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Abstract: Panel count data often occur in a long-term recurrent event study, where the exact oc-
currence time of the recurrent events is unknown, but only the occurrence count between any two
adjacent observation time points is recorded. Most traditional methods only handle panel count data
for a single type of event. In this paper, we propose a Bayesian semiparameteric approach to analyze
panel count data for multiple types of events. For each type of recurrent event, the proportional
mean model is adopted to model the mean count of the event, where its baseline mean function is
approximated by monotone I-splines. The correlation between multiple types of events is modeled by
common frailty terms and scale parameters. Unlike many frequentist estimating equation methods,
our approach is based on the observed likelihood and makes no assumption on the relationship
between the recurrent process and the observation process. Under the Poisson counting process
assumption, we develop an efficient Gibbs sampler based on novel data augmentation for the Markov
chain Monte Carlo sampling. Simulation studies show good estimation performance of the baseline
mean functions and the regression coefficients; meanwhile, the importance of including the scale
parameter to flexibly accommodate the correlation between events is also demonstrated. Finally, a
skin cancer data example is fully analyzed to illustrate the proposed methods.

Keywords: data augmentation; Gibbs sampler; I-splines; pairwise correlation

1. Introduction

Panel count data often arise in epidemiological and medical studies, in which the
events of interest have a property of recurring and subjects are monitored periodically.
Since the subjects are not under continuous monitoring, the exact time of each recurrent
event is not observed but the count of such events between adjacent observation times
is known. Many times in a study, several types of related recurrent events are of interest
to be collected. For example, the recurrent events can be different types of infections,
tumors, and social behaviors such as drinking and drug use. The motivating example is
bivariate panel count data on skin cancers from the literature [1]. The data arose from a skin
cancer chemoprevention trial conducted by the University of Wisconsin Comprehensive
Cancer Center. This was a double-blinded and placebo-controlled randomized III clinical
trial. The main objective of the study was to evaluate the effectiveness of 0.5/m2/day
PO difluoromethylornithine (DFMO) in reducing the recurrence rate of skin cancers in a
population of patients with a history of non-melanoma skin cancers: basal cell carcinoma
and squamous cell carcinoma. Two hundred and ninety one patients were randomized into
either a placebo group or a DFMO group. During the study, the patients were scheduled to
regularly take 6-month reviews to check the development of both skin cancers. At each
visit, the numbers of occurrences of both basal cell carcinoma and squamous cell carcinoma
since the previous visit were recorded. For these bivariate panel count data, it is possible to
analyze these two skin cancers separately to evaluate the effectiveness of DFMO. However,
conducting a joint analysis is a better practice to investigate the correlation between two
cancers and to improve the estimation efficiency.
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Extensive methods have been established to analyze panel count data for a single type
of recurrent event, for example Sun and Kalbfleisch [2], Sun and Zhao [1], Wellner and
Zhang [3,4], Lu et al. [5,6], Wang and Lin [7], among others. For multivariate panel count
data, He et al. [8] considered regression analysis for multivariate panel count data and
first proposed a class of marginal mean models, which leave the dependence structures for
related recurrent events completely unspecified. Zhang et al. [9] then improved their model
and provided a robust joint modeling approach for the regression analysis of multivariate
panel count data with an informative observation process. Li et al. [10] proposed semipara-
metric transformation models that allow the dependence of the recurrent event processes
on the observation process. Along the same line, Zhao et al. [11] proposed a semiparametric
additive model to analyze the multivariate panel count data with dependent observation
processes and a terminal event. This branch of works emphasize the dependence of the
recurrent event processes on the observation process and require the model of the observa-
tion process being explicitly specified. They usually derive estimating equation methods to
estimate regression coefficient without estimating baseline mean functions.

Another line of research for panel count data is to consider varying or nonlinear
covariate effects. He et al. [12] proposed a class of partially linear models with varying
coefficients for the mean function of the counting processes to explore the nonlinear inter-
actions between covariates. Zhao et al. [13] adopted the B-splines to model the regression
function. Wang and Yu [14] proposed the time varying coefficient model by the local linear
expansion method. For multivariate panel count data, Li et al. [15] presented a joint mod-
eling for the recurrent event processes, observation process, and censoring time by using
time-dependent random effects. Wang and Yu [16] proposed a varying coefficient mean
model for multivariate panel count data to describe the possible nonlinear interact effects
between covariates. In this paper, instead of investigating varying covariate effects, we
only focus on traditional constant covariate effects.

Frequentist approaches dominate the analysis of panel count data. There is only
a limited number of papers describing Bayesian approaches for analyzing panel count
data. Chib et al. [17] investigated estimation and model comparison for panel count data
models with multiple random effects. Sinha and Maiti (2004) proposed a Bayesian approach
for the analysis of panel count data with dependent termination. Wang and Lin (2020)
developed a Bayesian semiparametric approach under the proportional mean model with
the baseline mean function approximated by monotone I-splines [18]. Dimitrakopoulos [19]
discussed how Bayesian techniques can be used to estimate the panel count data model.
Liang et al. [20] proposed a bivariate Gaussian Cox process model to jointly model the
recurrent event process and the observation process. To the best of our knowledge, Ref. [20]
is the only Bayesian paper for analyzing multivariate panel count data.

In this paper, we contribute a new Bayesian semiparameteric approach to analyze
panel count data for multiple types of recurrent events. For each type of recurrent event,
we adopt the modeling in Wang and Lin (2020) by using the proportional mean model to
model the mean count of the recurrent event with its baseline mean function approximated
by monotone I-splines [18]. The proposed approach is based on the observed likelihood
using only the observed counts and observation times, which does not require us to
specify a model for the observation process. Instead of building up the correlation among
multiple types of events through their dependence on the observation process, we tackle
the correlations between different types of events directly by introducing common subject-
specific gamma frailty terms and additional scale parameters. The resulting pairwise
correlations can be calculated in a close form and flexibly accommodate different correlation
situations including positive, negative, strong, and weak correlations. Based on Poisson
latent variable augmentation, our developed MCMC algorithm can estimate both the
regression coefficients and the baseline mean functions simultaneously.

