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Abstract: Background: Data with ordinal categories occur in many diverse areas, but methodologies
for modeling ordinal data lag severely behind equivalent methodologies for continuous data. There
are advantages to using a model specifically developed for ordinal data, such as making fewer
assumptions and having greater power for inference. Methods: The ordered stereotype model (OSM)
is an ordinal regression model that is more flexible than the popular proportional odds ordinal
model. The primary benefit of the OSM is that it uses numeric encoding of the ordinal response
categories without assuming the categories are equally-spaced. Results: This article summarizes two
recent advances in the OSM: (1) three novel tests to assess goodness-of-fit; (2) a new Generalized
Estimating Equations approach to estimate the model for longitudinal studies. These methods use
the new spacing of the ordinal categories indicated by the estimated score parameters of the OSM.
Conclusions: The recent advances presented can be applied to several fields. We illustrate their
use with the well-known arthritis clinical trial dataset. These advances fill a gap in methodologies
available for ordinal responses and may be useful for practitioners in many applied fields.

Keywords: goodness-of-fit; longitudinal data; ordinal data; stereotype model

1. Introduction
1.1. Ordinal Responses

Many studies use data with ordinal categories (see e.g., [1–5]). For instance, in a
questionnaire, Likert scale responses might be “strongly disagree”, “disagree”, “neutral”,
“agree”, and “strongly agree” [6,7]. It may be easier for participants to provide rankings
than absolute scores. In ecological studies, the ordinal Braun–Blanquet scale is used to
collect species abundance data as it reduces sampling time compared with obtaining precise
numerical estimates of abundance [3,8,9].

An ordinal variable indicates inherent order [10]. It differs from a nominal variable
which has categories without any ordering information. Another defining distinction
between a nominal and an ordinal variable is the effect of covariates on the outcome.
As a covariate changes value in a particular direction, the distribution of the response
consistently moves to higher categories, or consistently moves to lower categories, whereas
for a nominal response the covariate may have different effects on different categories.

Ordinal responses are often collected and coded as numbers—for example, in the
Likert scale above, the levels of agreement might be coded 1, 2, 3, 4, or 5. However,
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the degree of dissimilarity (i.e., the spacing) between adjacent categories of the scale might
not be the same for all pairs of levels. In the 5-level example, the difference expressed
between level 1 and level 2 might be much greater than the difference expressed between
level 3 and level 4. Given the possibility of unequal spacing, any analyses based on the
assumption of equal spacing may lead to flawed conclusions.

Although the use of ordinal data are common, the methods for analyzing ordinal data
often treat them as continuous or nominal. Agresti [10] (Section 1.3) discussed several
disadvantages of using ordinary linear models designed for continuous data. Firstly,
the results depend on the coding used. Secondly, this approach does not take into account
the error created by treating ordinal values as continuous data. Thirdly, the predicted values
could be outside the ordinal range. Finally, the application of continuous-data regression
methods to ordinal data can produce misleading results due to “floor” and “ceiling” effects
on the dependent variable ([10], Section 1.3.1).

Another approach to deal with ordinal responses is to dichotomize them in order
to use logistic regression models for binary responses. This approach clearly comes at
the cost of loss of information and reduced statistical power. Stromberg [11] empirically
demonstrated these effects, showing poor precision and a loss of predictive power.

Unlike methods for numerical data, methods for analyzing ordinal data are not well
known to many researchers. Liu and Agresti [12] and Agresti [10] extensively described var-
ious ordinal regression models including proportional-odds-type models using cumulative
logits or adjacent-categories logits [13] and continuation-ratio logits [14]. The cumulative
logits option is popular and is often called the “proportional odds model”.

1.2. The Ordered Stereotype Model

This article focuses on the ordered stereotype model (OSM) introduced by
Anderson [15], which assumes that the effects of the covariates on the response are pro-
portional but not equal for the different levels of the response. This model is more flexible
than the proportional odds model but more parsimonious than the unrestricted models
which allow the covariates to have entirely different effects on the different categories.
Greenland [16] showed that the stereotype model is a natural option when the progression
of the response variable occurs through various stages. One of its main features is that
certain parameters of the fitted model can be treated as data-driven numerical values which
code the ordinal data as continuous and numerical, but not necessarily with equally spaced
levels. This ability to estimate the possibly unequal spacings among ordinal responses is an
improvement over other ordinal response models.

The OSM received more attention after it was fully discussed in Agresti [10]. Subse-
quently, several authors (including the authors of this article) have studied and applied
the OSM to a number of fields. Among others, Ananth and Kleinbaum [17] reviewed
it for epidemiological studies, Johnson [18] presented a generalization of the OSM for
psychology studies, Fullerton [19] reviewed the OSM, among others ordinal regression
models, for sociological studies, Liu [20] applied it in the area of education, Fernández and
Pledger [21] demonstrated the use of OSM for count data in Ecology, and Williams and
Archer [22] combined the OSM with an elastic net penalty as a method capable of modeling
an ordinal outcome for high-throughput genomic data sets.

