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Abstract: This paper proposes a model for realized variance that exploits information in realized
quarticity. The realized variance and quarticity measures are both highly persistent and highly
correlated with each other. The proposed model incorporates information from the observed realized
quarticity process via autoregressive conditional variance dynamics. It exploits conditional depen-
dence in higher order (fourth) moments in analogy to the class of GARCH models exploit conditional
dependence in second moments.
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1. Introduction

The commonly used measure of financial risk, the conditional variance, of an asset
return is not directly observable. The large class of observation-driven GARCH type or
parameter-driven stochastic volatility models use asset return data to estimate the con-
ditional variance process. A more recent alternative approach exploits the availability
of intraday high-frequency data and treats the realized variance (RV) process as observ-
able data. This approach was popularized by the HAR (heterogeneous autoregressive)
specification of Corsi [1].

Understanding the time variation in financial risk and the ability to predict its future
course is of primary interest for financial practitioners and regulators who need to manage
financial risk. In the extensive literature that examines the conditional dynamics of asset
return second moments, some have considered utilizing information contained in higher
order moments such as skewness and kurtosis [2–4]. This paper contributes to this literature
by examining the information in the observed fourth-moment process to predict the realized
variance RV.

The proposed model exploits two empirical features of the RV and the realized quar-
ticity (RQ) processes. First, both processes are highly persistent with slowly decaying
autocorrelations. The early literature modeled the slow decay in volatility as a long mem-
ory process with Hurst exponent H > 1/2 [5–7]. Recently, Gatheral et al. [8] have suggested
a rough volatility model with H < 1/2. As they note, though a rough volatility model is not
strictly a long memory process, their autocorrelation is statistically difficult to distinguish
from that of a long memory process. For the fourth-moment process Huang et al. [9] find
positive but weak dependence in the volatility of volatility measure from options on VIX.
Da Fonseca and Zhang [10] document roughness in volatility of volatility with H < 1/2.

The second empirical feature the proposed model exploits is the high correlation
between RV and RQ processes. A positive correlation between volatility and volatility of
volatility is also documented in Da Fonseca and Zhang [10]. This correlation motivates the
use of information in RQ to model RV. As the variance of variance is the fourth moment
and this fourth moment is persistent (first empirical feature), the proposal is to model the
conditional variance of the realized variance with GARCH-type dynamics that can capture
the persistence. The proposed model is a higher moment extension of the realized GARCH
model of Hansen et al. [11].

The common approach to model the persistence in RV is to use a restricted distributed
lag model of Corsi [1]. Bollerslev et al. [12] extend the HAR specification to account for
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possible measurement error in RV as an estimator of the integrated variance IV. Their
HARQ specification allows the parameters of the HAR model to be time-varying and
depend on

√
RQ. Buccheri and Corsi [13] consider a HAR model with time-varying

parameters in a parameter-driven state-space model. The variance of the observation
equation for ln RV is set to RQ and the state equation parameters are driven by the scores
as in Creal et al. [14]. To capture long memory type persistence in RV, the state vector has
dimension 22. To economize on the number of parameters to estimate the system is sparse,
with score dynamics restricted to follow a diagonal random walk. Ding [15] extends the
GARCH model to capture dynamics in the variance of variance.

Section 3 formally describes the proposed model specifications and their properties.
Unlike the HAR type models, the dependence in RV is indirectly modeled through de-
pendence in RQ. More specifically, RV is modeled as a function of the (unobservable)
conditional variance of RV. The proposed model, therefore, extends Hansen et al. [11] to
a higher order moment with a RQ-in-mean type model. The GARCH-in-mean models
with asset returns on the left-hand side have a persistence mismatch as returns have little
persistence while conditional variances are highly persistent [16]. For the higher-order
specification in this paper, the left-hand side RV is persistent as with the right-hand side
conditional variance of RV.

Section 3 also discusses the somewhat neglected issue of the use of nonlinear trans-
formations. The three most commonly used transformations in the literature are RV (no
transformation),

√
RV [1], and ln RV [17]. The first two forms are the variable of interest in

financial applications. However, in the majority of the models that are estimated by least
squares, the parameters are not restricted to ensure RV ≥ 0 and may result in negative
out-of-sample forecasts. The log transformation ensures non-negative forecasts without
parameter restrictions. Another important advantage of the log transformation, as doc-
umented in the empirical analysis Section 4, is the removal of the excess kurtosis in RV
and RQ. The proposed model with the log transformation can, therefore, be estimated by
maximizing the Gaussian likelihood.

The empirical performance of the proposed model is considered in Section 4 using
data for the 27 stocks analyzed in Bollerslev et al. [12]. This section first documents the
claimed two empirical features of RV and RQ for the sample of 27 stocks. The proposed
model is then fitted using a rolling estimation window for each stock. The rolling pseudo-
out-of-sample predictions from the proposed model are then compared to those from the
baseline HARQ model of Bollerslev et al. [12]. The HARQ model is chosen as the baseline
for comparison as it also exploits information from RQ to predict RV.

The rest of the paper is organized as follows. Section 2 provides a summary of related
literature, Section 3 formally describes the proposed model specification, Section 4 examines
the empirical performance of the proposed model specification, and Section 5 provides
some concluding comments.

2. Related Literature

An early parametric model with a long memory for the RV process was suggested
in Andersen et al. [18]. They specify a fractionally integrated VAR where the fractional
difference parameter d is estimated by the log-periodogram regression of Geweke and
Porter-Hudak [19]. The long memory in RV is modeled by a restricted AR(22) specification
in Corsi [1]. This long AR specification, known as the HAR (Heterogeneous AutoRegressive)
model, has become the standard model to capture long memory like persistence in RV
since it can be estimated by simple least squares.

Corsi et al. [17] extends the HAR specification by modeling conditional dependence
in the second moment of the residuals. As the outcome variable in a HAR model is the
second moment RV, the residual second moment is the variance of variance. This model
of conditional fourth-moment dynamics is the higher-order extension of the GARCH
class of conditional second-moment dynamic models. Like the GARCH model, the con-
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ditional fourth moment is a latent variable that is not directly observable in the model
of Corsi et al. [17].

The proposal in this paper is to use the observed fourth-moment variable, the realized
quarticity RQ. RQ was used in the HAR extension of Bollerslev et al. [12], which motivates
its use as an instrument for potential measurement error in the lagged RV on the right-
hand side of the regression. Their HARQ model can be estimated by simple least squares.
Buccheri and Corsi [13] deal with the RV measurement error in a state-space model where
the observed RV is modeled as the latent signal IV plus a measurement error noise. The un-
observed latent signal IV is the state variable that needs to be filtered. To capture long
memory type persistence, IV has a HAR type long AR specification resulting in a latent
state vector of dimension 22. Their HARK model uses the observed RQ process as the
time-varying variance of the observation equation for RV. Although the state-space model
can be estimated by maximum likelihood with the use of Kalman filter, the likelihood is
nonlinear in the parameters and estimation is computationally more expensive than the
least squares based HARQ model of Bollerslev et al. [12].

