∑n
j=1 h2(xj)e

βnh(xj)

For more than one h, let h = (h1, . . . , ht)′ represent t constraints.
(i) For equal sample sizes, recall xj = (x1j, . . . , xkj)

′, 1 ≤ j ≤ n.
Recall Σ, Σ∗ given as Σ̂ = (σnrs(βn); 1 ≤ r, s ≤ t), Σ̂∗ = (σ∗nrs(βn); 1 ≤ r, s ≤ t).

σnrs(βn) =
1
n ∑n

j=1 hr(xj)hs(xj)e∑t
l=1 βnihi(xj)

1
n ∑n

j=1 e∑t
l=1 βnihi(xj)

,

σ∗nrs(βn) =
1
n ∑n

j=1 hr(xj)hs(xj)e
2 ∑t

l=1 βnihi(xj)(
1
n ∑n

j=1 e∑t
l=1 βnihi(xj)

)2 .

Then, the IC is

IC =
1
n

n

∑
j=1

e∑t
l=1 βnihi(xj) − 1

2n

t

∑
l=1

λ̂i

where λ̂i is the ith eigen value of Σ̂−
1
2 Σ̂∗Σ̂−

1
2 . Find Σ̂−

1
2 by Cholesky decomposition.

(ii) For different sample sizes, define Σi, Σ∗i given as Σ̂i = (σnirs(ηni
); 1 ≤ r, s ≤ t),

Σ̂∗i = (σ∗nirs(ηni
); 1 ≤ r, s ≤ t).

σnirs(ηni
) =

1
ni

∑ni
j=1 hr(xij)hs(xij)e∑t

l=1 ηnl hl(xij)

1
ni

∑ni
j=1 e∑t

l=1 ηnl hl(xij)
,
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σ∗nirs(ηni
) =

1
ni

∑ni
j=1 hr(xij)hs(xij)e

2 ∑t
l=1 ηnl hl(xij)(

1
ni

∑ni
j=1 e∑t

l=1 ηnl hl(xij)
)2 .

Then, the IC is

IC =
1

k− 1

k−1

∑
i=1

ICi

ICi =
1
ni

ni

∑
j=1

e∑t
l=1 ηnl hl(xij) − 1

2ni

t

∑
l=1

λ̂il

where λ̂il is the lth eigen value of Σ̂−
1
2

il Σ̂∗ilΣ̂
− 1

2
il . Find Σ̂−

1
2

il by Cholesky decomposition.

4. Simulation Studies

In this section, we study the effect of violations of the assumptions of the one-way
ANOVA on the performances of the beta parameters using Mean Square Errors. We also
compare powers of the proposed methods with existing parametric and nonparametric
methods. We used the R program for all simulation studies. The proposed methods
are applicable to any type of data including under-dispersed or over-dispersed or data
containing outliers as we do not assume any distribution g(x) in our analysis.

4.1. Mean Square Errors of β

Although the one-way ANOVA does not have a β-parameter as is, (14) with β̂i replaced
by βi may be considered as the one-way ANOVA model, which shows the β-parameters

when k = 3. To implement the assumption of equal variance, we used σ2 =
σ2

1+σ2
2+σ2

3
3 as

the common variance in ANOVA. The true β1 = β̂1, β2 = β̂2 are in (17). In the simulation,
the true β1, β2 are not changed when the population distribution is any different from
normal to maintain the normality assumption of the one-way ANOVA.

There are four beta parameters (β1, . . . , β4) under the simultaneous constraints of
equality of means and equality of variances. For one-way ANOVA, we set β3 = 0 and
β4 = 0 as there are no variance constraints. In the TO model (10), however, the true β
changes depending on the population and constraints as shown in Section 3 for selected
distributions as solutions of the corresponding score equations.

For the simulation in Table 1, we considered independent normal, uniform and beta
populations and formed g(x) by multiplying the pdf’s of independent components as
listed, which were chosen with varying means and/or variances. Various sample sizes of
50, 200 and 500 with 1000 runs for each case were considered of which only selected results
are reported in Table 1 (see more details [6]). We found that the total mean square error of
our method decreased for larger sample sizes.