The aim of this article is to introduce and summarize two recent advances of the OSM:
the development of three goodness-of-fit tests for cross-sectional ordinal data to assess if
an OSM model holds; and the description of an adapted Generalized Estimating Equations
method that can be applied to ordinal longitudinal data.
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2. Methods
2.1. OSM: Formulation and Basics

Let Yi be an ordinal response with q levels, i.e., Yi ∈ {1, 2, . . . , q}, for observation i,
where i = 1, . . . , n. The ordered stereotype model [15] has the following form:

wik
def
= log

(
P[Yi = k | xi]

P[Yi = 1 | xi]

)
= αk + φkβ′xi, (1)

where i = 1, . . . , n, k = 2, . . . , q, and α1 = 0. The model imposes a monotone non-
decreasing constraint:

0 = φ1 ≤ φ2 ≤ · · · ≤ φq = 1 (2)

to ensure the ordered nature of Yi [15].
Model (1) treats the first category (k = 1) as the reference category. The covariates xi

can be categorical or numerical. The parameters β quantify the effects of xi on wik. Note
that the monotonic relationship imposed by the constraint (2) is enforced for the overall
linear predictor term β′xi, rather than for any single covariate xi`.

For illustration, Figure 1 shows four simulated scenarios in which probability dis-
tributions of each category k of a q = 4-level ordinal variable in Model (1) are depicted.
Within each panel, the covariate-dependent term in the linear predictor, η = β′xi, is varied,
and the effects of changing the parameters {φk} and {αk} are shown between the panels.
Thus, each graph represents a different scenario and, within each graph, there is one curve
for each response category k ∈ {1, . . . , 4} against varying η.

Without imposing the non-decreasing constraint (2), Model (1) is appropriate for
a nominal response variable that lacks an intrinsic ordering. Anderson [15] motivated
Model (1) from a baseline-categories logit model with wik = αk + β′kxi. To make the model
more parsimonious, β′kxi is then replaced by φkβ′xi. Thus, the OSM achieves the parsimony
of a single parameter to describe a predictor effect by using the same scores for each
predictor ([10], Chapter 4.3.1). Figure 1a is an example of the probabilities of the stereotype
model without the ordering constraint on the score parameters φ, and the sequence of
curves is out of order (i.e., 1, 3, 2, 4).
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Figure 1. Illustration of the effects of parameters {αk} and {φk} as a function of η = β′xi. This
figure is taken under permission of the author from [23]. (©2020 The Authors. Statistics in Medicine
published by John Wiley & Sons, Ltd., Hoboken, NJ, USA).

The parameters {αk} determine the shape of the distribution, and, if Y were a numeri-
cal random variable, would control aspects such as skewness and kurtosis.
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We can observe the effect of changing the values of {αk} when the values (α2, α3) are
changed from (4, 5) in Figure 1b to (3, 5) in Figure 1c. The reduced value of α2 reduces the
probability of category 2 occurring.

We interpret the parameters {φ1, φ2, . . . , φq} as the scores of the response Yi. These
scores lie between the fixed extremes of φ1 = 0 and φq = 1, but they do not need to be
equally spaced. We can observe how the score parameters affect P[Yi = k] associated with
β′xi in Figure 1; the scores for categories k = 2 and k = 3 are brought closer together from
(φ2, φ3) = (0.2, 0.4) in Figure1b to (0.3, 0.4) in Figure1d. The curves for categories k = 2
and k = 3 overlap more strongly in Figure1d as a result.

From Model (1), the probabilities θik = P(Yi = k | xi) can be derived as

θik = P[Yi = k | xi] =
ewik

∑
q
`=1 ewi`

. (3)

When φj = φj′ with j 6= j′,

log
(

P[Yi = j | xi]

P[Yi = j′ | xi]

)
= αj − αj′ ,

which is independent of xi. Thus, the response levels j and j′ can be combined as a single
level when trying to find the association between xi and Yi. See (Agresti [10], Ch. 4) for
further discussion. After the categories are combined, the intercept will change, but the
term φjβ

′xi in Model (1) remains unchanged.
Although the ordinal data themselves do not provide information about the spacings

between response categories, if the ordered stereotype model (1) holds, then observed varia-
tions in response propensity associated with variations in covariates can reveal information
about spacing. If only a small change in a covariate is required to move from, say, level 2 to
level 3, but a larger variation is required to move from level 3 to level 4, we can infer that
levels 2 and 3 are closer to each other than level 3 is to level 4. Note that, when {φk} are
equally spaced, Model (1) is equivalent to the adjacent-categories logit model shown by
(Agresti [10], Ch. 4). Additionally, it is often sensible to conduct a likelihood-ratio test com-
paring the OSM with score parameters to the special case with fixed, equally spaced score
parameters, which corresponds to the proportional-odds form of the adjacent-categories
logit model. Such a test determines if the score parameters depart significantly from being
equally spaced, which allows working with more parsimonious models.