Bollerslev et al. [12] and Buccheri and Corsi [13] both use the observed fourth moment
variable RQ in the HAR class model to capture long memory type persistence in RV. Rather
than use long lags of RV to capture persistence, the proposal in this paper is to exploit
similar long memory type persistence in RQ to model the RV dynamics. To exploit potential
dependence in the residual second moments as in Corsi et al. [17], the proposed model
is a higher moment extension of the realized GARCH model of Hansen et al. [11] and
Hansen and Huang [20]. Compared to their realized GARCH specification, the proposed
model is an RQ-in-mean specification as described below. The likelihood function of the
proposed model is nonlinear in the parameters and requires numerical optimization for
maximum likelihood estimation.

3. Realized Variance Model

Online Appendix A.1 provides a brief summary of asymptotic distributions of real-
ized variances.

3.1. Model Specification

The proposed model extends the realized GARCH model of Hansen et al. [11] in two
ways. First, instead of the asset return (first moment), the conditional mean equation is for
the realized variance (second moment) of asset returns. Second, as the realized variance is
persistent, the conditional mean equation has a conditional variance of variance term anal-
ogous to the GARCH-in-mean specification to capture the persistence in realized variance.

yt = c0 + c1 ln κt +
√

κtεt, εt ∼ iid(0, 1) (1a)

ln κt = ω + αxt−1 + β ln κt−1 (1b)

xt = ξ + φ ln κt + τ(εt) + σuut, ut ∼ iid(0, 1) (1c)

where εt and ut are assumed independent.
The observed outcome variable yt is some function of the realized variance RVt.

The choice of transformation for yt is discussed below in Section 3.2. κt is the (unobserved)
conditional variance of yt. As κt is the variance of variance, the parameter c1 is the variance-
in-mean parameter analogous to the GARCH-in-mean specification [21]. This term is
included in the conditional mean Equation (1a) to capture the dependence in yt.

The conditional dynamics for κt is specified in log form in (1b) to ensure κt is non-negative
without restricting the parameters in (1b). This specification is analogous to that of expo-
nential GARCH of Hansen and Huang [20] and Nelson [22]. Corsi et al. [17] considered a
GARCH analogue for κt where xt−1 = κt−1ε2

t−1 in Equation (1b) with κt on the left-hand
side. For the proposed model xt is an observed variable analogous to Hansen et al. [11] and
Hansen and Huang [20]. Hansen et al. [11] ‘augmented’ the GARCH model by using informa-
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tion from realized variance by setting xt = RVt. For this application, κt is the conditional fourth
moment and xt is set to some transformation of the realized quarticity RQt.

In Equation (1c) for the observed variable xt, the term τ(εt) captures potential asym-
metric response to negative and positive shocks εt. As in Hansen et al. [11], the quadratic
specification τ(z) = τ1z + τ2(z2 − 1) is used in the empirical application. τ(εt) is then a
zero mean process where the parameter τ1 captures the asymmetric response. (1b) can
include additional lags of xt and ln κt but we use only one lag for parsimony.

Model (Section 3.1) implies that ln κt follows an AR(1) process and xt an ARMA(1,1)
process [11]

ln κt = ω + αξ + (β + αφ) ln κt−1 + αet−1

xt = ωφ + ξ(1− β) + (β + αφ)xt−1 + et − βet−1 (2)

where et ≡ τ(εt) + σuut is a zero mean iid process. The stationarity condition for ln κt and
xt is β + αφ < 1 with unconditional means

E[ln κt] =
ω + αξ

1− β− αφ
, E[xt] =

ωφ + ξ(1− β)

1− β− αφ
(3)

ρ ≡ β + αφ is a measure of persistence of the model implied series ln κt and xt as their
autocorrelations decay with powers of ρ.

3.2. Variable Transformations

The proposed model (Section 3.1) can be considered a class of models depending on
the choice of transformed variables yt and xt. The literature that models realized variance
RVt have used alternative transformations of RVt for yt. The HAR model of Corsi [1] uses
yt =

√
RVt, Corsi et al. [17] consider yt =

√
RVt, yt = ln RVt and Bollerslev et al. [12]

consider yt = RVt. Strictly speaking the non-negativity of yt = RVt, yt =
√

RVt requires
restrictions on the mean Equation (1a) parameters to ensure out of sample forecasts remain
non-negative. Such restrictions, however, do not appear to be imposed for least squares
based estimators in Corsi et al. [17] and Bollerslev et al. [12]. As a consequence out-of-
sample predictions may produce negative values of yt = RVt or yt =

√
RVt.

For this reason, the empirical application below uses the log transformation yt = ln RVt
which ensures non-negative RVt predictions of RVt without restrictions on the mean equa-
tion parameters (1a). A problem with the use of log transformation is that the variable
of interest in financial applications is often the variance itself RVt or the volatility

√
RVt,

not the log transformation. If we use the log transformation in (Section 3.1), the predicted
values need to go through a nonlinear transformation to obtain predictions of the variable
of interest. The nonlinear transformation results in approximate inference for the variable
of interest even under the rather strong assumption of a correctly specified distribution for
the transformed variable yt.

The variable xt is an observed measure of the conditional variance of yt. As yt is a
second moment variable, it is natural to use a realized fourth moment or quarticity RQt
for xt. For transformations yt =

√
RVt or yt = ln RVt, the asymptotic variance expression

in online Appendix A.1 have IVt in the denominator. This may cause problems for the
values of RVt close to zero, the so-called inlier problem. As the model (Section 3.1) restricts
xt to follow an ARMA(1,1) process, an alternative approach is to choose a transformation
of RQt in the sample that has similar dependence as an ARMA(1,1) process. A further
consideration is that the model implied process for xt does not ensure positive xt without
restrictions on the parameters. The log transformation xt = ln RQt ensures positive RQt
without imposing additional restrictions on the parameters.

For these reasons, the empirical application below uses the log transformation xt = ln RQt.
Alternative transformations of the conditional variance have been considered for the
(G)ARCH-in-mean term. The RQ-in-mean term with coefficient c1 in (1a) can also use κt
itself or transformations such as

√
κt. However, (1a) uses the log transformation as the
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dynamics of κt in logs in (1b) ensures non-negative κt without restricting the parameters.
Furthermore, the log transformation of κt matches the log transformation of RVt for yt and
of RQt for xt.

3.3. Maximum Likelihood Estimation

The parameters of the model can be estimated by maximum likelihood assuming the
error terms have a Gaussian distribution. While one can interpret the Gaussian assumption
as a quasi-likelihood, for finite sample performance, it is desirable that the transformations
discussed in the previous section are chosen so that the distribution of εt and ut are not
‘too’ different from the Gaussian. The levels of RVt and RQt are well known to have very
high kurtosis and an important reason to prefer the log transformation for yt and xt is to
remove the excess kurtosis. Corsi et al. [17] and Barndorff-Nielsen and Shephard [23] find
that the finite sample distribution of ln RVt is closer to the Gaussian than RVt.

For model (Section 3.1), the contribution to the Gaussian log-likelihood from the t-th
observation is

`t(yt, xt) = `t(εt)−
1
2

ln κt + `t(ut)−
1
2

ln σ2
u

= − ln(2π)− 1
2
(ε2

t + ln κt + u2
t + ln σ2

u)

For the quadratic leverage function τ(z) = τ1z + τ2(z2 − 1) used in Hansen et al. [11],
the parameter vector is θ = (θ1, θ2, θ3), θ1 = (c0, c1), θ2 = (ω, α, β), θ3 = (ξ, φ, τ1, τ2, σu).
The parameter restrictions are σu > 0 and for stationarity of κt and xt, β + αφ < 1.