As a consequence of the way the ANOVA model is defined in (14) using the β, both
ANOVA and TO solutions (or methods) become identical when populations are identical
or when the means are the same, and thus they produce the same values for true β’s,
solutions and MSEs. Both methods have a relatively higher TMSE (the total of all MSEs) for
beta reference distributions compared to the normal reference distributions. For the cases
considered, the TO method has a smaller MSE compared with the one-way ANOVA method
and more so when the mean and variance constraints are simultaneously considered.
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Table 1. Mean square errors of the β parameters.

E(X1) = E(X2) = E(X3)

Components of Sample Parameters MSE TMSE

g(x1, x2, x3) Mean Var Sizes TO ANOVA TO ANOVA TO ANOVA

X1 ∼ N(0,1) 0 1 200 β1 : 0.3094 0.3030 0.0044 0.0041 0.0109 0.0125
X2 ∼N(0.2,1.1) 0.2 1.1 200 β2 : 0.4088 0.4242 0.0065 0.0084
X3 ∼N(0.8,1.2) 0.8 1.2 200

X1 ∼ Beta(1,2) 0.33 0.06 200 β1 : 1.3433 1.4000 0.0726 0.0787 0.1442 0.1516
X2 ∼Beta(1.33,1.99) 0.4 0.06 200 β2 : 1.5871 1.6000 0.0716 0.0729
X3 ∼Beta(1.75,1.75) 0.5 0.06 200

X1 ∼ Beta(1,2) 0.33 0.06 200 β1 : 1.2424 1.2245 0.0642 0.0639 0.1205 0.1245
X2 ∼Beta(1.08,1.62) 0.4 0.065 200 β2 : 1.3543 1.3994 0.0562 0.0607
X3 ∼Beta(1.29,1.29) 0.5 0.07 200

E(X1) = E(X2) = E(X3), V(X1) = V(X2) = V(X3)

X1 ∼ N(0,1) 0 1 200 β1 : 0.2828 0.3030 0.0059 0.0081 0.0217 0.0408
X2 ∼ N(0.2,1.1) 0.2 1.1 200 β2 : 0.3838 0.4242 0.0094 0.0166
X3 ∼ N(0.8,1.2) 0.8 1.2 200 β3 : 0.0429 0 0.0038 0.0091

β4 : 0.0404 0 0.0026 0.0069

X1 ∼ Beta(1,2) 0.33 0.067 200 β1 : 2.8090 1.4000 0.9763 2.1442 4.5389 9.7559
X2 ∼ Beta(1.33,1.99) 0.4 0.067 200 β2 : 2.9256 1.6000 1.1376 2.1325
X3 ∼Beta(1.75,1.75) .5 0.067 200 β3 : −1.6512 0 1.2599 2.9440

β4 :−1.4902 0 1.1651 2.5353

X1 ∼ Beta(1.33,1.99) 0.4 0.067 500 β1 : −1.4640 0 0.6133 2.3176 3.9619 12.9005
X2 ∼Beta(1.2,1.8) 0.4 0.06 200 β2 : −1.7934 0 1.1961 3.3782

X3 ∼Beta(.97,1.46) 0.4 0.07 100 β3 : 1.6611 0 0.7408 2.9568
β4 : 2.0318 0 1.4117 4.2478

Here TO = Proposed optimality model, ANOVA = Analysis of variance, MSE = Mean square errors, TMSE =
Total mean square errors.

4.2. Power Comparison: Equal Sample Sizes

When testing the equality of means with equal sample sizes, we conducted simulation
studies to compare our proposed test statistic χ1’s (in (27)) performance with χ2 in (42)
developed for different sample sizes, (χ) [3], Hotelling’s tests (T2

1 or T2
2 depending on

known (chi-square) or unknown (F-distribution)) variances, classical ANOVA and the
nonparametric Kruskal–Wallis (KW) test statistics.