Parameter estimation methods for Model (1) include the standard maximum likeli-
hood (ML) method [15] or the generalized least squares (GLS) method [24]. Holtbrugge
and Schumacher [25] proposed a method to estimate the parameters in the stereotype
model by using an iteratively reweighted least square algorithm and Greenland [16] and
Preedalikit et al. [26] separately proposed alternating algorithms based on two iterative
steps. Feldmann and König [27] proposed a maximum likelihood parameter estimation
based on discriminant analysis. In a Bayesian approach, Ahn et al. [1,28] presented a com-
prehensive inference method for fitting the OSM in case-control studies. Lunt and Unit [29]
described how to estimate the parameters of the OSM via the Stata package soreg and
the advantages of this method over other Stata commands and Kuss [24] introduced two
methods to estimate this model using SAS.

To the best of our knowledge, there are only three packages in the statistical software R [30]
for fitting the Stereotype Model (SM): gnm [31], VGAM [32], and ordinalgmifs [33]. How-
ever, none of them impose the monotone non-decreasing constraint (2) in the process of
estimation and, therefore, none of them can fit the model for ordinal responses (OSM),
only for nominal responses (SM). Our R package clustord [34] contains the method osm
that fits the ordered stereotype regression model using the reparametrization method
in Fernández et al. [35].
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2.2. Recent Advances in the OSM
2.2.1. Goodness-of-Fit Tests

Regarding checking the model fit, there are few methods available for ordinal models.
Most of the existing methods focus on the proportional odds model (POM). For example,
Fagerland and Hosmer [36] introduced a test extending the binary case [37]; Pulkstenis and
Robinson [38] developed a modified Pearson χ2 statistic; Lin and Chen [39] proposed a test
that applies a non-parametric local linear smoothing technique; and Liu et al. [40] showed
a graphical method using cumulative sums of residuals. Additionally, Lipsitz et al. [41]
proposed a test for several regression models for ordinal responses, but it is not always
suitable for small samples. Finally, Li and Shepherd [42] and Liu et al. [43] proposed new
residuals for ordinal regression models.

This paper discusses three approaches to evaluate Model (1) based on equivalent
tests for the POM. These methods construct the tests using the new spacing of the ordinal
response categories dictated by the estimated score parameters {φk}.

Fernández and Liu [44] modified the Hosmer–Lemeshow test for the proportional odds
model [36] to propose a new test. The (possibly) uneven spacing of the ordinal response
categories, determined by the fitting of the OSM, is used in the test to compute the weighted
score for each observation, which is required to set the partition in Hosmer–Lemeshow
tests, and also for replacing the default equally-spaced response category labels for {Yi}
with their corresponding scores φk (rescaled from the original [0, 1] to be into the range
[1, q]). Unlike traditional Hosmer–Lemeshow tests, this test computes two partitions
instead of only one. It applies the first partition based on deviances, before applying a
second partition based on the weighted scores. This first partition is not applied in the
traditional Hosmer–Lemeshow test. It is a novel step proposed for the OSM test, and its
inclusion makes it easier to detect the lack of fit than with traditional Hosmer–Lemeshow
tests, which have the potential disadvantage of missing an important deviation from fit
during the grouping process. Fernández and Liu [44] described the technical details of
the steps for this test and evaluated the performance of the reliability of the test (OSMHL)
by setting up a comprehensive simulation study, in which the null distribution and the
power of the test statistic were assessed. The results of this empirical study showed that the
proposed test performed best when the model contained continuous covariates compared
to the traditional Pearson’s chi-squared test. However, the OSMHL test is sensitive to the
choice of the number of groups based on the deviance. When the number of groups in
the first partition (based on the deviance) is too large, the grouping scheme separates the
observations extremely, which leads to a large value of the test statistic, even if the null
model holds. Therefore, the test might incorrectly signal a lack of fit in such cases. For that
reason, we recommend always grouping into only two groups during the first partition.

The other two goodness-of-fit tests for the OSM were presented in Fernández et al. [45]
with modifications based on the Lipsitz test for the proportional odds model [41]. Firstly,
the Lipsitz test involves partitioning subjects into groups based on assigning equally-spaced
scores to the response categories, whereas our two new tests incorporate the fitted score
parameters of the OSM during the partitioning process, and these fitted score parameters
may not be equally spaced. Secondly, the Lipsitz test assesses the goodness of fit of the
null model by comparing it with an alternative model. In the alternative model, the group
effects are added. The goodness-of-fit test is equivalent to a test of no group effects using the
standard statistical tests, including a likelihood-ratio, Wald, or score test statistic. In these
new tests, we also construct an alternative model with putative group effects, using two
approaches. In the first approach, (OSML), we construct the alternative model using the
OSM. In the second approach, (OSMLML), we use the fitted score parameters from the OSM
to replace the original ordinal responses {Yi} with their corresponding numerical scores φk,
and thus we fit a linear model with the rescaled responses. Fernández et al. [45] described
the technical details of the steps for these two tests.

