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Abstract: The design and analysis of experiments which involve factors each consisting of both
fixed and random levels fit into linear mixed models. The assumed linear mixed-model design
matrix takes either a full-rank or less-than-full-rank form. The complexity of the data structures of
such experiments falls in the model-selection and parameter-estimation process. The fundamental
consideration in the estimation process of linear models is the special case in which elements of the
error vector are assumed equal and uncorrelated. However, different assumptions on the structure of
the variance–covariance matrix of error vector in the estimation of parameters of a linear mixed model
may be considered. We conceptualise a repeated-measures design with multiple between-subjects
factors, in which each of these factors has both fixed and random levels. We focus on the construction
of linear mixed-effects models, the estimation of variance components, and hypothesis testing in
which the default covariance structure of homoscedastic error terms is not appropriate. We illustrate
the proposed approach using longitudinal data fitted to a three-factor linear mixed-effects model.
The novelty of this approach lies in the exploration of the fixed and random levels of the same factor
and in the subsequent interaction effects of the fixed levels. In addition, we assess the differences
between levels of the same factor and determine the proportion of the total variation accounted for
by the random levels of the same factor.

Keywords: covariance structure; linear mixed models; repeated measures; within-subject factor;
sphericity; compound symmetry; ANOVA

1. Introduction

Linear mixed-effects models can handle both fixed and random effects simultaneously.
Not only are the models convenient for modelling the means of the data, but they are also
convenient for modelling covariances [1,2]. Situations arise in fields such as psychology
and medicine in which longitudinal or correlated data display notorious heterogeneity
of responses to stimuli and treatment [3]. When the classical linear mixed-effects model
is inappropriate, alternative approaches, which identify and consider subgroups in fixed
and random effects, are necessary. The authors of [4] propose a heterogeneity model as an
extension to that proposed by the authors of [5,6] by replacing the normality assumption
for random effects and by assuming a non-zero mean vector and a common error vector.

Repeated-measures data are often dependent, a property that does not conform to the
generality of a mixed-effects model [1,7,8]. Linear mixed-effects models are some of the
most convenient statistical approaches, which account for this dependency [9]. However,
setting them up for data analysis requires some care, especially in choosing the most
appropriate covariance structure to keep the type I error down [10]. Selecting a suitable
model for the covariance is important because the precision of the confidence intervals and
the tests of hypotheses concerning model parameters depend on the correct model [11].
According to [12], selecting an appropriate mixed-effects model and construction approach,
such as partitioning of fixed and random effects, allows for analysis of variance in correlated
data. Numerous diagonal and non-diagonal covariance structures for correlated data,

Stats 2022, 5, 458–476. https://doi.org/10.3390/stats5020027 https://www.mdpi.com/journal/stats

https://doi.org/10.3390/stats5020027
https://doi.org/10.3390/stats5020027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/stats
https://www.mdpi.com
https://orcid.org/0000-0002-0064-1153
https://doi.org/10.3390/stats5020027
https://www.mdpi.com/journal/stats
https://www.mdpi.com/article/10.3390/stats5020027?type=check_update&version=1


Stats 2022, 5 459

which cover a range of assumptions about the associations between responses from the
same cluster data, are available [13,14]. Modern statistical software, such as SAS Studio in
Linux Environment, provides options for selecting candidate covariance structures through
the PROC MIXED procedure [15] (see Appendix A). The residual maximum likelihood
(REML) is one of the most famous methods for estimating covariance parameters associated
with linear mixed models [16,17], among other alternatives [18].

We present the construction and analysis of a three-factor linear mixed model for
repeated-measures designs when the between-subjects factors consist of both fixed and
random levels, and the structure of the variance–covariance matrix of the error terms is
not the identity. We consider a repeated-measures design setting under a linear mixed-
effects model, with factors sharing both fixed and random components of the model.
For experimental designs consisting of factors with a unique composition of both fixed
and random levels, we propose a partitioning approach based on factor levels in model
construction, estimation, and hypothesis testing. In such a situation, the fixed levels allow
for the comparison of specific levels of interest within the factor, whereas the random
levels allow for the assessment of variation within the same factor. We assess the effect of
introducing heterogeneity of error terms in the selection of the most appropriate covariance
structure, in the assessment of the changes that occur in the estimation, and when drawing
inferences. To simplify the proposed approach, we focus on the diagonal covariance
structure for the repeated-measures linear mixed-effects model.