To start the recursion in (1b), we need to specify presample values of xt, κt. If stationar-
ity of xt, κt are imposed, we can set these to the unconditional means x0 = E[xt], κ0 = E[κt]
given in (3). A simple alternative used in the empirical application below is to use the
sample variance of yt.

For statistical inference, the ‘sandwich’ QML (quasi-maximum likelihood) parameter
covariance matrix can be used by evaluating the first and second derivatives of the con-
tributions to the Gaussian log-likelihood. Analytical expressions to recursively evaluate
the first derivatives are given in the online Appendix A.2. The second derivatives can be
evaluated by numerically differentiating the analytical first derivatives.

3.4. Model Evaluation by Pseudo Out-of-Sample Forecasting

A standard approach to evaluating model performance is to compare the accuracy of
pseudo-out-of-sample forecasts. For alternative models with the same outcome variable
yt and provided the actual outcome yt is observable, the comparison can be made by
specifying a loss, or scoring, function.

There are two additional issues to consider in this application where the outcome of
interest is (some function of) the daily realized variance RVt. First, if the statistic of interest
is the integrated variance IVt, the outcome yt based on RVt is likely measured with error.
Patton [24] suggested scoring functions robust to additive error in the outcome variable.

The second issue is the comparison of models where the outcome variable of interest
is some transformation of the modeled variable yt. For example, in finance applications
rather than yt = ln RVt we are often more interested in

√
RVt = exp(yt/2). To compare

models with outcomes y1t = RVt, y2t =
√

RVt, y3t = ln RVt, we need to specify a common
outcome variable of interest. In this case setting RVt as the variable of interest is the least
problematic as obtaining forecasts of

√
RVt from RVt under additive error is mathematically

intractable. Furthermore RVt is the observed data variable constructed from intraday data.
A commonly used approach to obtain forecasts for RVt is to assume Gaussianity. For

yt = ln RVt and εt ∼ N(0, 1), the h-step forecast of y is Gaussian with

Et[yt+h] ∼ N(ŷt+h|t, κt)

ŷt+h|t = c0 + c1 ln κt
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and the forecasts for the transformed variables are

Et[RVt+h] = Et[exp(yt+h)] = exp(ŷt+h|t +
1
2

κt)

Et[
√

RVt+h] = Et[exp(yt+h/2)] = exp(
1
2

ŷt+h|t +
1
8

κt)

An alternative approach that does not assume Gaussianity is the ‘smearing’ estimate
of Duan [25] and Wooldridge ([26], 6-4). Let êt = yt − ŷt, t = 1, . . . , T denote the in-sample
residuals. The smearing forecasts are

R̂VT+h = exp(ŷT+h)
( 1

T

T

∑
t=1

exp(êt)
)

√̂
RVT+h = exp(

1
2

ŷT+h)
( 1

T

T

∑
t=1

exp(
1
2

êt)
)

4. Empirical Application

This section uses the 5-minute return data from Bollerslev et al. [12] to evaluate the
performance of the proposed specification (Section 3.1) for the realized variance. The data,
made publicly available by the authors, is a daily sample of 27 Dow Jones constituent
stocks from 22 April 1997 to 31 December 2013 (4200 trading days). A list of the 27 stocks
and their ticker symbols are provided in online Appendix A.3.

4.1. Preliminary Analysis

Before we fit the model to the data, we examine the log transformations chosen
for the observed variables yt = ln RVt and xt = ln RQt. As explained above, the log
transformations ensure non-negative RVt and RQt without restricting the model parameters.
Another important reason for using the log transformation for yt is to approximate the
Gaussian distribution assumed for the likelihood function closely. Table A2 in the online
Appendix A.3 shows the sample third (skewness) and fourth (kurtosis) moments of RVt,√

RVt, and ln RVt for the 27 stocks in the sample.
Table A2 shows that all three transformations are positively skewed. The untrans-

formed RV has the largest positive skewness followed by
√

RV, which have skewness all
above one. The log transformation ln RV has the smallest skewness all below one, but they
are all significantly different (at size 0.05) from the Gaussian value of zero. The untrans-
formed RV also has the largest kurtosis, all well above the Gaussian value of three.

√
RV

has somewhat smaller kurtosis, but the smallest value, 7.42 (for INTC), is still well above
three. The log transformation ln RV has kurtosis much closer to Gaussian with the largest
value at 4.15 (for CVX).

As mentioned in the introduction, the proposed specification (Section 3.1) is based
on two empirical features of RV and RQ: their common persistence and their correlation.
Figure A1 in the online Appendix A.3 shows the sample autocorrelations of ln RV and
ln RQ for the 27 stocks in the sample. For all stocks, ln RV is somewhat more persistent than
ln RQ. The autocorrelations for ln RV slowly decay from about 0.8 while those for ln RQ
slowly decay from about 0.6. Both autocorrelations die out slowly with the lag, a feature of
long memory series. The two series are highly correlated with each other with all pairwise
sample correlations above 0.95.

The model (Section 3.1) implies that the observed realized process xt should follow
the restricted ARMA(1,1) process (2). The slowly decaying autocorrelations for xt = ln RQt
in Figure A1 is not inconsistent with an ARMA(1,1) process with a large AR(1) coefficient.
As a further check, Table A5 in the online Appendix A.3 reports estimates of an unrestricted
ARMA(1,1) model fitted to xt for the 27 stocks in the sample. Both the AR and MA
coefficients are statistically significant, with a large positive AR(1) coefficient and a large
negative MA(1) coefficient. The estimated AR(1) coefficient ranges from 0.976 (XOM) to
0.992 (MCD) and the MA(1) coefficient from −0.709 (XOM) to −0.844 (NKE). Although the
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portmanteau test for residual correlation up to lag 5 rejects the white noise residual null (at
size 0.05), the residual serial correlations are small in size. The first order residual serial
correlation ranges from 0.103 (NKE) to 0.036 (CVX).

4.2. In-Sample Estimates

To evaluate the performance of the model out of the sample, pseudo-out-of-sample
rolling forecasts were obtained. As parameter estimation by maximum likelihood is compu-
tationally expensive compared to least squares, a rolling forecast window of one (calendar)
month was moved forward each month starting from January 2006. The first set of pa-
rameter estimates were obtained for the estimation sample from the beginning of the data
sample April 1997 to December 2005 (104 months). Using these parameter estimates, h-step
forecasts for trading days in the month of January 2006 are obtained. These forecasts use
the same parameter estimates but the conditioning information set, i.e., the lagged variables
on the right-hand side are updated as we move forward within the forecast window.

The next set of estimates were obtained for the sample from May 1997 to January 2006
and forecasts for trading days in the month of February 2006 were obtained. This resulted
in 96 sets of parameter estimates with forecasts from the beginning of January 2006 to the
end of December 2013. This forecast sample included the financial crisis period 2008–2009
when there was a spike in RV.

Numerical maximization of the Gaussian likelihood can be sensitive to the choice of
starting values. To guard against getting stuck in local maxima, a few alternative random
starting values are tried for each estimation window. To start the recursion, the presample
values for xt and ln κt were set to the estimation sample variance of yt. (The alternative
of setting these presample values to the model unconditional means (3) often resulted in
the nonconvergence of the numerical optimizer and was sensitive to the choice of starting
parameter values).