Fernández and Liu [44] ran a comprehensive simulation study to compare the per-
formance of these two tests (OSML and OSMLML) with OSMHL, which is a version of the
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Fagerland and Hosmer test for the proportional odds model, modified to calculate the fitted
probabilities from the OSM. For large data, the OSML test performs well. The OSMLML test
is better when there are few covariates. The simulation study also showed that, although
the OSML and OSMLML achieved their correct nominal significance rates, and have a
good power against covariate mis-specification, they were not highly specific to the OSM.
Therefore, rejection of the null model using both tests provides enough lack of fit evidence
of the null model. However, another model may also hold even when one fails to reject the
null model. This drawback is also common with other goodness-of-fit tests.

In addition to the three tests described above, Liu and Fernández [46] discussed a
modified Hosmer–Lemeshow method for large data sets for the OSM. It is well known
that the power of goodness-of-fit tests increases when the sample size increases. The null
hypothesis of perfect fit is likely to be rejected for large samples, regardless of how good the
model is. Nattino et al. [47] proposed a modified Hosmer–Lemeshow approach that does
not depend on the sample size to evaluate the adequacy of a logistic regression model. Their
new test statistic is based on a noncentrality parameter that measures the level of lack of fit.
Liu and Fernández [46] generalized their modified approach to the test OSMHL, and used a
small simulation study to show the performance when the sample size ranges from 25,000
to 1 million. The modified Hosmer–Lemeshow test seems to be more conservative for
the OSM than for logistic regression models. Further investigation is needed in order to
improve the power.

2.2.2. Generalized Estimating Equations

Thus far, we have discussed the OSM and its recent advances in a cross-sectional
context. However, there are also very few estimation methods for this model for lon-
gitudinal data. These data differ from cross-sectional data in that for each individual i
there are multiple observations taking place at different times t. The data Yit are then
grouped within individuals, and are associated with individual level covariates that may
also vary over time xit. Crucial to the analysis of such data are the proper inclusion of any
within-individual correlation among these repeated observations.

Kuss [48] and Johnson [18] (via ML and GLS approaches) proposed the use of existing
statistical software to estimate the OSM for longitudinal data. However, the GLS approach
requires knowing the correct structure of the mean and associations among the ordered
response variables, in order to obtain consistent estimation of the parameters of interest.
On the other hand, the ML approach is computationally complex, due to the complicated
structure of the joint distribution of the response variables. Thus, the complexity cost of the
ML estimation approach is high even with modern computing capacities.

Liang and Zeger [49] proposed a generalized estimating equations (GEE) approach
for longitudinal data. The method only needs to specify the mean structure of the response
variables marginally—and thus the marginal forms of the model (1) can be used without
needing to construct a full joint model. Dependencies over time are then modeled via
a “working” correlation matrix. This correlation matrix contains a simple estimate of
the correlation between the repeated measures for a single individual. It is diagonal if
the observations are independent, but may encode, for example, an autoregressive time
dependence. The functional form is chosen by the modeler, and this choice can be checked
with goodness of fit tests. The parameter estimators of the mean model are consistent and
asymptotically normally distributed under weak regularity conditions, even if the working
correlation matrix is incorrect. Because the GEE approach does not need to specify the joint
distribution of the response variables, it has the advantage of avoiding the calculation of
high-dimensional integrals, and is thus computationally efficient.

Spiess et al. [23] recently developed a GEE approach to estimate the OSM for longitudi-
nal data. The approach uses a finite sample correction, and is based on working covariance
matrices, which are not required to be correctly specified. To the best of our knowledge,
that was the first time this approach has been developed. In this work, simulation studies
confirmed the properties of GEE estimators as described in the literature for other models.
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Additionally, the authors observed that, if the true correlations are high, then adopting a
working correlation matrix that explicitly models these associations may lead to substantial
efficiency improvements for the estimators, in comparison with those when the identity
matrix is adopted. In the final part of this paper, the authors evaluated the performance
of the estimators by replacing the working correlation structure with the local odds ratio
structure [50].

3. Case Study

This section uses a real life example of the arthritis clinical trial to show the application
of the proposed goodness-of-fit tests to cross-sectional ordinal data and of the GEE estimator
to longitudinal ordinal data.

3.1. Arthritis Clinical Trial

A randomized clinical trial was designed to evaluate the effectiveness of the drug
Auranofin relative to a placebo for the treatment of rheumatoid arthritis [51,52]. Follow-
ing Lipsitz et al. [51] and Touloumis et al. [50], we consider the completely observed cases
in our analysis by assuming that the missing values were missing completely at random.