The remainder of this paper is organized as follows. In Section 2, primary models
and the correlation derivation and interpretation are introduced. In Section 3, a detailed
description of monotone I-splines, augmented likelihood function construction, and prior
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specification and posterior computation are presented. Section 4 evaluates our proposed
methods via extensive simulation studies. The skin cancer data are used to demonstrate
the performance of the proposed methods in Section 5. Lastly, Section 6 summarizes our
findings and discusses some future work directions.

2. Model and Notation
2.1. Model Construction

Consider that n subjects participate a long-term study involving K types of related
recurrent events. Each subject is not under continuous monitoring and instead observed
at discrete time points. Specifically, for each subject i, J(k)i denotes the total number of

observation times for event k, and the corresponding observation times are 0 = t(k)i0 < t(k)i1 <

t(k)i2 < · · · < t(k)
i J(k)i

. Let N(k)
i (t) denote the cumulative count of the occurrence of event k prior

to time t for subject i. Let X(k)
i = (x(k)i1 , . . . , x(k)ip )′ denote the p× 1 covariate vector associated

with subject i for event k. For simplicity, in this paper we assume the covariates for subject
i are identical for all K events and denoted by Xi. The whole set of observed panel count
data is denoted by D = {t(k)ij , N(k)

i (t(k)ij ), Xi, for k = 1, . . . , K; i = 1, . . . , n; j = 1, . . . , J(k)i }.
Finally, we assume there is a latent subject-specific positive frailty term wi for each subject
i, which affects the occurrence rates and connects the multiple events. The frailties wi’s are
assumed to follow a gamma distribution G(η, η) with mean 1 and variance 1/η. The model
identifiability is satisfied with the mean of frailties equal to 1 [21,22]. Given the covariates
Xi and frailty wi, we assume the counting process {N(k)

i (t), t > 0} for event k has a
proportional mean function in the following form:

E
(

N(k)
i (t)|Xi, wi

)
= wαk

i U(k)
0 (t) exp(X′i β

(k)), (1)

where αk is a scale parameter introduced to more flexibly accommodate the correlation
between events, U(k)

0 (t) is the baseline mean function for event k, and β(k) is a p× 1 vector
of regression coefficients for event k. By default, the model considers different covariate
effects for different recurrent events, but it is easy to extend to the situation where the
covariate effects are identical across all the K events. More details about αk related to the
correlation are discussed in Section 2.2.

Let Z(k)
ij denote the number of occurrence of event k in the jth time interval (t(k)i,j−1, t(k)ij ]

for subject i, i.e., Z(k)
ij = N(k)

i (t(k)ij ) − N(k)
i (t(k)i,j−1), where we assume N(k)

i (ti0) = 0 for
i = 1, . . . , n. Through this transformation, the whole set of data can be expressed as
D = {t(k)ij , Z(k)

ij , Xi, for k = 1, . . . , K; i = 1, . . . , n; j = 1, . . . , J(k)i }. Under the Poisson process

assumption, given the covariates Xi and latent frailty terms wi, Z(k)
ij independently follows

Poisson distributions, which can be written as:

Z(k)
ij |Xi, wi ∼ P

(
wαk

i {U
(k)
0 (t(k)ij )−U(k)

0 (t(k)i,j−1)} exp(X′i β
(k))
)

. (2)

This form is particularly useful for constructing the likelihood function in Section 3.2.
Note that when integrating out the frailty effect wi, Z(k)

ij marginally follows mixed Poisson
distributions [1].

2.2. Correlation Expression

An advantage of our proposed model is its straightforwardness in deriving the corre-
lation formula between two events. Among the K events, we predesignate one event that is
of main interest, for instance event j, as a reference event, and let αj = 1. Then, given the
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covariates Xi and the unobservable frailty wi, the cumulative counts of event j and event k
(k 6= j) for subject i at any time point t are conditionally independent and have

N(j)
i (t)|Xi, wi ∼ P

(
wiU

(j)
0 (t) exp(X′i β

(j))
)

,

N(k)
i (t)|Xi, wi ∼ P

(
wαk

i U(k)
0 (t) exp(X′i β

(k))
)

.

Using the law of total variance, we explicitly derive Cov
(

N(j)
i (t), N(k)

i (t)
)
, Var

(
N(j)

i (t)
)

and Var
(

N(k)
i (t)

)
and hence the correlation formula as below:

Corr
(

N(j)
i (t), N(k)

i (t)
)
=

Cov
(

N(j)
i (t), N(k)

i (t)
)√

Var
(

N(j)
i (t)

)
Var

(
N(k)

i (t)
)

=
αk√

η + η2

[U(j)
0 (t) exp(X′i β

(j)
)]

√
Γ(η+2αk)Γ(η)
(Γ(η+αk))2 − 1 + Γ(η)ηαk

Γ(η+αk)[U
(k)
0 (t) exp(X′i β

(k)
)]

(3)

where η > 0 and αk > −η/2. For details on derivation of Equation (3), see Appendix A.
Clearly, αk = 0 implies that event j and event k are independent; αk > 0 implies that event j
and event k are positively related; αk < 0 implies that event j and event k are negatively
related. When getting rid of the covariate effects, the baseline correlation between the two
events is

Corr0
(

N(j)(t), N(k)(t)
)
=

αk√
η + η2

U(j)
0 (t)

√
Γ(η+2αk)Γ(η)
(Γ(η+αk))2 − 1 + Γ(η)ηαk

Γ(η+αk)U
(k)
0 (t)

.