There are a large number of estimated parameters (10 parameters for each of the
96 estimation windows for each of the 27 stocks). Figure 1 shows a summary of the
estimated parameters for stepsizes h = 1, 5, 22 days. Following Bollerslev et al. [12], for the
h-step forecast the outcome variable on the left-hand side of (1a) is

y(h)t ≡
{

1
h ∑h

j=1 yt+j−1, yt = RVt,
√

RVt

ln
( 1

h ∑h
j=1 Yt+j−1

)
, yt = ln(RVt), Yt = RVt,

√
RVt

(4)

The h-step ahead variable for the log transformation is defined so that the forecasts
from y(h)t can be compared to those from the other transformations. For h = 1, taking the
log of RV or

√
RV just results in a different scaling. For h > 1, the log of RV averages and

the log of
√

RV averages are considered since one cannot be recovered from the other just
by rescaling. Strictly speaking, the model parameters change with the forecast stepsize h
and should be written as a function of h.

Each panel in Figure 1 corresponds to a parameter and the shaded area is the interquartile
range (from the 0.25 to 0.75 quantile) across the 27 stocks. The thick solid line is the median
estimate across the 27 stocks. The intercept c0 and the RQ-in-mean parameter c1 of Equation
(1a) are both positive. A positive RQ-in-mean parameter c1 is to be expected given the similarity
of the ln RV and ln RQ dynamics documented above. c1 declines with stepsize h and for h > 1,
c1 is smaller for the log average of

√
RV than for the log average of RV.
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Figure 1. Rolling parameter estimates for log-in-mean specification (Section 3.1) for stepsizes
h = 1, 5, 22. For h > 1, two models are estimated, one using the log of the average of RV (red) and
one with the log of the average of

√
RV (blue). The shaded area is the interquartile range across the

27 stocks and the solid line is the median. The daily sample is from 22 April 1997 to 31 December
2013 (4200 trading days). The rolling estimation window is 8.67 years (104 months) followed by a
one-month prediction window shifted each month over the sample for 96 estimation windows.

The parameters α, β, φ that determine the persistence ρ ≡ β + αφ of the ln κt and xt
processes are all positive and imply ρ close to but below the stationarity boundary of one
(Figure 2). As a function of stepsize h, α does not change much for the log average of RV
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but somewhat increases for the log average of
√

RV. β increases with h from about 0.7 for
h = 1 to above 0.8 for h = 22 and φ decreases with h from about 6 for h = 1 to less than
4 for h = 22. Figure 2 shows the rolling estimates of the persistence parameter ρ increase
with the stepsize h. This is to be expected as the h-step outcome variable y(h)t gets smoother
and hence more persistent with h.

2006 2008 2010 2012 2014

0.90

0.92

0.94

0.96

0.98

1.00

h = 1

ρ = β + αφ

h = 5 (RV)

h = 5 ( RV)

h = 22 (RV)

h = 22 ( RV)

Figure 2. Rolling estimates of the implied persistence parameter ρ for different stepsize h. For h > 1,
two models are estimated: one using the log of the average of RV (red) and one with the log of
the average of

√
RV (blue). The shaded area is the interquartile range across the 27 stocks and the

solid line is the median. The daily sample is from 22 April 1997 to 31 December 2013 (4200 trading
days). The rolling estimation window is 8.67 years (104 months) followed by a one-month prediction
window shifted each month over the sample for 96 windows.

The asymmetric response parameter τ1 is positive and decreases with stepsize h from
about 1.3 for h = 1 to below 0.5 for h = 22. The coefficient on the quadratic term τ2 switches
sign from positive for h = 1 to negative for h = 5, 22. The volatility parameter σu for the
xt = ln RQt Equation (1c) increases with stepsize h.

4.3. Pseudo Out-of-Sample Forecasts

This section evaluates the performance of the proposed model in terms of (pseudo)
out-of-sample rolling forecasts described above in Section 4.2. If the model captures the
time series dependence of the outcome variable, the forecast errors should not be serially
correlated. A formal such test needs to account for sampling error in generating the
forecasts based on the estimated parameters. Figures A2–A4 in the online Appendix A.4
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provide an informal check by plotting the autocorrelation functions of the rolling forecast
errors. In addition to forecasts error from the proposed model (Section 3.1), these figures
also compare the forecast error correlations from the HAR model of Corsi [1] with outcome
y =
√

RV and the HARQ model of Bollerslev et al. [12] with outcome y = RV.
For stepsize h = 1, the forecast error serial correlation is small in magnitude, but

most of them fall outside the asymptotic interval for a white noise series. (A portmanteau
test for serial correlation up to lag 5 all reject the null hypothesis of a white noise at the
conventional size of 0.05. However, these are asymptotic p-values that ignore parameter
estimation sampling error.) For stepsizes h > 1, the forecast errors show a large positive
correlation up to lag h for all models. This dependence is due to the overlapping sample
used in generating the multistep outcome variable (4).

To evaluate the relative forecast performance of the proposed model, its forecast
accuracy is compared against a baseline model. The baseline model is the HARQ model of
Bollerslev et al. [12], which extends the HAR model of Corsi et al. [17] with an additional
interaction term involving

√
RQ. The model proposed in this paper also uses the realized

quarticity RQ but without the lagged RV terms of HAR(Q). Following Bollerslev et al. [12],
the outcome variable of the baseline HARQ model is the untransformed y = RV. The model
parameters are estimated by least squares without restricting them to ensure the predicted
values are non-negative. Bollerslev et al. ([12], footnote 17) apply the ‘insanity’ filter
and replace predicted values that are outside the in-sample range with the in-sample
mean value. The baseline predictions in this paper do not apply this somewhat ad hoc
insanity filter.

An alternative natural baseline that ensures non-negative predicted RV values is the
HARQ model with y = ln(RV) and an interaction term with ln(RQ). This log version
of the HARQ specification, however, does not perform as well as the untransformed
specification of Bollerslev et al. [12]. Table A3 in the online Appendix A.3 reports estimated
coefficients on the interaction term for the full sample for stepsizes h = 1, 5, 22. For the
level (untransformed) specification, these coefficients are all negative with t-ratios above
two in absolute value (with two exceptions for h > 1) as reported in Bollerslev et al. [12].
For the log specification, many coefficients are positive and insignificant. For h > 1 all
t-ratios (except one) are below two in absolute value. Bollerslev et al. [12] motivate the
use of

√
RQ to correct for possible measurement error in RV. The negative coefficient of

the interaction term may be correcting for this error mainly in the tails of the high excess
kurtosis of RV. This may explain the insignificant coefficient in the interaction for the log
specification as the excess kurtosis largely disappears for ln(RV). The issue of appropriate
HARQ specification is not the focus of this study and is left for further research.

To evaluate the relative accuracy of predictions from alternative models, we need to
specify a loss or scoring function. For this study, two members from the Bregman family of
consistent scoring functions that are robust to additive noise in RV [24] are used.

Sms(RV, F) = (RV − F)2

Sql(RV, F) =
RV
F
− ln(

RV
F

)− 1

where RV is the actual realized value and F its forecast. Sms is the mean squared and Sql is the
QLIKE scoring function. These two scoring functions were also used in Bollerslev et al. [12].
Sms is defined for all values of F while Sql is undefined for F < 0. As the baseline HARQ
predictions are not filtered, the small cases of non-positive predictions are removed when
evaluating Sql .