This study includes 302 observed individuals. The data set is available from the
original arthritis data set in the R package multgee [53] by calling data(arthritis). We treat the
self-assessment of rheumatoid arthritis as an ordinal response variable with a 5-level Likert
scale from “very poor” (1) to “very good” (5). The dataset includes the self-assessment
responses before the trial (as a baseline) and at T = 3 follow-up time points at 1, 3, and
5 months after the treatment. The available covariates of interest were sex, age, and type of
treatment (placebo or Auranofin drug). Due to its ordered nature, the covariate Baseline
could be treated as categorical or numerical.

We made a few modifications to the original data set. Firstly, we removed nine
individuals who had missing values for the response at at least one of the time points. Thus,
the final sample size used was n = 293, which is the same as in Lipsitz et al. [41]. Secondly,
we noted that very few of the observations were in the category “very good” (5), and this
led to convergence problems in the case of the GEE estimators. Thus, we merged the two
categories “good” (4) and “very good” (5), and thenceforth worked with q = 4 ordinal
response variables, for both the goodness-of-fit tests and the GEE estimators. Table 1 lists
the variables.

Table 1. Variables and their possible values in the rheumatoid arthritis dataset.

Variable Description Values

Baseline Self-assessment before the trial 1 = very poor
2 = poor

t1, t3, t5 and 1, 3, and 5 months follow-up, respectively 3 = fair
4 = good or very good

Sex Gender of the individual 0 = female
1 = male

Age Years. Recorded at the baseline. Range 21–66

Trt Treatment 0 = placebo group
1 = drug group

3.2. Goodness-of-Fit Test for the Arthritis Data Set

We start with the illustration of the goodness-of-fit tests described in this summary
article (details of the formulation and technical steps are detailed in [44,45]). We initially
fitted the OSM to the arthritis dataset. We used our own R code, which includes the
constraint (2) following Fernández et al. [35] because methods in other R packages do not
enforce the ordinal nature of the responses.
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In the model fitting, we treated sex, age, type of treatment, and self-assessment score
of arthritis at the baseline as predictors. Additionally, as the described goodness-of-fit tests
were developed for cross-sectional studies, we only used the self-assessment of arthritis at
5 months (t5) as the ordinal response for these tests, and removed the variables related to
the other follow-up time points (i.e., t1 and t3). Table 2 shows the fitted OSM parameter
values.

Table 2. Parameter estimates for the OSM (1). The ordinal response is self-assessment of arthritis at
5 months (t5). The significant effects are shown in bold.

Coefficient Estimate S.E. 95% C.I.

α̂2 −0.145 0.060 (−0.263, −0.027)
α̂3 −0.782 0.096 (−0.969, −0.594)
α̂4 −2.508 0.117 (−2.737, −2.279)

β̂1 (Sex) 0.225 0.246 (−0.257, 0.707)
β̂2 (Age) −0.020 0.012 (−0.044, 0.004)
β̂3 (Trt) 1.333 0.237 (0.869, 1.797)
β̂4 (Baseline) 2.304 0.260 (1.795, 2.812)

φ̂2 0.402 0.167 (0.075, 0.729)
φ̂3 0.672 0.142 (0.394, 0.950)

We observe that the drug treatment significantly improves arthritis, but neither sex nor
age are significant. Furthermore, patients who had a good self-assessment at the baseline
(i.e., before the trial) tend to have a better self-assessment at 5 months. The score parameter
estimates φ2 and φ3 imply that they differ significantly from φ1 = 0 and φ4 = 1. Figure 2
visually compares the default equal spacing of categories with the fitted spacing from {φ̂k}
(rescaled to range from 1 to q). The bottom axis shows the equally spaced scale and the
top axis shows the fitted score scale as indicated by the data. Although there is not a big
difference, we can distinguish the non-equally spaced categories in the top axis.

 

 

Very Poor Poor Fair
Good/

 Very Good

Original Ordinal Scale

Fitted Score Scale

Very Poor Poor Fair
Good/
 Very Good

Figure 2. Reassigned ordinal scale: Scale comparison between the equally spaced scale and the
score scale indicated by the fitted score parameters {φ̂k} for the arthritis dataset.

Table 3 depicts the results of the goodness-of-fit tests described in this article, i.e., OSMHL,
OSML, and OSMLML, and also, for comparison purposes, our version of the Fagerland and
Hosmer goodness-of-fit test that uses probabilities calculated from the fitted OSM. All four
tests use the same partition into 10 groups.
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Table 3. Goodness-of-fit test results for the OSM fitted to the arthritis clinical trial data set. All tests
use the same partition into 10 groups.

Test Statistical Value p-Value

Fagerland and Hosmer (OSM version) 21.58 0.198
OSMHL 22.36 0.398
OSML 11.64 0.227

OSMLML 14.03 0.112

As we can observe in Table 3, there is no evidence of lack of fit at the 5% significance
level, regardless of the test applied. These goodness-of-fit results using the OSM (Table 2)
are similar to the results in Lipsitz et al. [41] for the proportional odds model.