Section 2 presents the approach to model construction, for a general linear mixed-
effects model in a completely randomised design (CRD) and in a repeated-measures design
(RMD) under the default assumption of error terms. Section 3 presents results from a
numerical example. Discussion of the results is in Section 4, followed by the conclusions
in Section 5.

2. Materials and Methods
2.1. An Illustrative Data Structure

We motivate the approach using data collected from a study that investigated the
impact of combining carbon tetrachloride (CCl4) with four levels (0, 1.0, 2.5, and 5.0 mM)
and chloroform (CHCl3) with four levels (0, 5, 10, and 25 mM) on the toxicity of cells on
in vitro toxicity of isolated hepatocyte suspensions [19]. Four flasks were assigned to each
of the 16 treatments. Cell toxicity is measured by the amount of lactic dehydrogenase
(LHD) enzyme percentage leakage from each of the 64 flasks after 0.01, 0.25, 0.5, 1, 2,
and 3 h since the application of the treatment. For illustration purposes, we consider the
between-subjects factor CCl4 levels 2.5 and 5.0 as fixed (new technology), and levels 0
and 1.0 are considered as existing random levels (old technology). Similarly, we consider
the between-subjects factor CHCl3 levels 10 and 25 as fixed (new technology), and levels
0 and 5 are taken as random levels (old technology). Of interest in the analysis is the
percentage leakage observed at times 1, 2, and 3. We demonstrate the model construction
procedure under certain assumptions in a completely randomised design (CRD) and in a
repeated-measures design (RMD).

2.2. Construction of a Linear Mixed-Effects Model in CRD

Consider a three-way treatment structure in a balanced, completely randomised design
(CRD) with full interaction of factors A, B, and C, each consisting of f fixed and r random
levels. Assume we have fA, fB, and fC fixed levels and rA, rB, and rC random levels of
factor A, respectively. We partition the dataset based on the combinations of factor levels
and construct a partitioned model in each partition. For example, the FRF partitioned
model is built from the fA, rB, and fC levels. Similarly, other possible partitions are FFF, FFR,
RFF, RRF, RFR, FRR, and RRR. We illustrate the model construction using the FRF linear
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mixed-effects model in CRD, having at least one replication per treatment combination and
expressed as

yFRFijkl
= µFRF + ϕAi + ϕBj + ϕCk + π1 + . . . + πt + εFRFijkl , (1)

where yFRFijkl
is the lth observation in the (ijk)th treatment cell of the FRF partition;

l = 1, . . . , rh are the replicates (where all rh = r for balanced data); µFRF is the overall mean;
ϕAi, ϕBj, ϕCk are the main effects of the three factors; π1, . . . , πt are the interaction effects;
and ϕAi (i = 1, 2, . . . , fA, fA + 1, fA + 2, . . . , a (a = fA + rA)), ϕBj (j = rB + 1, rB + 2, . . . ,
b (b = fB + rB)), and ϕCk k (k = 1, 2, . . . , fC, fC + 1, fC + 2, . . . , c (c = fC + rC)) are unkn-
own parameters corresponding to fixed factor A, random factor B, and fixed factor C, re-
spectively. Defining the random main effect as ϕR and the random interaction effect as πR
in (1), the random effects and the random error term εijkl , are commonly assumed to have
zero mean and variance, i.e., ϕR ∼ N

(
0, σ2

ϕR

)
, πR ∼ N

(
0, σ2

πR

)
, and εijkl ∼ N

(
0, σ2

ε

)
.

For a balanced data scenario with r replications per cell, for example, the general linear
mixed model Equation (1) is normally expressed in matrix form as

yFRF = XFRFβ + ZFRFu + εFRF, (2)

where yFRF: N × 1 is a vector of response observations in the FRF partition; matrix XFRF :
N × p is a known incidence matrix associated with the vector of p fixed-effects β : p× 1
in the model; matrix ZFRF : N × q is a known incidence matrix associated with the vector
of q random-effects u : q× 1 in the model; and εFRF : N × 1 is a vector of random errors.
The usual assumption under this model is that the random effects are u ∼ N(0, G), and
the random residuals are εFRF ∼ N(0, R), where R = σ2N and G is a diagonal matrix of
variance components (i.e., different variances, and all zero covariances).

G =

 σ2
1 Ir · · · 0
...

. . .
...

0 · · · σ2
t Ir

 and R =

 σ2
ε · · · 0
...