The benefit of this form is that it gets away with the individual level and provides
a broader view of the correlation between two events. Letting U(j)

0 (t) = U(k)
0 (t) = 1, we

can explore the pure effect of αk and η on the baseline correlation Corr0(N(j)(t), N(k)(t)).
Note that the correlation between any two events is controlled by the parameters η and αk.
Figure A1 shows the baseline correlation performance related to η and αk when αk ∈ [−1, 1].
It shows that with the variance of frailty increasing (η decreasing), the correlation increases;
with the magnitude of αk increasing, the correlation also increases. When αk > 0, any η > 0
is a legitimate choice; while for αk < 0, the condition η > −2αk must be satisfied to make
Γ(·) valid. In fact, the interpretation of the pairwise correlation is not limited to the pairs of
events involving the predesignated event. A similar derivation can derive the correlation
between any two types of events. Theoretically, αk can be any value greater than −η/2. We
only choose αk between −1 and 1 because we think in practice we can always choose the
event with the largest frailty variability as the reference event. Then, for the other events,
we only need αk between −1 and 1.

3. The Proposed Bayesian Semiparametric Approach

3.1. Modeling U(k)
0 (t) with Monotone I-Splines

To accommodate the nondecreasing nature of the baseline mean functions in the
proposed model, we choose monotone I-splines to model them. I-splines were first bought
up by Ramsay [18] and then widely applied in many semiparametric models. To put it
briefly, I-splines are actually integrated M-splines, a set of non-negative spline functions [18].
In our proposed model, each baseline function of event k is modeled as a linear combination
of I-splines:

U(k)
0 (t) =

L

∑
l=1

r(k)l Il(t|d), (4)

In the formula, Il(·|d) is the I-spline basis function with degree d; L is the number
of I-spline basis functions, which equals the number of interior knots plus the degree d;



Stats 2022, 5 481

r(k)l s are the nonnegative spline coefficients. For more detailed information on the formula
of I-splines, refer to Ramsay [18] and Lin et al. [23]. The degree d and the placement of
knots are two chief components that determine the basis functions. The former controls
the smoothness and the latter controls the shape of the spline function. In general, 2 or
3 degrees is enough to provide adequate smoothness, and 10 to 30 knots can provide
enough flexibility for a regression incorporating thousands of observations according
to Cai et al. [24] and Wang and Dunson [25]. Equally spaced knots and quantile-based
knots are two commonly used methods to select knots. Ref. [7] showed that the deviance
information criterion (DIC) can be used to facilitate choosing the setup for the I-spline
functions. In addition, reversible jump MCMC technique [26] may also help adaptively
choosing the number and location of knots. In this paper, to avoid additional computation
burden, we uniformly use degree 3 and 20 equally spaced knots (18 interior knots), which
provides sufficient flexibility for modeling the unknown baseline mean functions.

3.2. Likelihood Augmentation with Poisson Latent Variables

Consider that n subjects participate in a long-term study involving K types of related
recurrent events. The data structure and model are defined in Section 2.1. Under the
Poisson process assumption, following Equation (2), the observed likelihood function can
be written in the following form:

Lobs =
K

∏
k=1

n

∏
i=1

J(k)i

∏
j=1

exp[−wαk
i {U

(k)
0 (t(k)i,j )−U(k)

0 (t(k)i,j−1)} exp(X′i β
(k))]

×[wαk
i {U

(k)
0 (t(k)ij )−U(k)

0 (t(k)i,j−1)} exp(X′i β
(k))]

Z(k)
ij /Z(k)

ij !

Taking the baseline function U(k)
0 (t) in the form of (4), the likelihood can further be

written as

L(θ|D) =
K

∏
k=1

n

∏
i=1

Ji(k)

∏
j=1

exp[−wαk
i

L

∑
l=1

r(k)l {Il(t
(k)
i,j )− Il(t

(k)
i,j−1)} exp(X′i β

(k))]

×[wαk
i

L

∑
l=1

r(k)l {Il(t
(k)
i,j )− Il(t

(k)
i,j−1)} exp(X′i β

(k))]
Z(k)

ij /Z(k)
ij !

where θ represents the vector of all unknown parameters including β(k) = (β
(k)
1 , . . . , β

(k)
p )′

and r(k) = (r(k)1 , . . . , r(k)L )′ for k = 1, . . . , K, and α = (α1, . . . , αk)
′. Note that for the simplic-

ity of notation, the d is omitted from the I-spline basis functions. With this likelihood format,
the sampling for r(k)l is especially difficult. To solve this problem, we further decompose

Z(k)
ij as ∑L

l=1 Z(k)
ijl , where the augmented Poisson latent variables Z(k)

ijl s independently follow
Poisson distributions as follows:

Z(k)
ijl |Xi, wi ∼ P

(
wαk

i {r
(k)
l [Il(t

(k)
i,j )− Il(t

(k)
i,j−1)]} exp(X′i β

(k))
)

.

The convolution property of Poisson distribution aids the transformation smoothly.
Then, with the augmented Poisson latent variables, the likelihood function can be ex-
pressed as

Laug(θ|D) =
K

∏
k=1

n

∏
i=1

J(k)i

∏
j=1

L

∏
l=1

exp[−wαk
i r(k)l {Il(t

(k)
i,j )− Il(t

(k)
i,j−1)} exp(X′i β

(k))]

× [wαk
i r(k)l {Il(t

(k)
i,j )− Il(t

(k)
i,j−1)} exp(X′i β

(k))]
Z(k)

ijl /Z(k)
ijl !. (5)
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Based on this augmented likelihood Equation (5), we develop the Bayesian computa-
tion algorithm in Section 3.3.