3.3. GEE Estimator for the Arthritis Data Set

In the previous section, we only used a single ordinal response (the self-assessment of
arthritis at 5 months) to fit the OSM and test its goodness-of-fit. However, as Lipsitz et al. [51]
and Touloumis et al. [50] did, we used all three follow-up assessments (t1, t3, and t5) in
order to compute the GEE estimator approach for longitudinal data. In that manner, the t3
and t5 variables describing the self-assessment at 3-months and 5-months after treatment
are entered into the model as two dummy responses, and the t1 variable describing the
1-month follow-up is treated as the reference category in the model.

We used the GEE approach with a comprehensive range of working correlation
matrices (see details of the correlation matrices in [23]) to fit the arthritis data set con-
sidering the longitudinal ordinal responses. Before showing the results, we need to
establish some nomenclature: the different working correlation matrices assuming in-
dependence, equicorrelation, unstructured, Toeplitz, or AR(1) are indicated by subscripts
I, E, U, T, A, respectively. In general, GEE estimators are indicated as GEE`, where
` ∈ {I, E, U, T, A}. Alternatively, to work with different correlation structures to spec-
ify the dependence, Spiess et al. [23] adopt a local odds-ratio approach [50] to model the
dependence. The common structure based on local odds ratios includes the uniform,
the category exchangeable, the time exchangeable, and the row-and-column effect (RC) [54]
structures, which are denoted by GEEUN , GEECE, GEETE, GEERC, respectively.

The results of fitting the OSM using a diverse range of working correlation matrices
are shown in Table 4 and the working correlation matrices over time for the arthritis clinical
trial data set and for the GEEE (lower triangular matrix) and the GEEU (upper triangular
matrix) estimators are shown in Table A1 in Appendix A.

Inspecting the results in Table 4, we conclude that the estimates of the set of parameters
α3, α4, φ3, βt2, βTrt, βb3, and βb4 do not strongly depend on the choice of working correlation
matrix. Moreover, in all cases α3, α4, and βt2 are not statistically different from zero, as the
95% confidence intervals cover zero. Additionally, we observed inconsistencies in the
estimates of the remaining parameters α2, φ2, βt3, and βb2. However, given that all the
estimated correlations in the correlation matrices are small, the choice of the working
correlation matrix does not change the conclusion of the analysis.

The GEE estimators all lead to similar conclusions. For the {αk} parameters, the 95%
confidence intervals cover zero for all GEE estimators, apart from α2 under GEEUN and
GEECE, although, for these cases, one side of the 95% confidence interval is very near zero.
Regarding the score parameters {φk}, all GEE estimators give similar values, enforcing
the monotonic constraint (2), consistently implying that φ2 and φ3 differ from φ1 = 0
and φ4 = 1. The 95% confidence intervals overlap for the second and third categories,
suggesting that it is possible we could collapse those categories into a single category.
However, the description of collapsing categories in Agresti [10] implies that the point
estimates should be closer and the final decision of merging categories should be taken by
the practitioner who knows the data context, so in this case we will not collapse them.

Regarding the follow-up time point effect parameters {βt1, βt3, and βt5}, we can ob-
serve there is no significant difference at the 3-month time point relative to the 1-month
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time point under any of the GEE estimators. However, there is a positive effect of the
5-month time point relative to the 1-month time point in most of the GEE estimators. This
result implies that a difference in self-assessment may be observed at the earliest after
3 months, but not before 3 months.

The effect of the Auranofin treatment (βTrt) has a positive effect on the responses.
Its estimated increase in the log odds relative to the placebo group is around 1.2 in the
majority of GEE estimators. Finally, there seems to be no difference between the effects of
the baseline self-assessments 1 = “very poor” (βb1) and 2 = “poor” (βb2) on self-assessment
at the follow-up time points. However, baseline self-assessments of 3 = “fair” (βb3) and
4 = “good or very good” (βb4) have an effect on self-assessments at the follow-up time
points. It implies that patients who were less affected by arthritis before the trial are
still doing well after the treatment. Furthermore, our conclusion may be sensitive to the
presence of unobserved patient/individual heterogeneity, which was not considered in
our models.

Table 4. Estimate of parameters (E), standard errors (S.E.), lower (L), and upper (U) 95% confidence
bounds, assuming normality, for the arthritis clinical trial data set. GEE estimators are indicated
correspondingly as GEE`, where ` ∈ {I, E, U, T, A}. The GEEI , GEEUN , GEECE, GEETE, and GEERC

estimators assume independence, the uniform, the category exchangeable, the time exchangeable,
and the RC structure, respectively. The parameters βb2, βb3, and βb4 represent the baseline assessment
variables, βt3 and βt5 are the month follow-up (reference category is the first month follow-up),
and βTrt is the effect of the treatment (placebo group being the reference group). These results are
also reported in [23].