For k = 3, with µ = (0, µ2, µ3), we considered either g(x) ∼ N3(µ, Σ = I3), or g(x) ∼
gamma(3, 1)× gamma(3 + µ2, 1)× gamma(3 + µ3, 1). The hypothesis of equality of means
becomes equivalent to testing H0 : µ2 = µ3 = 0. Equal sample sizes are taken as n = 30 or
n = 50. For all simulations, 1000 runs were used with a nominal level of α = 0.05.

The power results as a function of µ2, µ3 are shown in Table 2. Both χ1 and χ2 tests have
higher powers than other tests under the gamma distribution, including the nonparametric
test with the χ2 test performing slightly better than the χ1 test. However, none of the
χ, χ1, χ2 tests was dominated by the ANOVA test under the normal case as expected (also
observed by [3] for the χ test).

4.3. Power Comparison: Different Sample Sizes

We compared the performance of the proposed semi-parametric test statistic χ2 in (42)
with the test statistic χ [3], classical ANOVA and the Kruskal–Wallis test (KW).

We used the same g(x), H0, number of runs and nominal level as in the equal sample
size case. The power results as a function of µ2, µ3 are shown in Table 3 with different
sample sizes n1, n2, n3. For the calculation of χ2, the value of the sample mean with the
largest sample size is taken as fixed in all cases.
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Table 2. Power comparison with equal sample sizes.

Normal Gamma

n µ2 µ3 χ χ1 χ2 T2
1 T2

2 ANOVA KW χ χ1 χ2 T2
1 T2

2 ANOVA KW

30 0 0 0.054 0.080 0.096 0.043 0.058 0.040 0.042 0.069 0.087 0.126 0.045 0.068 0.041 0.038
0.2 0.2 0.126 0.184 0.368 0.101 0.145 0.109 0.099 0.057 0.140 0.104 0.074 0.101 0.060 0.059
0.1 0.4 0.309 0.381 0.587 0.267 0.330 0.284 0.278 0.083 0.182 0.175 0.107 0.145 0.120 0.110
0.2 0.5 0.428 0.495 0.805 0.379 0.440 0.398 0.377 0.103 0.239 0.250 0.145 0.188 0.143 0.138
0.5 0.5 0.527 0.598 0.963 0.474 0.546 0.499 0.480 0.115 0.267 0.418 0.161 0.218 0.170 0.183
0.7 0.5 0.730 0.774 0.992 0.664 0.730 0.703 0.663 0.158 0.346 0.573 0.229 0.281 0.241 0.259

50 0 0 0.056 0.084 0.083 0.050 0.060 0.046 0.047 0.063 0.091 0.112 0.051 0.070 0.054 0.051
0.2 0.2 0.161 0.198 0.483 0.139 0.164 0.150 0.153 0.058 0.113 0.116 0.075 0.095 0.078 0.080
0.1 0.4 0.457 0.508 0.769 0.430 0.463 0.438 0.397 0.117 0.216 0.254 0.151 0.179 0.156 0.173
0.2 0.5 0.621 0.648 0.938 0.577 0.618 0.600 0.565 0.144 0.268 0.398 0.202 0.231 0.203 0.217
0.5 0.5 0.739 0.768 0.995 0.717 0.741 0.730 0.689 0.183 0.345 0.635 0.246 0.278 0.254 0.261
0.7 0.5 0.897 0.917 1.000 0.882 0.903 0.896 0.887 0.306 0.482 0.831 0.383 0.424 0.386 0.422

Here χ = Test statistic [3], χ1 = Proposed test statistic (27) for equal sample sizes, χ2 = Proposed test statistic (42) for
different sample sizes, T2

1 or T2
2 = Hotelling’s tests depending on known (chi-square) or unknown (F-distribution)

variances, ANOVA = F test statistic of analysis of variance, KW = Kruskal-Wallis test statistic.

Table 3. Power comparison with different sample sizes.