. . .
...

0 · · · σ2
ε


The total variance–covariance is the structured matrix V = ZGZ′ + R, a structure

that guarantees independence and homogeneity of residual errors. This implies that the
variance of y is modelled through Z, G, and R. The simple total variance–covariance, V,
has a block-diagonal structure given by the matrix

V =

 σ2
1 Ir + σ2

ε Ir · · · 0
...

. . .
...

0 · · · σ2
t Ir + σ2

ε Ir


2.3. Linear Mixed-Effects Model in RMD

Traditionally, between-subject and within-subject factors in repeated-measures exper-
iments are designated as either fully fixed effects or random effects. Depending on the
objectives of the experiment, some factors in linear mixed-effects models may exist with
both fixed and random levels [12,20,21]. The same scenario is common with a repeated-
measures experiment, in which either the between-subjects factor or the repeated measures
consist of both fixed and random levels. For instance, for improved results, a researcher
may decide to consider additional levels of a between-subjects factor, in addition to the old
and existing levels. In that case, the improved analysis needs to consider the new factor
levels as fixed levels, and the old and existing levels are considered random. The approach
creates an opportunity to compare and evaluate the effectiveness of new factor levels (fixed)
against existing ones (random) and/or to compile a combined analysis of both. In addition,
random levels allow for the assessment of variation between and within the factor levels in
the entire population.
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We consider a three-factor repeated-measures experiment with n experimental units
(EU) that are randomly assigned to each of the a levels of the between-subjects factor A
(with fa fixed levels and ra random levels, a = fa + ra, for example), the between-subjects
factor B (with fb fixed levels and rb be random levels, b = fb + rb, for example), and the
within-subjects factor C with t measurements (all considered to be fixed in this case) taken
on each of the experimental units (EU).

ypijkl = µp + αi + β j + (αβ)ij + γk(ij) + τl + (ατ)il + (βτ)jl + (αβτ)ijl + εpijkl , (3)

where the subscript p in ypijkl and εpijkl denotes the partition (p = 1, 2, . . . , 4) and where
ypijkl is the lth measurement (l = 1, 2, . . . , t) of the kth experimental unit (k = 1, 2, . . . n) in
the ith level (i = 1, 2, . . . a) of factor A and the jth level (j = 1, 2, . . . b) of factor B in the pth
partition. Depending on whether the effects are fixed or random, the model parameters are
as defined in (1).

2.4. Model Assumptions

In experimental research that involves analysis of variance (ANOVA) as a technique for
comparing different treatment means, a set of assumptions that includes the usual normality
and homogeneity of variance must be checked before the analysis of data [22]. These
traditional normality tests, such as Q–Q plots or the Shapiro–Wilk test, and outlier detection
approaches (e.g., box plots), are appropriate for diagnosing violations of assumptions.

2.4.1. Sphericity (Circularity) Assumption

Similar to the homogeneity of variances in a between-subjects analysis of variance,
sphericity holds in ANOVA for repeated-measures designs when the variances of the dif-
ferences among all possible pairs of the within-subject factor group means are equal [23,24].
The assumption is usually unrealistic in repeated-measures designs in which observations
are correlated. Univariate tests for within-subjects effects apply when sphericity holds. If
the sphericity assumption is violated, several alternatives for adjusting the numerator and
denominator degrees of freedom have been suggested [25]. The most popular degrees of
freedom corrections are the Greenhouse–Geisser [26] or the Huynh–Feldt [27] adjustments,
which are extensions of the Box correction factor [28]. These adjustments provide a more
accurate adjusted p-value [29,30]. Failure to address the problem of sphericity when con-
ducting an analysis of variance often leads to inflated F-ratios, type I errors, biased post
hoc tests for group mean differences, and inaccurate conclusions [24]. Tests for sphericity
are offered in most statistical computing packages (SAS, R, SPSS, etc.).