The difference in scores between the baseline and comparison model is tested with the
t-ratio of equal forecast accuracy of Diebold and Mariano [27]. As mentioned above, the
forecast errors are correlated for h > 1. To account for this correlation, the denominator of
the t-ratio, the standard error of the difference in average scores, is computed using the
Bartlett kernel with bandwidth set to the forecast stepsize h. Table 1 reports these t-ratios
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for the full forecast sample. A positive τ value indicates a better forecast (smaller score)
from the comparison model than the baseline HARQ.

Table 1. t-ratios of Diebold and Mariano [27] test of equal predictive accuracy of h-step RV rolling
forecasts. The baseline forecast from the HARQ model (no transformation) is compared against
the forecast from the exponential transform of the log forecast from model (Section 3.1) assuming
log-normality. A positive τ value indicates a better forecast from the comparison model against the
baseline HARQ forecasts. τMS for equality of mean squared error loss and τQL for QLIKE loss of
Patton [24]. R̂V < 0 is the number of negative forecasts (in the forecast sample) produced by the
HARQ model. The bottom four rows are the fraction out of 27 stocks that satisfy the inequalities;
for R̂V < 0, it is the fraction of 27 stocks that produced at least one negative forecast. The rolling
forecasts are generated with a rolling estimation window of 8.67 years (104 months) followed by a
one-month prediction window shifted each month over 96 windows. The forecast sample is from 3
January 2006 to 31 December 2013 (2013 trading days).

h = 1 h = 5 h = 22
τMS τQL R̂V < 0 τMS τQL R̂V < 0 τMS τQL R̂V < 0

AXP 0.94 −2.65 1 0.92 0.96 1 −0.14 1.75 1
BA −2.12 0.55 0 −1.44 0.44 0 −0.31 0.43 0
CAT 1.10 −3.33 2 1.04 0.58 1 1.05 1.25 0
CSCO −2.48 −6.23 0 −1.69 −2.46 0 −1.80 −0.92 0
CVX 0.89 −1.40 1 0.96 0.56 1 1.16 1.28 1
DD −2.49 −0.71 0 0.04 0.32 0 −0.99 2.16 1
DIS −1.47 −2.47 0 −0.79 −2.09 0 −1.47 −0.73 0
GE 1.05 0.86 2 0.66 1.28 2 −0.61 2.57 3
HD −1.96 −2.62 0 −1.24 −1.96 0 −0.01 0.89 0
IBM −0.28 −2.17 0 −0.02 −2.43 0 −0.95 0.21 0
INTC −1.60 −6.43 1 0.49 −5.41 1 −0.20 −1.08 1
JNJ −1.64 −3.24 1 −1.53 −1.70 1 0.89 0.13 2
JPM −1.65 4.18 1 −1.64 0.12 1 −1.65 2.42 1
KO −1.49 −4.84 1 −0.10 −0.53 1 0.39 2.39 1
MCD 0.01 1.65 0 −0.49 6.11 0 0.41 5.44 0
MMM 1.03 −5.68 2 1.20 −0.91 2 1.11 0.59 1
MRK 0.98 −1.35 1 1.01 1.57 1 1.03 4.62 1
MSFT −1.96 −2.62 0 −1.44 −0.07 0 −1.37 0.34 0
NKE −2.53 −5.08 1 −1.38 −2.04 1 −1.24 0.85 1
PFE −2.14 −3.35 0 −1.68 −0.82 0 −1.14 0.55 0
PG −0.51 −0.41 0 −0.87 −1.27 0 1.71 2.22 0
TRV 1.15 −4.57 2 1.01 −2.84 4 1.14 1.90 4
UNH −0.94 −4.75 1 0.32 −2.72 1 0.85 −0.43 0
UTX −0.57 −0.38 0 0.95 −3.51 0 −0.21 −0.53 0
VZ −1.31 −3.06 0 −0.73 −3.78 0 −0.12 0.26 0
WMT 0.54 −1.16 2 0.81 −1.52 2 0.67 1.45 2
XOM 0.59 −0.94 1 1.01 −2.12 1 1.11 −0.20 0
τ < 0 [0.63] [0.85] [0.56] [0.52] [0.67] [0.56] [0.56] [0.22] [0.48]
τ < −2 [0.19] [0.59] [0.00] [0.37] [0.00] [0.00]
τ > 0 [0.37] [0.15] [0.48] [0.33] [0.44] [0.78]
τ > 2 [0.00] [0.04] [0.00] [0.04] [0.00] [0.26]

Table 1 shows that in about half of the 27 stocks, a negative RV forecast is produced for
the baseline HARQ model. As mentioned above, τQL is computed for the forecast sample,
excluding these negative predictions. The sign switch between τMS and τQL may be due to
the difference in the forecast evaluation sample for the two score functions. With this caveat,
the test result is somewhat sensitive to the choice of scoring function and forecast stepsize
h. For h = 1, both τMS and τQL indicate lower average score, i.e., better forecast accuracy,
for the baseline HARQ model than the proposed model (Section 3.1). The forecast accuracy
of the proposed model relative to the baseline generally improves with the forecast stepsize
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h. For h = 22, τMS is inconclusive in the sense that all their values are less than two in
absolute value. None of the τQL values are less than −2, but about a quarter of the stocks
have values above +2 indicating more accurate forecasts from model (Section 3.1) than from
the baseline.

The tests in Table 1 are based on the full forecast sample. The test results could be
specific to the choice of the forecast sample and a particular sample could be cherry-picked
to obtain certain results. As a guard against such potential cherry picking, Figures A5–A7
in the online Appendix A.5 show running t-ratios of the Diebold and Mariano [27] equal
forecast accuracy tests for all possible end-of-forecast samples. These are the values of
t-ratios when the test is applied to the forecast sample from the beginning of the forecast
sample (2007-01-03) up to each date of an expanding evaluation sample. (The three figures
use alternative (un)transformations to obtain forecasts for RV from ln RV.)

One common feature of the running t-ratio results is the change in performance shortly
after the financial crisis period 2008–2009. As expected the test performance up to the
financial crisis period is quite noisy, but the majority of the t-ratios for both MS and QL are
positive for h > 1, indicating better forecast accuracy from model (Section 3.1) compared to
the baseline. The problem with the HARQ model in levels producing negative forecasts
mostly occurs during the financial crisis period. Table A4 in the online Appendix A.3 lists all
dates with negative predictions from the HARQ model, the majority of which occur during
2008. The t-ratios remain quite stable after the financial crisis period indicating robustness
to the choice of forecast sample post-financial crisis. When judging the significance of these
running t-ratios, one should be aware of the multiple comparisons problem and that the
usual critical values are likely to be too small.

5. Concluding Remarks

This paper proposed a model for RV dynamics that exploits the information in the
higher order moment of RQ. In contrast to the HAR(Q) models that exploit dependence
in the RV variable itself, the idea is to exploit dependence in the RQ series. The empirical
analysis using 27 stocks suggests that the proposed model may perform better than the
HAR(Q) type specifications for multistep predictions and during periods of market turmoil
such as the financial crisis of 2008.

As the empirical analysis was based on large cap (blue chip) US stocks, it remains
to be seen how the proposed model performs for other markets or asset classes. These
include small-cap stocks, which are known to be volatile and fat-tailed, or cryptocurrencies.
Performance during other market turmoil periods, such as the recent pandemic, or for
commodities during the recent conflict in Ukraine could also be analyzed.