Normal Gamma

Sample Sizes µ2 µ3 χ2 χ ANOVA KW χ2 χ ANOVA KW

n1 = 200 0.0 0.0 0.068 0.050 0.048 0.048 0.085 0.055 0.040 0.040
n2 = 100 0.2 0.2 0.594 0.333 0.330 0.306 0.182 0.113 0.161 0.159
n3 = 40 0.1 0.4 0.719 0.531 0.520 0.498 0.244 0.120 0.202 0.208

0.2 0.5 0.916 0.785 0.772 0.755 0.382 0.222 0.337 0.327
0.5 0.5 1.000 0.987 0.988 0.981 0.807 0.514 0.602 0.629
0.7 0.5 1.000 1.000 1.000 1.000 0.968 0.766 0.839 0.854

n1 = 200 0.0 0.0 0.071 0.055 0.054 0.055 0.078 0.053 0.046 0.043
n2 = 100 0.2 0.2 0.714 0.370 0.363 0.349 0.219 0.105 0.141 0.153
n3 = 100 0.1 0.4 0.960 0.835 0.828 0.813 0.475 0.269 0.346 0.347

0.2 0.5 0.999 0.960 0.959 0.962 0.735 0.443 0.542 0.569
0.5 0.5 1.000 0.998 0.998 0.997 0.933 0.606 0.673 0.703
0.7 0.5 1.000 1.000 1.000 1.000 0.990 0.819 0.867 0.893

Here χ2 = Proposed test statistic (42) for different sample sizes, χ = Test Statistic [3], ANOVA = F test statistic of
analysis of variance, KW = Kruskal-Wallis test statistic.

It can be seen that the χ2 test performed better than the other tests. However, it is not
dominated by the ANOVA test as expected under the normal distribution.

5. Applications

We considered two applications. Equal sample sizes were used in the radar meteorol-
ogy example, and the sample sizes were different in the credit limit example.

5.1. Radar Meteorology

We considered radar reflectivity data [1] from two independent radars deployed
during NASA’s Tropical Rainfall Measuring Mission Kwajalein Experiment. An S-band
radar was located on Kwajalein Island at the southern end of the Kwajalein Atoll, and a
C-band radar was on board the NOAA ship Ronald H. Brown. Different calibrations were
applied to two radars, and their spherical data were recorded to the same 1 km cube
Cartesian grid.

Histograms of the samples were identical if sample 1 and sample 2 both are taken
from the C-band population (Figure 1). Histograms of sample 1 and 3 illustrate that the
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shapes of the distributions are different for sample 1 taken from the C-band population
and sample 2 taken from the S-band population (Figure 1).

Figure 1. Radar reflectivity data: histograms, normal QQ-plots and boxplots. Sample 1 and sample 2
were taken from the C-band radar population with each sample size n = 500. Sample 3 was taken
from the S-band Radar population with the same sample size n = 500.

First, two independent samples were taken from the C-band radar population to test
whether they were from the same population. The population size was around 3987, and
the sample sizes were 500 each. To test that the populations were equal, the method of
Section 4 (in particular, the test statistic χ1 in (27) was used with k = 2), and the results are
given in Table 4. Using only equality of means constraints, the data fail to reject H0 : β = 0
with the p-value = 0.71. Using simultaneous equality of means and equality of variance
constraints, the data again fail to reject H0 : β1 = 0, β2 = 0 with p-value = 0.18, and thus
we concluded that both samples are from the same population (with respect to the means
and variances).

Table 4. Hypothesis testing when samples are coming from the same or different populations.

Populations H0 Transformation Dual Solutions χ1 p-Value

C-band, C-band H0 : β = 0 h(x) = x1 − x2 β̂ = −0.00086 0.1382 0.71
H0 : β1 = 0, h1(x) = x1 − x2, β̂1 = −0.0175, 3.3577 0.18

β2 = 0 h2(x) = x2
1 − x2

2 β̂2 = 0.0003
H0 : β = 0 h(x) = ln x1 − ln x2 β̂ = −0.08541 −0.74671 0.4552

C-band, S-band H0 : β = 0 h(x) = x1 − x2 β̂ = −0.0087 13.24 0.0003
H0 : β1 = 0, h1(x) = x1 − x2, β̂1 = 0.0048, 23.4 0.0

β2 = 0 h2(x) = x2
1 − x2

2 β̂2 = −0.0002
H0 : β = 0 h(x) = ln x1 − ln x2 β̂ = 0.4414 4.8307 0.0

Next, we considered two independent samples of size 500 each from C- and S-band
populations to test if those were from the same population. With C-band radar data
as the reference and when using only equality of means constraints, the data rejected
H0 : β = 0 with p-value =0.0003. Using equality of means and equality of variance
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constraints simultaneously, the data again rejected H0 : β1 = 0, β2 = 0 with p-value ≈ 0;
therefore, we concluded that the samples are from different populations (with respect to
the means and variances).