2.4.2. Compound Symmetry Assumption

An overly restrictive assumption closely related to sphericity is the compound sym-
metry assumption. It states that there is a constant variance and correlation between obser-
vations from the same subject, which is not always realistic in many repeated-measures
applications [31]. The Greenhouse–Geisser [26] or the Huynh–Feldt [27] adjustments are
used to circumvent restrictive compound symmetry assumptions and to accommodate
more general covariance structures for the repeated measures [1]. Compound symmetry
implies sphericity, but not vice versa. Univariate tests for within-subject effects apply when
compound symmetry holds. If compound symmetry (and hence sphericity) holds, then a
split-plot analysis is used as an appropriate approximation to the repeated-measures exper-
iment, since it provides relatively more accurate p-values for testing treatment effects [31].
Compound symmetry is simplified in the Huynh–Feldt [27] condition for sphericity. Hence,
both are tested in many software packages by Mauchly’s test [32]. However, Mauchly’s test
for sphericity has been criticised for its over sensitivity and tendency to reject compound
symmetry [33].
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2.5. Estimation Techniques

The general linear mixed-effects model (2) is used to describe data from partitioned
repeated measurements, wherein the fixed-effects component, Xpβ, consists of the design
matrix Xp, and the fixed-effects coefficients β are as defined in (3). The random-effects
component, Zpu, contains the block-diagonal random-effects design matrix Zp with design
matrices for the individual subjects (Zi); u is a vector of random coefficients (the between-
subject variance–covariance components), and εp denotes the within-subject errors from the
pth partition. The random effects and the residuals follow the distribution u ∼ N(0, G)
and εp ∼ N(0, R), respectively, where G is a block-diagonal covariance matrix of the
random effects and where R is a diagonal covariance matrix with partitions correspond-
ing to each subject (within-subject errors) in the analysis. The covariance matrix for the
repeated-measures data is composed of matrices Zp, G, and R, which is a block-diagonal
Σp = Var

(
yp
)
= ZpGZ′P + R. The non-singular components G and R are usually estimated

by two principal likelihood methods for estimating variance components [34], i.e., the
maximum likelihood (ML) method and restricted maximum likelihood (REML). These
procedures are available in various mixed-model statistical software, such as SAS (PROC
MIXED procedure) and R, with the REML estimates generally preferred unless the data
sets are quite large [34].

Assuming that both the random effects and the error terms are normally distributed,
the likelihood function for the repeated-measures mixed model is given by [35]:

l = log
[

L
(

yp

)]
= −N

2 log(2π)− 1
2 log

∣∣Σp
∣∣− 1

2

(
yp −Xpβ

)′
Σp
−1
(

yp −Xpβ
)

= C− 1
2 log

∣∣Σp
∣∣− 1

2

(
yp −Xpβ

)′
Σp
−1
(

yp −Xpβ
) (4)

where yp and V = Σp are as defined in (2). Similarly, a modification of the ML procedure
through factorisation of the likelihood function is proposed as an alternative method of es-
timating covariance parameters, which is the restricted maximum likelihood function [36]:

lre = log
[

L
(

yp

)]
= −N

2 log(2π)− 1
2 log

∣∣Σp
∣∣− 1

2

(
yp −Xpβ

)′
Σp
−1
(

yp −Xpβ
)

= C− 1
2 log

∣∣∣X′pΣp
−1Xp

∣∣∣− 1
2 log

∣∣Σp
∣∣− 1

2

(
yp −Xpβ̂

)′
Σp
−1
(

yp −Xpβ̂
) (5)

where the available covariance matrix Σp is used to estimate the fixed-effects parameters,

β̂ =
[
X′pΣp

−1Xp

]−1
X′pΣp

−1yp.

The main challenge in repeated-measures analysis of variance is to determine the ade-
quate correlation structure, because the constant variance assumption for the distribution
of the error terms is likely not to be reasonable for the distribution of error terms within
subjects. There are various possible choices of covariance structures for repeated measures
within each subject depending on the chosen parameterisation for G and R. The choices are
usually guided by limitations of the software and by insight from the researcher. The most
common covariance structures include variance components, compound symmetry (com-
mon covariance plus diagonal), unstructured (general covariance), and autoregressive [37].
With the PROC MIXED statement in SAS, one can specify any repeated-measurements
covariance structure for G by using the Random statement and by specifying the form of
R with the Repeated statement, in conjunction with the Type option [38]. Excluding the
Repeated statement specifies the classical R, which is assumed to be equal to σ2I.
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There are numerous ways of identifying the most appropriate covariance structure
amongst set candidate structures [37]. The most recommended approach is to select the
structure that gives the smallest Akaike’s Information Criterion (AIC) [39], a statistic that
is defined by the model and the maximum likelihood estimates of the parameters from
specifying the variance–covariance as

AIC = (−2)L
(

β̂, Σ̂p

)
+ 2(g), (6)

where g is the effective number of independently adjusted parameters in the covariance
matrix from the pth partition, and L