For policymakers, the performance of the proposed model for risk management pur-
poses could be of interest. The fundamental review of the trading book for the latest Basel
regulation has introduced the use of expected shortfall for market risk capital requirements.
The forecast performance analysis in this paper could be extended to evaluation of the accu-
racy of risk measures such as expected shortfalls. Additional tools or models for managing
tail risks for regulatory purposes could prove beneficial for large financial institutions.

A somewhat puzzling result is the better accuracy for multistep forecasts from the
proposed model compared to the baseline HARQ model. The HARQ specification uses
RVt−22 while the proposed specification only uses one lag (though, in principle, additional
lags could be considered). Whether the implied ARMA(1,1) process for xt = ln RQ can
better capture long-term dependence than the AR(22) term could be further investigated.

Several extensions of the proposed model could be considered. Bollerslev et al. [12]
consider the use of alternative estimators of RV such as realized kernel of Barndorff-
Nielsen et al. [28] and of RQ such as QP and TP mentioned in Appendix A.1. Alternatively,
option-based fourth-moment measures from VVIX as used in Huang et al. [9] could also be
considered. Rather than select one of these alternative measures, one can try to incorporate
information from all of these alternative measures as in Hansen and Huang [20].
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The challenge in further generalizing the model is the increase in the number of
parameters to estimate. With ten parameters to estimate, the model is already somewhat
over-parameterized as a model of a single outcome variable. To reduce the number of
parameters to estimate, one can either impose a priori ‘reasonable’ restrictions or sparsity
consistent with the data. Alternatively, a penalty term can be added to the likelihood
function for regularization [29,30].

Funding: This research received no external funding

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Appendix A.1. Summary of Asymptotic Distributions of Realized Variances

Assume the log asset price pt follows a semimartingale process

dpt = µ(t)dt + σ(t)dW(t)

with drift µ(t) and volatility σ(t). W(t) is the standard Wiener process. The realized
variance over day t is RVt = ∑m

j=1 r2
t,j where rt,j is the log return over the j-th subinterval

in day t and m is the number of subintervals over one trading day. In the diffusion limit
m→ ∞ [31,32],

RVt → MN(IVt,
2
m

IQt)

where IVt =
∫ t

t−1 σ2(s)ds is the integrated variance and IQt =
∫ t

t−1 σ4(s)ds is the integrated
quarticity. The (approximate) asymptotic distribution of nonlinear transformations of RVt
can be obtained by the delta method [17,23]

√
RVt → MN(

√
IVt,

1
2m

IQt

IVt
)

ln RVt → MN(ln IVt,
2
m

IQt

IV2
t
)

To estimate the (asymptotic) variance of RVt, we need an estimate of integrated
quarticity IQt. Commonly used consistent estimators (under no microstructure noise) are

RQt =
m
3

m

∑
j=1

r4
t,j

QPt =
mπ2

4

m

∑
j=1
|rt,j||rt,j−1||rt,j−2||rt,j−3|

TPt =
mΓ(1/2)3

4Γ(7/6)3

m

∑
j=1
|rt,j|4/3|rt,j−1|4/3|rt,j−2|4/3

RQt is the realized quarticity, QPt is the realized quad-power quarticity [33,34], and
TPt is the realized tri-power quarticity [35].

Appendix A.2. Derivatives of Log-Likelihood

For (Section 3.1) the contribution to the Gaussian log-likelihood from the t-th observation is

`t(yt, xt) = `t(εt)−
1
2

ln κt + `t(ut)−
1
2

ln σ2
u

= − ln(2π)− 1
2
(ε2

t + ln κt + u2
t + ln σ2

u)
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Contribution to score is

∂`t

∂θ
= −εt

∂εt

∂θ
− ut

∂ut

∂θ
− 1

σu

∂σu

∂θ
− 1

2
∂ ln κt

∂θ

where

∂ ln κt

∂θ1
= 0,

∂ ln κt

∂θ2
=

 1
xt−1

ln κt−1

+ β
∂ ln κt−1

∂θ2
,

∂ ln κt

∂θ3
= β

∂ ln κt−1

∂θ3

∂εt

∂θ1
= − 1√

κt

(
1

ln κt

)
− (

εt

2
+

c1√
κt
)

∂ ln κt

∂θ1
,

∂εt

∂θj
= −( εt

2
+

c1√
κt
)

∂ ln κt

∂θj
, j = 2, 3

∂ut

∂θj
= − φ

σu

∂ ln κt

∂θj
− 1

σu
(τ1 + 2τ2εt)

∂εt

∂θj
, j = 1, 2,

∂ut

∂θ3
= − 1

σu


1

ln κt
εt

ε2
t − 1
ut

− φ

σu

∂ ln κt

∂θ3
− 1

σu
(τ1 + 2τ2εt)

∂εt

∂θ3

For t = 1, if x0, ln κ0 are fixed, e.g., set to estimation sample variance of yt,

∂ ln κ1

∂θ2
=

 1
x0

ln κ0

,
∂ ln κ1

∂θ3
= 0

and if x0, ln κ0 are set to their unconditional means

∂ ln κ1

∂θ2
=

1
1− β− αφ

 1
x0

ln κ0

,
∂ ln κ1

∂θ3
=

α

1− β− αφ

 1
ln κ0

03


Appendix A.3. Ticker Symbols

Twenty-seven constituents from the Dow Jones (Table 2, [12]).

Table A1. Ticker symbols from Dow Jones constituents. Reproduced from (Table 2, [12]).

Symbol Exchange Company

AXP NYSE American Express Company
BA NYSE Boeing Company
CAT NYSE Caterpillar Inc.
CSCO NASDAQ Cisco Systems, Inc.
CVX NYSE Chevron Corporation
DD NYSE DuPont de Nemours, Inc.
DIS NYSE Walt Disney Company
GE NYSE General Electric Company
HD NYSE Home Depot
IBM NYSE International Business Machine Corporation
INTC NASDAQ Intel Corporation
JNJ NYSE Johnson & Johnson
JPM NYSE JPMorgan Chase & Co.
KO NYSE Coca-Cola Company
MCD NYSE McDonald’s Corporation
MMM NYSE 3M Company
MRK NYSE Merck & Co., Inc.
MSFT NASDAQ Microsoft Corporation
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Table A1. Cont.

Symbol Exchange Company

NKE NYSE Nike, Inc.
PFE NYSE Pfizer Inc.
PG NYSE Procter & Gamble Company
TRV NYSE Travelers Companies, Inc.
UNH NYSE UnitedHealth Group Incorporated
UTX NYSE United Technologies Corporation
VZ NYSE Verizon Communications Inc.
WMT NYSE Walmart Inc.
XOM NYSE ExxonMobil Corporation

Table A2. Sample third (Skew) and fourth (Kurt) moments of transformations of realized variance
RV. p-values in square brackets are for Kurt = 3 for the log transformation. All other p-values for
Skew = 0 and Kurt = 3 are less than 0.05 and are not reported to avoid cluttering the table. The daily
sample is from 22 April 1997 to 31 December 2013 (4200 trading days).