From the histograms, the data appear to be skewed to the left (as was noted by [3]).
Thus, we considered the log transformation of the data and repeated the analysis for
equality of means as reported in Table 4; however, our conclusions remain unchanged.

5.2. Credit Limit Data

Previous study considered credit limit information from three different education
levels, namely, graduate school, university and high school [2]. We want to investigate
whether the populations are identical using the constraints that the means of the credit
limit between three different education levels are equal. The sample sizes from the three
populations are 10,585, 14,030 and 4917, respectively.

The credit limit data of each groups follows positively skewed distributions (Figure 2).

Figure 2. Credit limit data: histograms, normal QQ-plots and boxplots for the graduate (n = 10,585),
university (n = 14,030) and high school (n = 4917) student groups.

To test that the populations were identical with respect to their means, the method of
Section 4 for different sample sizes, in particular, the test statistic χ2 in (42) was used with
k = 3. As the ‘university’ group had the largest sample size, the sample mean from that
group was taken as fixed to be used in (29). While comparing the other groups with the
university group, we found η̂1 = −0.4435× 10−5 and η̂2 = 0.1396× 10−5. The test statistic
value was χ2 = 1272.92 with p-value ≈ 0. Thus, we reject H0 : η1 = η2 = 0, and conclude
that the populations are different. As the data were skewed, a log transformation was,
again, considered. Then, the dual problem solutions were η̂1 = −0.563, η̂2 = 0.1988, and
the test statistic was χ2 = 928.75 (p-value ≈ 0) rejecting H0.

6. Discussions

Often prior information is known about the population. However, the sample collected
may not reveal this information due to the sampling variability. Hence, it is worthwhile to
build a model that satisfies the prior information and is the closest to the observed data.
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In Theorem 1, g(x) serves as the observed data, C serves as the prior information, and the
distance between g(x) and C is measured using the KL distance.

This paper proposed a method to compare between different populations based on
a set of restrictions specified by the investigator. The restrictions were set in the form of
moment constraints through one or more functions h. Setting different types of h compares
different aspects of the distributions under consideration, e.g., h(x) = x− c1 in (4) compares
g(x) and gi(x) regarding their means. When βi = 0 in (4), then gi(x) = g(x), ∀x. However,
when βi 6= 0, then gi(x) and g(x) might differ in aspects other than only their values of
E(h(X)).

For real data, one can obtain basic information from the data, including the shape.
If any of the distributions under consideration are known to be approximately symmetric,
using h1(x) = x − c1 and/or h2(x) = x2 − c2 may be the first steps to determine if
the distributions are different regarding their means and/or variances. However, if the
distributions under consideration are known to be approximately skewed, then using
h(x) = ln x would be more appropriate. In general, the reference distribution in (4) may
be any of the k distributions, leaving the exponential distortion intact but with shifted
parameters. When using the one-at-a-time method for different sample sizes, we chose the
sample with the largest size as the reference, considering it to be the most trusted, and used
its mean as µk.
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Appendix A

Theorem A1. Suppose the reference pdf is g2(x) = g(x) ∼ N(µ2, σ2
2 ), where µ2, σ2

2 are known.
Then, the solution g1(x) = f ∗(x) to the minimization problem (6) with C = { f (x) : E f (X) =

µ1, Var f (X) = σ2
1} is

f ∗(x) = g1(x) = g(x) eα̂1+β̂1x+β̂2x2
= N(µ1, σ2

1 ), (A1)

where α̂1 = − ln
[∫

g(x) eβ̂1x+β̂2x2
dx
]
, β̂1 = µ1

σ2
1
− µ2

σ2
2

, β̂2 = 1
2σ2

2
− 1

2σ2
1

.