3.3. Prior Specification and Posterior Computation

For Bayesian computation, we need to first specify prior distributions for unknown
parameters. When we do not have much prior information about parameters, we usually
assign vague priors for them. For β(k)

m , m = 1, . . . , p; k = 1, . . . , K, we assignN (0, σ2) priors,

where σ2 takes a large value such as 100. For nonnegative r(k)l , l = 1, . . . , L; k = 1, . . . , K,
we assign exponential priors with rate parameter λk, where λk itself follows a gamma
prior G(aλ, bλ). This prior specification is appealing from the computational perspective
because it leads to conjugate forms for each of the conditional posterior distributions of
r(k)l and λk. Theoretically, such a prior specification is closely related to Bayesian Lasso [27]
and is equivalent to the penalized likelihood approach with an L1 penalty on those spline
coefficients, in which λk serve as tuning parameters. Our simulation studies show that
our approach is robust to the choice of hyperparameters, so we simply choose aλ = 1
and bλ = 1. We adopt Gibbs sampling algorithm for posterior computation. Basically, we
derive the full conditional distribution of each parameter component-wisely from the joint
distribution of the likelihood function in (5) and the specified prior distributions. If the full
conditional distribution of a parameter has a closed form, the sampling is straightforward.
When the closed form is intractable, an adaptive rejection sample (ARS) [28] is adopted if the
full conditional posterior distribution preserves the log-concavity. Even if the log concavity
is not satisfied, we can still use adaptive rejection metropolis sampling (ARMS) [29] to draw
samples. Specifically, we use function arms() in the R package HI [30] to realize the ARMS.
The full conditional distributions of the Gibbs sampler are summarized as below.

1. Sample (Z(k)
ij1 , . . . , Z(k)

ijL ) from a multinomial distributionM(Z(k)
ij , P(k)

ij ), for i = 1, . . . , n;

j = 1, . . . , J(k)i ; k = 1, . . . , K, where P(k)
ij = (p(k)ij1 , . . . , p(k)ijL ) with ∑L

l=1 p(k)ijl = 1, and

p(k)ijL =
r(k)l {Il(t

(k)
ij )− Il(t

(k)
i,(j−1))}

∑L
l=1 r(k)l {Il(t

(k)
ij )− Il(t

(k)
i,(j−1))}

.

2. Sample r(k)l from a Gamma distribution G(A(k)
l , B(k)

l ), for l = 1, . . . , L; k = 1, . . . , K, with

A(k)
l =

n

∑
i=1

J(k)i

∑
j=1

Z(k)
ijl + 1,

and

B(k)
l =

n

∑
i=1

wαk
i {Il(t

(k)

i J(k)i

)− Il(t
(k)
i0 )} exp(X′i β

(k)) + λk.

3. Sample λk from a Gamma distribution G(aλ + L, bλ + ∑L
l=1 r(k)l ), for k = 1, . . . , K.

4. Sample β
(k)
m by using the adaptive rejection sampling (ARS) [28] method, for m = 1,

. . . , p; k = 1, . . . , K. The log full conditional distribution of each βm is proportional to

exp[−
n

∑
i=1

L

∑
l=1

wαk
i r(k)l {Il(t

(k)

i J(k)i

)− Il(t
(k)
i0 )} exp(X′i β

(k)) +
n

∑
i=1

J(k)i

∑
j=1

X′i β
(k)Z(k)

ij − (β
(k)
m )2/(2σ2)].
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5. Sample wi for i = 1, . . . , n, by using the ARS. The log full conditional distribution of
each wi is proportional to

−
K

∑
k=1

wαk
i r(k)l {Il(t

(k)

i J(k)i

)− Il(t
(k)
i0 )} exp(X′i β

(k)) +
K

∑
k=1

J(k)i

∑
j=1

L

∑
l=1

Z(k)
ijl log(wαk

i )− ηwi + (η − 1) log(wi).

6. Sample η by using the ARMS, the log full conditional distribution of which is propor-
tional to

(η − 1)
n

∑
i=1

log(wi)− η(
n

∑
i=i

wi + bη) + (nη + aη − 1) log(η)− n log(τ(η)).

7. Sample αk, for k = 1, . . . , K, by using the ARMS, the log full conditional distribution
of which is proportional to

−wαk
i r(k)l {Il(t

(k)

i J(k)i

)− Il(t
(k)
i0 )} exp(X′i β

(k)) +
Ji

∑
j=1

L

∑
l=1

Z(k)
ijl log(wαk

i ).

In the R function arms(), we set the low bound of the support of αk as −η/2.

4. Simulation Studies

Simulation studies are conducted to evaluate the proposed methods. We only consider
2 (K) types of events for the demonstration purpose. By default, α1 = 1. For notation
simplicity, we denote α2 as α. It is straightforward to extend to three or more types of
events. We particularly assess the performance of estimating covariate coefficients β(k) and
baseline functions U(k)

0 for different η and α values. We also compare the estimation results
between models with and without the scale parameter α.

4.1. Data Generation

Consider 2 types of events and 100 subjects. Data are simulated according to model (1)
under the Poisson process assumption. Specifically, we consider four different values for α:
−0.3, 0, 0.5, and 1, and two different values for η: 1 and 5. The baseline mean function for
the first type of event is U(1)

0 (t) = t + log(1 + t), which is approximately linear, and for the

second type of event, U(2)
0 (t) = t0.5 + log(1 + t), which is curvilinear. Two covariates are

involved for each subject, where X1 is from a Bernoulli distribution with the probability
of success 0.5 and X2 is from a standard normal distribution. Each subject has the same
observation times for the two types of events. The number of observation times for each
subject is generated from a Poisson distribution with mean 7, and the time length between
every two adjacent observation times follows an exponential distribution with mean 0.5.
Given the observation times and the generated frailty wi from G(η, η), for each subject,
the event count for each time interval for each type of event is generated from a Poisson
distribution as Equation (2). Each set of simulations consists of 500 data replicates.

4.2. Simulation Results

We implemented the Gibbs sampler in Section 3.3 for each simulated dataset. Good
mixing and fast convergence in the chains of the key parameters were observed. The con-
vergence assessment was carried out using various convergence criteria in the R package
coda [31]. The following results are summarized based on 5000 iterations of the Gibbs
samples after discarding the first 2000 iterations as a burn-in.