Pars.
GEEI GEEE GEEU GEET

E S.E. L U E S.E. L U E S.E. L U E S.E. L U

α2 0.800 0.552 −0.283 1.883 0.746 0.453 −0.141 1.633 0.788 0.451 −0.095 1.672 0.742 0.451 −0.143 1.626
α3 0.824 0.674 −0.496 2.145 0.755 0.543 −0.310 1.820 0.804 0.542 −0.258 1.865 0.748 0.544 −0.318 1.814
α4 −0.485 0.852 −2.156 1.185 −0.654 0.723 −2.070 0.762 0.615 0.730 −2.045 0.815 −0.668 0.727 −2.092 0.757
φ2 0.349 0.167 0.021 0.677 0.349 0.169 0.018 0.680 0.339 0.170 0.005 0.672 0.349 0.167 0.021 0.677
φ3 0.623 0.102 0.422 0.823 0.612 0.122 0.373 0.851 0.605 0.123 0.365 0.846 0.612 0.122 0.373 0.850
βt3 −0.130 0.269 −0.656 0.397 −0.114 0.260 −0.624 0.397 0.113 0.258 −0.619 0.393 −0.119 0.261 −0.629 0.392
βt5 0.505 0.254 0.007 1.004 0.538 0.266 0.017 1.059 0.526 0.263 0.012 1.041 0.530 0.264 0.012 1.047
βTrt 1.191 0.471 0.267 2.115 1.240 0.410 0.437 2.043 1.216 0.409 0.415 2.017 1.239 0.412 0.430 2.047
βb2 1.271 0.900 −0.494 3.036 1.458 0.765 −0.042 2.957 1.467 0.768 −0.037 2.972 1.494 0.767 −0.009 2.998
βb3 2.449 0.937 0.613 4.285 2.602 0.751 1.130 4.075 2.552 0.755 1.072 4.033 2.616 0.755 1.136 4.095
βb4 5.331 1.637 2.123 8.538 5.356 1.482 2.451 8.262 5.312 1.458 2.454 8.171 5.375 1.473 2.487 8.262

Pars.
GEEA GEEUN GEECE GEETE

E S.E. L U E S.E. L U E S.E. L U E S.E. L U

α2 0.791 0.460 −0.111 1.693 1.063 0.493 0.096 2.030 1.067 0.498 0.092 2.042 0.833 0.458 −0.065 1.731
α3 0.773 0.557 −0.319 1.865 1.142 0.593 −0.020 2.305 1.153 0.591 −0.004 2.311 0.831 0.548 −0.244 1.906
α4 −0.566 0.731 −1.999 0.867 −0.172 0.793 −1.726 1.382 −0.191 0.797 −1.754 1.372 −0.623 0.754 −2.102 0.855
φ2 0.342 0.178 −0.007 0.692 0.269 0.208 −0.139 0.677 0.269 0.208 −0.138 0.676 0.320 0.174 −0.020 0.660
φ3 0.624 0.126 0.377 0.870 0.563 0.139 0.290 0.835 0.557 0.139 0.285 0.829 0.590 0.124 0.346 0.834
βt3 −0.125 0.262 −0.638 0.388 −0.118 0.245 −0.597 0.362 −0.111 0.243 −0.587 0.365 −0.101 0.253 −0.597 0.394
βt5 0.514 0.265 −0.005 1.033 0.458 0.242 −0.016 0.932 0.458 0.242 −0.016 0.932 0.529 0.255 0.030 1.029
βTrt 1.231 0.412 0.423 2.038 0.986 0.399 0.203 1.768 0.976 0.396 0.199 1.752 1.148 0.397 0.371 1.926
βb2 1.348 0.767 −0.156 2.852 1.072 0.801 −0.497 2.641 1.144 0.809 −0.442 2.729 1.471 0.792 −0.081 3.024
βb3 2.526 0.762 1.032 4.019 2.082 0.820 0.474 3.689 2.090 0.822 0.479 3.702 2.537 0.775 1.018 4.057
βb4 5.341 1.579 2.247 8.436 4.841 1.542 1.819 7.863 4.863 1.521 1.883 7.844 5.321 1.450 2.479 8.163

Pars.
GEERC

E S.E. L U

α2 0.811 0.456 −0.084 1.705
α3 0.806 0.538 −0.249 1.861
α4 −0.686 0.749 −2.155 0.783
φ2 0.322 0.169 −0.010 0.654
φ3 0.589 0.120 0.353 0.824
βt3 −0.064 0.252 −0.559 0.430
βt5 0.533 0.253 0.036 1.029
βTrt 1.165 0.395 0.391 1.939
βb2 1.565 0.792 0.013 3.117
βb3 2.594 0.771 1.083 4.105
βb4 5.351 1.400 2.607 8.096
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4. Discussion

Ordinal data occur often in applied and social sciences. Because the normal distri-
bution assumption does not hold for ordinal variables, using an ordinary linear model to
analyze ordinal data might result in an incorrect conclusion. One possible source of error
is “floor” and “ceiling” effects that occur when substantial proportions of subjects give
either maximum or minimum scores, so that the true extent of the measures cannot be
determined accurately. (For more details of these effects, see [10]).