RV
√

RV ln RV
Skew Kurt Skew Kurt Skew Kurt

AXP 11.59 262.02 2.74 17.68 0.34 2.95 [0.53]
BA 6.57 76.69 2.21 12.35 0.34 3.19 [0.01]
CAT 7.42 110.65 2.33 13.47 0.39 3.32 [0.00]
CSCO 4.63 36.34 1.95 8.61 0.43 2.90 [0.17]
CVX 15.71 400.32 3.87 35.70 0.49 4.15 [0.00]
DD 5.82 64.82 1.90 10.01 0.22 2.88 [0.12]
DIS 7.95 130.39 2.13 12.20 0.37 2.78 [0.00]
GE 9.79 153.91 3.26 21.52 0.53 3.52 [0.00]
HD 7.83 121.54 2.32 13.24 0.44 3.07 [0.39]
IBM 6.63 78.68 2.22 11.72 0.45 2.91 [0.25]
INTC 4.13 31.95 1.75 7.42 0.41 2.82 [0.02]
JNJ 8.23 123.38 2.25 13.72 0.27 2.82 [0.02]
JPM 9.63 150.45 2.99 18.91 0.44 3.20 [0.01]
KO 6.55 83.30 2.07 11.00 0.34 2.90 [0.18]
MCD 12.52 283.70 2.46 18.66 0.11 2.86 [0.06]
MMM 13.84 348.47 2.95 23.13 0.45 3.38 [0.00]
MRK 21.02 774.03 3.70 36.26 0.51 3.89 [0.00]
MSFT 4.69 40.03 1.82 8.40 0.37 2.82 [0.02]
NKE 5.28 55.88 1.82 8.77 0.35 2.71 [0.00]
PFE 5.39 55.00 1.97 9.89 0.38 3.01 [0.91]
PG 9.63 171.20 2.55 16.20 0.46 3.01 [0.94]
TRV 15.45 401.55 3.35 26.92 0.54 3.16 [0.03]
UNH 8.32 126.42 2.78 16.56 0.61 3.55 [0.00]
UTX 7.65 106.79 2.40 13.99 0.43 3.21 [0.00]
VZ 7.49 114.79 2.23 12.43 0.41 3.00 [0.98]
WMT 8.83 176.11 1.99 11.48 0.33 2.59 [0.00]
XOM 13.52 322.34 3.26 26.45 0.39 3.63 [0.00]

Table A3. Estimates of interaction term in HARQ models. ‘level’ is HARQ with y = RV, q =
√

RQ
and ‘log’ is with y = ln(RV), q = ln(RQ). κ is the sample kurtosis of y where κ = 3 for a Gaussian. τh
are the HAR t-ratios for the interaction term qt−1yt−1 for forecast step size h days. The daily sample
is from 22 April 1997 to 31 December 2013 (4200 trading days).

Level log
κ τ1 τ5 τ22 κ τ1 τ5 τ22

AXP 262.02 −11.84 −6.52 −4.04 2.95 1.23 1.12 −0.39
BA 76.69 −4.65 −3.67 −3.33 3.19 0.48 −0.69 −0.76
CAT 110.65 −6.40 −2.85 −2.70 3.32 0.69 0.25 0.31
CSCO 36.34 −4.15 −3.54 −4.33 2.90 2.65 1.71 0.61
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Table A3. Cont.

Level log
κ τ1 τ5 τ22 κ τ1 τ5 τ22

CVX 400.32 −5.57 −1.81 −2.12 4.15 1.76 0.91 0.96
DD 64.82 −5.78 −3.01 −3.54 2.88 0.97 0.26 −0.02
DIS 130.39 −3.90 −5.44 −4.60 2.78 −0.08 −0.33 −0.74
GE 153.91 −5.61 −4.79 −2.42 3.52 2.29 0.77 −0.27
HD 121.54 −6.96 −6.33 −4.83 3.07 0.05 −0.22 −0.34
IBM 78.68 −2.68 −5.52 −5.31 2.91 3.42 0.68 0.58
INTC 31.95 −8.25 −3.40 −3.97 2.82 1.73 0.91 1.08
JNJ 123.38 −4.02 −5.29 −4.05 2.82 2.34 0.54 0.37
JPM 150.45 −5.92 −7.57 −5.83 3.20 2.47 1.26 0.11
KO 83.30 −9.07 −6.21 −1.32 2.90 0.16 0.45 0.24
MCD 283.70 −3.78 −3.10 −3.35 2.86 −2.05 −1.78 −2.16
MMM 348.47 −9.81 −6.43 −5.93 3.38 1.33 0.83 1.31
MRK 774.03 −4.70 −5.44 −5.44 3.89 −0.17 −0.42 −0.73
MSFT 40.03 −4.28 −5.22 −2.21 2.82 2.68 1.49 0.70
NKE 55.88 −5.78 −4.20 −4.11 2.71 −0.53 −0.80 −0.11
PFE 55.00 −6.08 −5.86 −5.53 3.01 −2.11 −1.20 −1.13
PG 171.20 −4.68 −5.68 −4.26 3.01 0.76 0.09 0.31
TRV 401.55 −4.15 −3.98 −3.38 3.16 0.98 0.84 0.54
UNH 126.42 −3.38 −3.32 −2.21 3.55 0.37 0.43 1.23
UTX 106.79 −3.06 −4.61 −3.57 3.21 1.73 0.66 1.25
VZ 114.79 −4.63 −4.75 −3.99 3.00 −0.79 −0.19 0.73
WMT 176.11 −4.98 −7.64 −7.70 2.59 1.69 0.92 −0.27
XOM 322.34 −6.14 −2.92 −2.88 3.63 2.07 0.86 0.64

Table A4. Dates when HARQ predictions for RV are negative. The one month rolling forecast sample
is from 3 January 2006 to 31 December 2013 (2013 trading days).

h = 1 h = 5 h = 22

AXP 13 October 2008 13 October 2008 30 September 2008
CAT 8 October 2008 13 October 2008

13 October 2008
CVX 13 October 2008 13 October 2008 16 July 2008
DD 25 July 2007
GE 17 September 2008 17 September 2008 17 September 2008

22 September 2008 22 September 2008 19 September 2008
22 September 2008

INTC 13 October 2008 13 October 2008 13 October 2008
JNJ 7 May 2010 7 May 2010 13 October 2008

7 May 2010
JPM 31 December 2013 13 October 2008 13 October 2008
KO 22 September 2008 22 September 2008 22 September 2008
MMM 13 October 2008 13 October 2008 7 May 2010

7 May 2010 7 May 2010
MRK 28 January 2008 28 January 2008 28 January 2008
NKE 7 May 2010 7 May 2010 7 May 2010
TRV 19 September 2008 23 April 2007 23 April 2007

22 September 2008 19 September 2008 19 September 2008
22 September 2008 22 September 2008

13 October 2008 26 September 2008
UNH 22 September 2008 22 September 2008
WMT 9 October 2008 9 October 2008 9 October 2008

13 October 2008 13 October 2008 13 October 2008
XOM 13 October 2008 13 October 2008
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Figure A1. Sample autocorrelations of log realized variance (solid line) and log realized quarticity
(dashed line). Numbers in parentheses next to the ticker symbols are the sample correlation between
to the two log realized series. The shaded area is the two standard error band for a white noise
process. The daily sample is from 22 April 1997 to 31 December 2013 (4200 trading days).
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Table A5. ARMA(1,1) estimates for daily log realized quarticity. The ARMA(1,1) model is
parametrized as xt = φxt−1 + et + θet−1 where xt = ln(RQt) − µ, µ is the mean parameter. t
are the t-ratios of the estimated parameters, ρ1 is the first order autocorrelation of the residuals êt,
p5 is the p-value from the Ljung–Box portmanteau test of residual correlation up to lag 5. The daily
sample is from 22 April 1997 to 31 December 2013 (4200 trading days).