The first set of simulations aims at assessing the performance of estimating regression
coefficients β(k). For this set of simulations, data are generated with different true β values
but α fixed at 1. Table A1 shows the estimation bias (Bias) defined as the average of the
posterior means minus the true value, the mean of the posterior standard deviations (SD),
standard deviation of the posterior means (SE), and 95% coverage probability (CP95) of
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four combinations of β values. Clearly, the estimation of regression coefficients is good with
small biases, SDs close to SEs, and 95% coverage probabilities around 95%. When η goes
from 1 to 5 (i.e., the variance of frailty goes from 1 to 0.2), the Bias, SD and SE uniformly
become smaller. It is noted that the estimation of β2 is consistently better than that of β1
in terms of giving smaller biases and SDs and SEs. This is because that X2 is a normal
covariate providing more information than a binary covariate X1, and that the variance
of X2 is four times the variance of X1. Our simulation study shows that when we add
one more possible value to X1 such that X1 follows a uniform discrete distribution with
X1 ∈ {0, 1,−1}, the estimation of β1’s is improved and close to the estimation of β2.

The second set of simulations focuses on assessing the estimation performance of our
proposed methods when data are generated with different α values . The true β values are
fixed as β

(1)
1 = 1, β

(1)
2 = −1, β

(2)
1 = 1, and β

(2)
2 = 1. Table A2 summarizes the estimation

results. The estimation results of regression coefficients are similar as those in Table A1.
Overall, the estimation is good with small biases, SDs close to SEs, and the CP95s close
to 95%. The estimation is more precise for the larger η value, and the estimation of β2
is overall better than that of β1. A new fact is observed that with the magnitude of α
approaching 0, the estimation of the regression coefficients for the second type of event
becomes more precise with smaller biases and SDs and SEs. This observation is reasonable,
as the smaller value of α reflects the occurrence of the second type of events less affected
by frailties, and thus the more precise estimation of the regression coefficients is expected.
Furthermore, the estimated α and η have remarkably caught the truth. Different from
the estimation of regression coefficients, a small value of η leads to the better estimation
of α. A glance at the table may find the bias of η is a little too high when the true η is
5. We need to point out that the difference between G(5, 5) and G(6, 6) is trivial, so the
estimation can still accurately catch the shape of the distribution. Figure A2 shows the
estimation of the baseline mean functions corresponding to different setups of α and η
values. The solid lines represent the real baseline mean function and the broken lines
represent the estimated baseline mean function. The two lines on the top are for the first
type of event U(1)

0 (t) = t + log(1 + t), and the curvilinear lines at the bottom are for

the baseline mean function U(2)
0 (t) = t0.5 + log(1 + t) of the second type of event. We

can clearly see that all the estimated lines catch up to the true lines well and the plots
on the right side when η = 5 show an even better convergence to the truth than their
counterparts on the left side when η = 1. Figure A3 shows the estimation of the baseline
correlation functions corresponding to different setups of α and η values. It is clear that for
each α and η setup, the estimated baseline correlation function overlays the true baseline
correlation function.

Finally, we evaluate the effect of the scale parameter α on the estimation. Frailty
models are well accepted for univariate panel count due to its flexibility and robustness.
A naive extension to multivariate panel count data is to treat the frailty exactly the same for
all types of events, i.e., each subject shares the common frailty to its full extent for all the
events. Our simulation shows that this practice leads to wrong estimation results when
true α is not 1. Table A3 presents the estimation results for the same simulated datasets as
in Table A2, but are fitted with the naive model, i.e., model (1) with α omitted. The last
block of rows of the table shows that the naive model does a comparable job in estimating
the regression coefficients and η, which is reasonable because the naive model is the true
model when the true value of α is 1. However, for other data generated with α not equal
to 1, the misspecified naive model provides bad estimation results, which is especially
clear when true η = 1. Compared with the results in Table A2, all Biases for the regression
coefficients slightly increase. For the regression coefficients for the first type of event, β

(1)
1

and β
(1)
2 , the SEs are quite close to those in Table A2, but the SDs become smaller (the

further away the true α is from 1, the smaller the SDs become), leading to CP95 being
much smaller than 95%. For the regression coefficients for the second type of event, β

(2)
1

and β
(2)
2 , compared with those in Table A2, both SDs and SEs increase. When data are
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generated with α = 0 or 0.5, the naive method inflates SDs more than SEs, leading to higher
coverage probabilities than 95%. When α = −0.3, the inflated SEs are actually larger than
the inflated SDs, leading to lower coverage probabilities. The bias, SD and SE of η are
increased when the true α gets away from the value 1. The estimation results for η = 5
have a similar pattern to those for η = 1 but much better, which is reasonable because the
large η value implies a small variance of frailties and thus less correlation between two
types of events. This set of simulations shows that including the scale parameter of α is
important to correctly estimate the regression coefficients.

5. Real Data Analysis

In this section, we apply our proposed methods to analyze the motivating dataset,
the skin cancer dataset, which was introduced in Section 1, and compare the results with
those in the literature. Two hundred and ninety patients are analyzed, with one removed
from the original group because of no observation. The observation times were recorded
in days. The covariate of major interest is denoted as X1, which is equal to 1 if the patient
was assigned in the DFMO group and 0 in the placebo group. The other three covariates of
interest are X2, the number of cancers prior to the trial; X3, the patient’s age; and X4, gender
with male 1 and female 0. Table A4 displays the results of the covariate coefficients of the
two types of skin cancer from the proposed model. Clearly, gender (X4) has no significant
effect, but the number of cancers prior to trial (X2) and the patient’s age (X3) are significant
for both skin cancers. The positive value of β2 implies that the number of prior cancers has
a positive relationship with the rate of new cancers. The negative value of β3 suggests that
older patients tend to have a lower recurrence rate of new cancers, which makes biological
sense as older people have a slower metabolism. However, DFMO has different effects on
the recurrence rate of the two skin cancers. For basal cell carcinoma, the recurrence rate
is decreased by a factor of 1.209, but for squamous cell carcinoma, the recurrence rate is
increased by a factor of 1.111. However, neither of these two effects are significant due to
the large posterior standard deviations.