The use of ordinal regression models has several benefits over ordinary regression
models, such as making as few assumptions as possible. It also gives greater power for
detecting relevant trends compared to the baseline-categories logit model that ignores the
ordering information ([10], Section 1.2). In this article, we focused on the ordered stereotype
model (OSM) because we consider that it has advantages over other ordinal models. In
particular, one of the main benefits of this model is that it allows us to determine response
scores by using the score parameter estimates.

This article is a summary of recent advances of the OSM. We presented three new
goodness-of-fit tests, of which one is based on the traditional Hosmer–Lemeshow test
(OSMHL), and the other two are based on the method from Lipsitz et al. [41] (OSML and
OSMLML). All of these tests incorporate the new spacing information dictated by the data
to group observations. The OSMHL test is easy to use for applied researchers because the
derivation of the proposed test is similar to the traditional Hosmer–Lemeshow test. In the
OSML and OSMLML tests, we compare the null model with the alternative model that has
grouping effects. Rejection of the null hypothesis implies that the null model does not fit
the data well.

Another recent development of the OSM described in this article is a GEE approach
for longitudinal data. The estimators have the same properties as the ones for logistic
regression models. The estimators are consistent even if the dependence structure is mis-
specified. It should be noted that the properties hold when missing values are treated as
missing completely at random. If that is not the case, then one could implement a missing
data strategy, e.g., imputation. To allow a more flexible assumption of missingness, such as
missing at random, one should adopt the ML approach using a random effect model. In
addition, if the pattern of missing values is non-monotone, then the methods mentioned
above will likely give invalid inferences. Finally, the proposed GEE method is restricted to
cases where repeated responses are observed at the same time points. In future work, we
will generalize the method to consider responses obtained at varying time intervals.

In practice, the OSM has been used less often in applied research compared to other
ordinal response models (see [24] for some exceptions), despite its advantages. It might be
due to the lack of standard software for model fitting that requires special consideration of
constraints on the parameters. There have however been considerable recent developments
of macros and functions in standard software to estimate the stereotype model. Kuss [24]
modified several standard procedures in SAS to obtain the maximum likelihood estimates.
Lunt and Unit [29] developed a Stats module called soreg that implements the OSM. Yee
and Hastie [55] used reduced-rank multinomial logistic models to fit the OSM, available in
the R package VGAM (Vector Generalized Additive Model) [32]. Finally, the R package
ordinalgmifs [33] provides the function ordinalgmifs that can be used to fit the OSM. The
code of all tests described in this article and the OSM fitting was written in statistical
software R [30]. The authors are developing an R package implementing the methods
described, and, meanwhile, the code is available from the authors upon request.

We believe that the use of the OSM described in this article may be advantageous for
researchers in statistics and practitioners in the applied fields. The estimation of the spacing
among response categories is an improvement over other ordinal data models. For example,
one might use the estimated scores to calculate numerical summary statistics [56] for other
practitioners to understand easily.

The development of the OSM for multi-level ordinal data (clustered and longitudinal
data) might be a field to explore for future research. Another possible future research direc-
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tion would be to generalize alternative grouping methods used for the binary case [57–59]
instead of using the one based on Hosmer–Lemeshow and compare them. Finally, our next
research goal is developing a more flexible OSM to incorporate different scores to provide
insight on the spacing information that depends on different sets of predictors.
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Appendix A. Arthritis Clinical Trial

Table A1 shows the working correlation matrices GEEE (lower triangular) and GEEU
(upper triangular) for the arthritis clinical trial data set (Section 3).

Table A1. Working correlation matrices over time and for the GEEE (lower triangular) and GEEU

(upper triangular) estimators, after fitting OSM in the arthritis clinical trial data set.

Follow-Up (1-Month) (t1) Follow-Up (3-Month) (t3) Follow-Up (5-Month) (t5)

1 0 0 0.116 −0.107 −0.107 0.221 −0.047 −0.047
0 1 0 −0.107 0.116 −0.107 −0.047 0.221 −0.047
0 0 1 −0.107 −0.107 0.116 −0.047 −0.047 0.221

0.191 −0.078 −0.078 1 0 0 0.236 −0.078 −0.078
−0.078 0.191 −0.078 0 1 0 −0.078 0.236 −0.078
−0.078 −0.078 0.191 0 0 1 −0.078 −0.078 0.236
0.191 −0.078 −0.078 0.191 −0.078 −0.078 1 0 0
−0.078 0.191 −0.078 −0.078 0.191 −0.078 0 1 0
−0.078 −0.078 0.191 −0.078 −0.078 0.191 0 1 0
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