Ticker φ (tφ) θ (tθ) ρ1 [p5]

AXP 0.989 (379.8) −0.769 (−56.3) 0.079 [0.000]
BA 0.982 (264.4) −0.798 (−59.1) 0.055 [0.000]
CAT 0.985 (304.1) −0.796 (−61.5) 0.074 [0.000]
CSCO 0.983 (296.6) −0.717 (−46.2) 0.084 [0.000]
CVX 0.977 (241.8) −0.742 (−55.0) 0.036 [0.035]
DD 0.985 (305.3) −0.793 (−58.4) 0.063 [0.000]
DIS 0.985 (302.6) −0.792 (−57.6) 0.060 [0.000]
GE 0.981 (278.2) −0.713 (−45.8) 0.067 [0.000]
HD 0.988 (349.7) −0.802 (−64.7) 0.068 [0.000]
IBM 0.983 (292.6) −0.743 (−53.9) 0.052 [0.000]
INTC 0.984 (299.0) −0.735 (−47.5) 0.084 [0.000]
JNJ 0.986 (326.6) −0.799 (−62.8) 0.075 [0.000]
JPM 0.985 (320.0) −0.736 (−49.9) 0.072 [0.000]
KO 0.987 (334.2) −0.805 (−63.9) 0.064 [0.000]
MCD 0.992 (422.7) −0.842 (−72.0) 0.083 [0.000]
MMM 0.982 (275.0) −0.788 (−59.2) 0.071 [0.000]
MRK 0.980 (241.5) −0.806 (−57.3) 0.075 [0.000]
MSFT 0.980 (266.5) −0.724 (−48.5) 0.063 [0.000]
NKE 0.991 (390.8) −0.844 (−64.2) 0.103 [0.000]
PFE 0.982 (267.6) −0.793 (−56.2) 0.084 [0.000]
PG 0.984 (302.9) −0.771 (−56.4) 0.063 [0.000]
TRV 0.986 (322.2) −0.786 (−61.8) 0.039 [0.009]
UNH 0.981 (253.0) −0.794 (−54.8) 0.078 [0.000]
UTX 0.982 (272.9) −0.791 (−57.6) 0.041 [0.007]
VZ 0.983 (282.4) −0.788 (−56.0) 0.074 [0.000]
WMT 0.989 (373.0) −0.798 (−61.1) 0.068 [0.000]
XOM 0.976 (239.6) −0.709 (−48.6) 0.051 [0.000]
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Appendix A.4. Forecast Error Diagnostics
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Figure A2. Autocorrelations of forecast errors et = y(h)t − ŷ(h)t for stepsize h = 1 day. The autocorre-
lations for HAR with y =

√
RV (gray), for HARQ with y = RV (dashed gray), and for RQ-in-mean

with y = ln(RV) (red line) should all be white noise if et is iid. The gray shaded area is the two
standard error band for a white noise series. The rolling forecasts are generated with a rolling
estimation window of 8.67 years (104 months) followed by a one month prediction window shifted
each month over 96 windows. The forecast sample is from 3 January 2006 to 31 December 2013
(2013 trading days).
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Figure A3. Autocorrelations of forecast errors et = yh
t − ŷ(h)t for stepsize h = 5 days. The autocorre-

lations for HAR with y =
√

RV (gray), for HARQ with y = RV (dashed gray), and for RQ-in-mean
with log of average RV (red) and with log of average

√
RV (blue) should all be white noise if et is iid.

The gray shaded area is the two standard error band for a white noise series. The rolling forecasts
are generated with a rolling estimation window of 8.67 years (104 months) followed by a one month
prediction window shifted each month over 96 windows. The forecast sample is from 3 January 2006
to 31 December 2013 (2013 trading days).
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Figure A4. Autocorrelations of forecast errors et = yh
t − ŷ(h)t for stepsize h = 22 days. The autocorre-

lations for HAR with y =
√

RV (gray), for HARQ with y = RV (dashed gray), and for RQ-in-mean
with log of average RV (red) and with log of average

√
RV (blue) should all be white noise if et is iid.

The gray shaded area is the two standard error band for a white noise series. The rolling forecasts
are generated with a rolling estimation window of 8.67 years (104 months) followed by a one month
prediction window shifted each month over 96 windows. The forecast sample is from 3 January 2006
to 31 December 2013 (2013 trading days).
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Appendix A.5. Running t-Ratios
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Figure A5. Running t-ratios of Diebold and Mariano [27] test of equal predictive accuracy of h-step
RV rolling forecasts. Each panel has 27 lines for the 27 stocks in the sample. The baseline forecast is
from the HARQ model (no transformation) and the comparison forecast is the exponential transform
of the log forecast from model (Section 3.1) assuming log-normality. A positive value indicates better
forecast from the comparison model against the baseline HARQ forecasts. MS for equality of mean
squared error loss and QL for QLIKE loss of Patton [24]. The rolling forecasts are generated with a
rolling estimation window of 8.67 years (104 months) followed by a one month prediction window
shifted each month over 96 windows. The forecast sample is from 3 January 2006 to 31 December
2013 (2013 trading days).
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Figure A6. Running t-ratios of Diebold and Mariano [27] test of equal predictive accuracy of h-step
RV rolling forecasts. Each panel has 27 lines for the 27 stocks in the sample. The baseline forecast
is from the HARQ model (no transformation) and the comparison forecast is a simple exponential
transform of the log forecast from model (Section 3.1). A positive value indicates better forecast
from the comparison model against the baseline HARQ forecasts. MS for equality of mean squared
error loss and QL for QLIKE loss of Patton [24]. The rolling forecasts are generated with a rolling
estimation window of 8.67 years (104 months) followed by a one month prediction window shifted
each month over 96 windows. The forecast sample is from 3 January 2006 to 31 December 2013
(2013 trading days).



Stats 2022, 5 879

2006 2008 2010 2012 2014

−4

−2

0

2

4

MS (h = 1)

2006 2008 2010 2012 2014

−4

−2

0

2

4

MS (h = 5)

2006 2008 2010 2012 2014

−4

−2

0

2

4

MS (h = 22)

2006 2008 2010 2012 2014

−4

−2

0

2

4

QL (h = 1)

2006 2008 2010 2012 2014

−4

−2

0

2

4

QL (h = 5)

2006 2008 2010 2012 2014

−4

−2

0

2

4

QL (h = 22)

Figure A7. Running t-ratios of Diebold and Mariano [27] test of equal predictive accuracy of h-step
RV rolling forecasts. Each panel has 27 lines for the 27 stocks in the sample. The baseline forecast is
from the HARQ model (no transformation) and the comparison forecast is the exponential transform
of the log forecast from model (Section 3.1) adjusted with a smearing factor [25]. A positive value
indicates better forecast from the comparison model against the baseline HARQ forecasts. MS for
equality of mean squared error loss and QL for QLIKE loss of Patton [24]. The rolling forecasts are
generated with a rolling estimation window of 8.67 years (104 months) followed by a one month
prediction window shifted each month over 96 windows. The forecast sample is from 3 January 2006
to 31 December 2013 (2013 trading days).
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