The skin cancer data have also been analyzed by He et al. [8] and Zhang et al. [9],
assuming the same covariate effects for both skin cancers. For comparison, we also modify
step 4 in the Gibbs sampler in Section 3.3 and reanalyze the data with the same covariate
coefficients for both cancers. The results are presented in Table A5. Overall, all the
estimation results of the covariate coefficients for the three methods assuming common
covariate effects are quite similar, with the Bayesian method producing smaller posterior
standard deviations of the regression coefficients than the standard errors from the other
two frequentist methods. The different effects of DFMO on the two skin cancers are
completely hidden compared to the method where different covariate effects are assumed.
The effect of the number of cancers prior to trial (X2) is significant for all three methods.
Our Bayesian method shows the significant effect of patient’s age (X3), while the other two
frequentist methods do not. Our method and Zhang et al. [9]’s method show no significant
effect of gender (X4), but He et al. [8]’s method does.

Our methods can estimate the baseline mean functions simultaneously with the
regression coefficients. Figure A4 presents the estimated baseline mean functions for
basal cell carcinoma and squamous cell carcinoma, respectively. The solid line on the
top and the broken line at the bottom represent the baseline mean functions of basal cell
carcinoma and squamous cell carcinoma from the model, assuming different covariate
effects. The two broken lines in the middle represent the baseline mean functions of the
two cancers when assuming the covariate effects are the same. Clearly, under the common
covariate effects assumption, the baseline mean functions are both pulled towards the
middle, which blurs the difference of the mean functions between these two skin cancers.

Finally, Figure A5 displays the estimated baseline correlation function when covariate
effects are assumed different for the two skin cancers. It shows that the correlation between
the two recurrent skin cancers is positive and strengthened across time.



Stats 2022, 5 486

6. Discussion

In this paper, we have proposed a Bayesian estimation approach for the semiparametric
regression analysis of multivariate panel count data. For each type of event, the propor-
tional mean model is adopted to model the cumulative mean count of the event, where its
baseline mean function is approximated by monotone I-splines. The correlation between
multiple types of events is modeled by common frailty terms and scale parameters. Based
on the novel Poisson data augmentation, an efficient and easy-to-implement Gibbs sampler
is developed for the MCMC computation. Through the MCMC samples, the regression
coefficients, the baseline mean functions, and the baseline correlation function can be
simultaneously estimated. Simulation studies have shown that the proposed approach
provides accurate estimation of the regression coefficients and the baseline mean functions.
Simulation studies have also demonstrated the importance of including the scale param-
eter in the model. The scale parameter provides substantive flexibility for modeling the
correlation and meanwhile improving the estimation performance.

Instead of using a single common frailty wi and scale parameters to model the corre-
lation between counts of multiple events, another possible way is to have a frailty vector
(wi1, wi2, . . . , wiK) for each subject. Then, the correlation between counts of multiple events
is modeled through the dependence structure of these wijs. Bedair et al. [32] used copula-
frailty models to analyze correlated recurrent events of different types. We may also borrow
the copula-frailty idea to more flexibly model the correlation between counts of multiple
events. In this paper, we assume frailties follow a gamma distribution G(η, η). The gamma
frailty is the simplest and most popular frailty distribution in survival analysis. Under the
mean equal to 1 restriction, there is only one parameter η to represent the variance in the
frailty, which is easy to interpret when connecting to the correlation. Some other frailties
may also be used, such as log normal frailty and inverse Gaussian frailty. Then, the formula
for the correlation and the sampling for the frailty would be different. Other possible
choices of frailties are referred to by Balan and Putter [33], who provide an excellent tutorial
on frailty models.

Regarding choosing which event as the reference event, in this paper, we choose the
event with the largest frailty variability as the reference event. One possible way to choose
the reference event is to first conduct univariate panel count data analysis for each type of
event, and then to choose the one with the largest frailty variability as the reference event.
For real data analysis, gamma frailty assumption may not hold for the reference event.
For this, nonparametric frailties without assuming any specific distribution may be a more
flexible choice.

Our approach can be slightly modified to accommodate common covariate effects for
different types of events. However, the real data analysis shows that doing this would hide
significant covariate effects for individual types of events. Therefore, we suggest assuming
different covariate effects for different events first for real data analysis and then using the
common covariate effect model later if similar effects are observed for different events.

Unlike the existing frequentist methods, our approach does not require model as-
sumptions for the observation or censoring processes. Our approach is solely based on
the observed likelihood and only needs the observed counts and observation times for
the analysis, which makes our proposed approach generic to deal with panel count data
arising from different observation schemes, including dependent or independent censoring
and/or observation processes. On the other hand, the proposed approach may lose a
certain amount of efficiency due to not incorporating the information of the observation or
censoring processes when they are actually available.
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Appendix A. Derivation of Cov(N(j)
i , N(k)

i ), Var(N(j)
i ), and Var(N(k)

i ) for αj = 1

Cov(N(j)
i , N(k)

i ) = E(N(j)
i N(k)

i )− E(N(j)
i )E(N(k)

i )

= E[E(N(j)
i |wi)E(N(k)

i |wi)]− E[E(N(j)
i |wi)]E[E(N(k)

i |wi)]

= U(j)
0 exp(X′β(j))U(k)

0 exp(X′β(k))[E(w1+αk
i )− E(wi)E(wαk

i )]

= U(j)
0 exp(X′β(j))U(k)

0 exp(X′β(k))× αkη−(αk+1)Γ(η + αk)

Γ(η)

Var(N(j)
i ) = Var(E(N(j)

i |wi)) + E(Var(N(j)
i |wi))