(
β̂, Σ̂p

)
= log(ML) is the value of the likelihood func-

tion evaluated at
(

β̂, Σ̂p
)
. A better model is the one with the smallest AIC value. Different

forms of R can be compared for adequacy using the likelihood ratio test statistic [38]. The
hypotheses involved are the following: H0 : R1 is as adequate as R2; and H1 : R1 is not as
adequate as R2, where R1 is a special case of R2. Suppose R1 and R2 have g1and g2 parame-
ters, respectively, with (g1 < g2), and the test statistic is Q = (−2)

[
L
(

β̂1, Σ̂1
)
−L

(
β̂2, Σ̂2

)]
,

which is distributed as χ2(g2 − g1). We reject H0 when Q ≥ χ2
α
2
(g2 − g1).

2.6. Methods of Inference

We present the algorithm for obtaining expected mean squares using the ANOVA
approach for the FRF model.

2.6.1. Process for Deriving Expected Mean Squares

(a) Based on the model involved, construct a two-way table with column headings
corresponding to the source of variation, effect labels, each of the subscripts included
in the model, and row headings corresponding to each source of variation in the
ANOVA table.

(b) Above each subscript, write the associated number of factor levels and insert on top
either an “F” if the factor levels are fixed or an “R” if the factor levels are random.

(c) Create an extra column on the extreme right for the variance components correspond-
ing to the source of variation, and insert the appropriate random variance component
(σ2

. ) or fixed variance component (θ.) for each source of variation.
(d) Compare the column subscript and the factor effect in each row, and write the number

of levels corresponding to that subscript if the column subscript is not included in the
factor effect label. Otherwise, leave it blank.

(e) For rows that have effects that contain bracketed subscripts, write a “1” under the
column if the subscript is included in the bracket.

(f) For each row that has a fixed variance component (θ.), put a zero in the cell headed by
an “F” when the subscript is included in the effect label.

(g) Enter a “1” in all remaining blank cells.
(h) To obtain the expected mean squares for each effect, identify all the variance com-

ponents associated with that effect label. Cover the column(s) headed by the effect
subscript(s) in that effect, and obtain the coefficient of each of the identified com-
ponents from the product of the entries in the column(s) headed by the uncovered
subscript(s). Include the variance component σ2

ε with the coefficient of 1 in the list.

Once the coefficients of variance components are established in step (m) of Figure 1,
the expected mean squares are found by Step (h) of the Process in Section 2.6.1. Table 1
summarises the variance components obtained for a three-factor repeated-measures design,
with two between-subjects factors (A and B) on one within-subject factor (C) using the
Process in Section 2.6.1. We use this process to build an FRF model, which assumes factors
A and C as fixed, factor B as random, and experimental units (EU) as random. The F, R,
F, and Rep denote the effect; a, b, t, and n denote levels of factors A and B, treatment
number, and sample size, respectively. The subscripts i, j, l, and k denote the indices of the
corresponding levels.
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Figure 1 illustrates the key steps to be taken when constructing the coefficients of
variance components for a partitioned linear mixed-effects model.

Figure 1. Process of constructing coefficients of variance components.

Table 1. Variance components for a three-factor repeated-measures model.

Source of
Variation

Factor
Effect

F R F Rep
Components
of Variancea b t n

i j l k

A αi 0 b t N θα

B β j a 1 t N σ2
β

AB αβij 1 1 t N σ2
αβ

EU γk(ij) 1 1 t 1 σ2
γ(αβ)

P τl a b 0 N θτ

PA ατil 0 b 0 N θατ

PB βτjl a 1 1 N σ2
βτ

PAB αβτijl 1 1 1 N σ2
αβτ

Error ε l(ijk) 1 1 1 1 σ2
ε
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For example, E(MSA), with effect αi, is composed of the variance components θα, σ2
αβ,

σ2
γ(αβ), θατ , σ2

αβτ , and σ2
ε as follows:

E(MSA) = σ2
ε + tσ2

γ(αβ) + tnσ2
αβ + nσ2

αβτ + btnθα.

Table 2 displays the ANOVA layout and the expected mean squares for a three-factor
repeated-measures design when one of the factors is a within-subject factor. The FRF model
is considered for illustration, with experimental units assumed to be random.

Table 2. Expected mean squares for a three-factor repeated-measures design.