Proof. See Pathiravasan (2019).

When σ2
1 = σ2

2 , then the C above reduces to C = { f (x) : E f (X) = µ1}, and then, it can
be shown that the solution of the dual problem is β̂ = µ1−µ2

σ2
2

. Recall, the same β = β̂ was

also observed as βi in model (1) for k = 2, which justifies the optimality of the exponential
tilt form of N(µ1, σ2

1 ) with g(x) = N(µ2, σ2
2 ) as the reference distribution for the one-way

ANOVA model in Section 2.
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Proof. [Proof of Theorem 2.] The cone dual to C in (11) is C∗ = {β1(x1 − x2) + β2(x2 −
x3); β1, β2 ∈ R}. Therefore, the corresponding dual problem is

inf
β1,β2∈R

∫
x

eβ1(x1−x2)+β2(x2−x3) g(x)dx. (A2)

In order to find the solution to (A2), we differentiate it with respect to β1 and β2
separately. The relevant score equations are∫

x
(xi − xi+1) eβ1(x1−x2)+β2(x2−x3) g(x)dx = 0, i = 1, 2. (A3)

Using the expression for g(x) and combining similar terms in the exponent, (A3) can be
simplified as E(Xi − Xi+1) = 0, where (X1, X2, X3)

′ has a tri-variate normal distribution
with a mean vector (µ1 + β1σ2

1 , µ2 + (β2 − β1)σ
2
2 , µ3 − β2σ2

3 )
′ and covariance matrix Σ.

Setting the equations E(Xi − Xi+1) = 0, i = 1, 2 as

µ1 + β1σ2
1 = µ2 + (β2 − β1)σ

2
2 , µ2 + (β2 − β1)σ

2
2 = µ3 − β2σ2

3 ,

we find the solution of the corresponding dual problem as given in (16). Using these solu-
tions, one obtains the solution f ∗(x) in (14) with the expression of µ∗ as stated in (15).

For k > 3, closed form solutions for β̂i, µ∗ exist but are tedious or intractable (Pathi-
ravasan, 2019). For g(x) nonnormal cases, unique solutions for βi’s exist but may not be in
closed forms and/or the final solution f ∗(x) may not be a known distribution.

Theorem A2. For k = 3 with the same pdf g(x) = N3(µ, Σ) as in Theorem 3, consider the
minimization problem (13) with C = { f (x) ; E f (Xi) = E f (Xi+1), Var f (Xi) = Var f (Xi+1), i =
1, 2}. The solution is given by

f ∗(x) = g(x) eα̂1+β̂1(x1−x2)+β̂2(x2−x3)+β̂3(x2
1−x2

2)+β̂4(x2
2−x2

3) = N3(µ
∗1, σ2∗ I3),

where α̂1 is the normalizing factor, µ∗, as in (15), and σ2∗ =
3σ2

1 σ2
2 σ2

3
σ2

1 σ2
2+σ2

1 σ2
3+σ2

2 σ2
3

,

β̂1 = −1
3

(
2µ1σ2

2 σ2
3−µ2σ2

1 σ2
3−µ3σ2

1 σ2
2

σ2
1 σ2

2 σ2
3

)
, β̂2 = −1

3

(
µ1σ2

2 σ2
3+µ2σ2

1 σ2
3−2µ3σ2

1 σ2
2

σ2
1 σ2

2 σ2
3

)
,

β̂3 = −1
6

(
σ2

1 σ2
2+σ2

1 σ2
3−2σ2

2 σ2
3

σ2
1 σ2

2 σ2
3

)
, β̂4 = −1

6

(
2σ2

1 σ2
2−σ2

1 σ2
3−σ2

2 σ2
3

σ2
1 σ2

2 σ2
3

)
, and I3 is the (3 × 3) iden-

tity matrix.

Proof. See Pathiravasan (2019). 2
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