= Var(wiU
(j)
0 exp(X′β(j))) + E(wiU

(j)
0 exp(X′β(j)))

=
(U(j)

0 exp(X′β(j)))2

η
+ U(j)

0 exp(X′β(j))

Var(N(k)
i ) = Var(E(N(k)

i |wi)) + E(Var(N(k)
i |wi))

= Var(wαk
i U(k)

0 exp(X′β(k))) + E(wαk
i U(k)

0 exp(X′β(k)))

= (U(k)
0 exp(X′β(k)))2[

Γ(η + 2αk)

Γ(η)η2αk
− (

Γ(αk + η)

Γ(η)
)2 1

η2αk
] + U(k)

0 exp(X′β(k))
Γ(αk + η)

Γ(η)ηαk

Table A1. Simulation results: estimation of regression coefficients from our proposed method when
true α = 1. Bias refers to the difference between the average of the 500 posterior means and the
true value; SD refers to the mean of the 500 posterior standard deviations; SE refers to the standard
deviation of the 500 posterior means, and CP95 refers to the 95% coverage probability.

η = 1 η = 5

Parameter Truth Bias SD SE CP95 Bias SD SE CP95

β
(1)
1 0 0.0583 0.2238 0.1988 0.9520 0.0214 0.1287 0.1319 0.9400

β
(1)
2 1 0.0004 0.1215 0.1223 0.9520 0.0015 0.0696 0.0722 0.9300

β
(2)
1 1 0.0561 0.2225 0.1975 0.9700 0.0203 0.1291 0.1236 0.9600

β
(2)
2 1 −0.0002 0.1203 0.1220 0.9480 0.0004 0.0683 0.0689 0.9460

β
(1)
1 0 0.0392 0.2294 0.2179 0.9580 0.0178 0.1303 0.1311 0.9520

β
(1)
2 1 −0.0053 0.1245 0.1228 0.9520 −0.0008 0.0714 0.0709 0.9520

β
(2)
1 −1 0.0647 0.2523 0.2479 0.9560 0.0364 0.1651 0.1607 0.9500

β
(2)
2 1 −0.0109 0.1344 0.1297 0.9620 −0.0001 0.0858 0.0824 0.9620

β
(1)
1 1 0.0490 0.2198 0.2133 0.9500 0.0119 0.1203 0.1191 0.9540

β
(1)
2 1 −0.0078 0.1182 0.1202 0.9280 −0.0017 0.0646 0.0653 0.9380

β
(2)
1 −1 0.0771 0.2497 0.2373 0.9440 0.0400 0.1629 0.1593 0.9500

β
(2)
2 1 −0.0127 0.1323 0.1335 0.9440 −0.0026 0.0840 0.0825 0.9600

β
(1)
1 1 −0.0639 0.2152 0.2173 0.9320 −0.0178 0.1192 0.1194 0.9392

β
(1)
2 −1 0.0025 0.1138 0.1121 0.9500 0.0051 0.0633 0.0678 0.9392

β
(2)
1 1 −0.0663 0.2202 0.2247 0.9300 −0.0219 0.1280 0.1329 0.9196

β
(2)
2 1 0.0031 0.1177 0.1156 0.9440 0.0046 0.0681 0.0786 0.9412
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Table A2. Simulation results: estimation of regression coefficients α and η from our proposed method

for data generated with different α values and true β
(1)
1 = 1, β

(1)
2 = −1, β

(2)
1 = 1, and β

(2)
2 = 1.

Bias refers to the difference between the average of the 500 posterior means and the true value; SD
refers to the mean of the 500 posterior standard deviations; SE refers to the standard deviation of the
500 posterior means, and CP95 refers to the 95% coverage probability.

η = 1 η = 5

Parameter Bias SD SE CP95 Bias SD SE CP95

α = −0.3

β
(1)
1 −0.0269 0.2190 0.2266 0.9300 −0.0124 0.1216 0.1252 0.9360

β
(1)
2 −0.0054 0.1168 0.1202 0.9460 0.0006 0.0652 0.0685 0.9460

β
(2)
1 −0.0086 0.1048 0.1049 0.9440 −0.0022 0.0829 0.0812 0.9540

β
(2)
2 0.0021 0.0548 0.0580 0.9400 0.0006 0.0421 0.0421 0.9600

α −0.0083 0.0423 0.0462 0.9200 −0.0033 0.1010 0.1010 0.9400
η 0.0412 0.1699 0.1754 0.9440 0.2494 1.0231 0.8814 0.9740

α = 0

β
(1)
1 −0.0051 0.2229 0.2256 0.9400 −0.0017 0.1208 0.1175 0.9588

β
(1)
2 −0.0043 0.1195 0.1195 0.9460 −0.0004 0.0654 0.0682 0.9294

β
(2)
1 −0.0034 0.0758 0.0767 0.9460 −0.0048 0.0770 0.0749 0.9608

β
(2)
2 −0.0010 0.0370 0.0378 0.9580 0.0007 0.0377 0.0365 0.9627

α 0.0028 0.0344 0.0349 0.9420 0.0017 0.1152 0.1078 0.9784
η 0.0328 0.1790 0.1781 0.9560 0.6264 1.3301 1.3349 0.9588

α = 0.5

β
(1)
1 −0.0190 0.2194 0.2227 0.9360 −0.0076 0.1213 0.1179 0.9588

β
(1)
2 −0.0136 0.1162 0.1190 0.9340 0.0001 0.0647 0.0652 0.9490

β
(2)
1 −0.0263 0.1372 0.1338 0.9400 −0.0143 0.0958 0.0946 0.9549

β
(2)
2 −0.0047 0.0719 0.0697 0.9600 0.0010 0.0497 0.0475 0.9588

α 0.0066 0.0589 0.0578 0.9480 0.0163 0.1213 0.1246 0.9471
η 0.0496 0.1729 0.1841 0.9500 0.4241 1.2655 1.2633 0.9569

α = 1

β
(1)
1 −0.0639 0.2152 0.2173 0.9320 −0.0178 0.1192 0.1194 0.9392

β
(1)
2 0.0025 0.1138 0.1121 0.9500 0.0051 0.0633 0.0678 0.9392

β
(2)
1 −0.0663 0.2202 0.2247 0.9300 −0.0219 0.1280 0.1329 0.9196

β
(2)
2 0.0031 0.1177 0.1156 0.9440 0.0046 0.0681 0.0786 0.9412

α 0.0089 0.0804 0.0745 0.9760 0.0294 0.1529 0.1577 0.9392
η 0.0469 0.1684 0.1734 0.9540 0.3745 1.2136 1.2777 0.9490
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Figure A1. Baseline correlation performance related to η and αk when assuming U(j)
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Table A3. Simulation results: estimation of regression coefficients and η from the naive method

for data generated with different α values and true β
(1)
1 = 1, β

(1)
2 = −1, β

(2)
1 = 1, and β

(2)
2 = 1.

Bias refers to the difference between the average of the 500 posterior means and the true value; SD
refers to the mean of the 500 posterior standard deviations; SE refers to the standard deviation of the
500 posterior means, and CP95 refers to the 95% coverage probability.

η = 1 η = 5

Parameter Bias SD SE CP95 Bias SD SE CP95

α = −0.3

β
(1)
1 −0.0438 0.1344 0.2443 0.7220 −0.0130 0.1016 0.1288 0.8640

β
(1)
2 0.0061 0.0710 0.1388 0.7080 0.0009 0.0536 0.0722 0.8500

β
(2)
1 −0.0206 0.1353 0.1628 0.8880 −0.0103 0.1085 0.0938 0.9800

β
(2)
2 0.0062 0.0715 0.0967 0.8540 0.0027 0.0574 0.0525 0.9720

η 2.6937 0.6275 0.9058 0.0000 3.9252 0.8115 0.3937 0.0060

α = 0

β
(1)
1 −0.0114 0.1459 0.2308 0.7820 −0.0046 0.1021 0.1205 0.9080

β
(1)
2 −0.0028 0.0770 0.1294 0.7700 0.0010 0.0544 0.0690 0.8760

β
(2)
1 −0.0302 0.1513 0.1166 0.9800 −0.0095 0.1106 0.0843 0.9900

β
(2)
2 0.0080 0.0802 0.0709 0.9820 0.0031 0.0587 0.0474 0.9780

η 1.9095 0.4903 0.6390 0.0000 3.6761 0.9184 0.5119 0.0320

α = 0.5

β
(1)
1 −0.0282 0.1826 0.2277 0.8840 −0.0059 0.1073 0.1185 0.9160

β
(1)
2 −0.0092 0.0962 0.1194 0.8780 −0.0002 0.0568 0.0646 0.9220

β
(2)
1 −0.0536 0.1893 0.1383 0.9760 −0.0193 0.1162 0.0962 0.9780

β
(2)
2 −0.0016 0.0997 0.0777 0.9880 0.0037 0.0617 0.0496 0.9920

η 0.5948 0.2502 0.2712 0.2160 2.3688 1.1662 0.9781 0.4600

α = 1

β
(1)
1 −0.0679 0.2161 0.2179 0.9320 −0.0181 0.1196 0.1194 0.9420

β
(1)
2 0.0029 0.1136 0.1118 0.9500 0.0027 0.0631 0.0614 0.9500

β
(2)
1 −0.0690 0.2202 0.2261 0.9380 −0.0208 0.1276 0.1315 0.9280

β
(2)
2 0.0022 0.1170 0.1155 0.9520 0.0019 0.0673 0.0702 0.9440

η 0.0401 0.1552 0.1614 0.9400 0.1853 0.9692 0.9736 0.9600

Table A4. Estimation results (posterior mean, posterior standard deviation and 95% credible interval)
of the covariate effects for the two types of skin cancers. * indicates statistically significant.

β1 β2 β3 β4

basal −0.1902 0.1028 −0.0376 0.0238
0.1500 0.0145 0.0055 0.1506

(−0.4894, 0.0987) (0.0762, 0.1330) * (−0.0487, −0.0273) * (−0.2717, 0.3185)

squamous 0.1055 0.1451 −0.0196 0.3053
0.2174 0.0213 0.0070 0.2142

(−0.3153, 0.5251) (0.1051, 0.0.1894) * ( −0.0333, −0.0060) * (−0.1165, 0.7255)

Table A5. Estimation results (posterior mean, posterior standard deviation and 95% credible interval)
of the covariate effects when common covariate effects are assumed for the two types of skin cancers
from the proposed method, He et al. (2008)’s method, and Zhang et al. (2013)’s method. * indicates
statistically significant.

β1 β2 β3 β4

Proposed −0.1509 0.0810 −0.0264 0.0636
0.1381 0.0122 0.0052 0.1409

(−0.4203, 0.1197) (0.0599, 0.1087) * (−0.0367, −0.0169) * (−0.2098, 0.3369)
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Table A5. Cont.

β1 β2 β3 β4

He et al. −0.0239 0.1440 −0.0116 0.3807
0.1809 0.0212 0.0084 0.1778

(−0.3785, 0.3307) (0.1024, 0.1856) * (−0.0281, 0.0049) (0.0322, 0.7292) *

Zhang et al. −0.2253 0.0784 0.0016 0.2534
0.1831 0.0090 0.0087 0.1942

(−0.5842, 0.1336) (0.0608, 0.0960) * (−0.0155, 0.0187) (−0.1272, 0.06340)

Figure A2. Simulation results: estimation of baseline mean function for models with different α and
η values. The solid lines represent the true baseline mean function and the broken lines represent the
estimated baseline mean function.
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Figure A5. Estimated baseline correlation between basal cell carcinoma and squamous cell carcinoma
across time.
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