Source of
Variation

Sum of
Squares

Degrees of
Freedom E(MS)

A SSA a− 1 σ2
ε + tσ2

γ(αβ)
+ tnσ2

αβ + nσ2
αβτ + btnθα

B SSB b− 1 σ2
ε + nσ2

αβτ + anσ2
βτ + tσ2

γ(αβ)
+ tnσ2

αβ + antσ2
β

A× B SS(A× B) (a− 1)(b− 1) σ2
ε + tσ2

γ(αβ)
+ nσ2

αβτ + tnσ2
αβ

Unit(A× B) SSU(A× B) ab(n− 1) σ2
ε + tσ2

γ(αβ)

Period SSP t− 1 σ2
ε + nσ2

αβτ + anσ2
βτ + abnθτ

Period× A SSP× A (a− 1)(t− 1) σ2
ε + nσ2

αβτ + bnθατ

Period× B SSP× A (b− 1)(t− 1) σ2
ε + nσ2

αβτ + anσ2
βτ

Period× A× B SSP× A× B (a− 1)(b− 1)(t− 1) σ2
ε + nσ2

αβτ

Residual SSE ab(t− 1)(n− 1) σ2
ε

Total SST abtn− 1

Note that: θα = 1
a−1 ∑a

i=1 α2
i ; θατ = 1

(a−1)(t−1) ∑a
i=1 ∑t

l=1(ατ)2
il ; and θτ = 1

t−1 ∑t
l=1 τ2

l .

2.6.2. Hypothesis Testing for Fixed Effects

We are interested in testing the main and interaction effects of the between-subjects
factor and of the within-subjects factor in both the partitioned and combined repeated-
measures linear mixed-effects model. In addition to checking model assumptions, the
following hypotheses are of interest for each partitioned model:

Hypothesis 1 (H1). Between-subjects main and interaction effects (i.e., H0 : αi = 0).

Hypothesis 2 (H2). Within-subjects main and interaction effects (i.e., H0 : τi = 0).

The test statistic for H1 is given by F = MSA
MSU(A×B) ∼ Fa−1,ab(n−1)(α), and the test

statistic for H2 is given by F = MSP
MSE ∼ Ft−1,ab(t−1)(n−1)(α). The interaction effects among

the between-subjects and the interaction effects among within-subjects are tested by the
MSU(A× B) and the MSE on the denominator, respectively.

2.6.3. Hypothesis Testing for Random Effects

Variance components are estimated by equating the mean square to the expected
mean squares derived in Table 2. Where there are no valid F tests, approximate F tests are
constructed for the sources of variability in random effects [40]. For random factor B, the
hypothesis of interest may be

Hypothesis 3 (H3). Random effects (e.g., H0 : σ2
β = 0, against H1 : σ2

β > 0).

2.6.4. Combined Analysis

The individual partitioned models provide pieces of information which are needed
for an integrated analysis. The combined model is built by combining the degrees of
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freedom and sum of squares associated with each source of variation for each appropriate
hypothesis test. For example, the combined effect of the within-subjects factor (Period)
in the FC model is obtained from the partitions in which the factor Period is fixed, i.e.,
the pieces of information are supplied by the partitioned models FFF, FRF, RFF, and RRF.
Similarly, the other main and interaction effects for the combined model are obtained by
summing up the associated degrees of freedom and sums of squares.

3. Results
3.1. Checking Model Assumptions

A three-factor (CCl4, CHCl3, and Time) repeated-measures experiment on one of the
factors (Time) is proposed. Table 3 shows the multivariate data (wide format) layout for a
three-factor repeated-measures experiment.

Table 3. Data layout for a three-factor repeated-measures experiment.

Factors Time Period

CCl4 CHCl3 Flask 1 2 . . . t

1

1

1 y1111 y1112 . . . y111t
...

...
...

...
...

n y11n1 y11n2 . . . y11nt

2

1 y1211 y1212 . . . y121t
...

...
...

...
...

n y12n1 y12n2 . . . y12nt

...
...

...
...

...
...

b

1 y1b11 y1b12 . . . y1b1t
...

...
...

...
...

n y1bn1 y1bn2 . . . y1bnt

2

1

1 y2111 y2112 . . . y211t
...

...
...

...
...

n y21n1 y21n2 . . . y21nt

2

1 y2211 y2212 . . . y221t
...

...
...

...
...

n y22n1 y22n2 . . . y22nt

...
...

...
...

...
...

b

1 y2b11 y2b12 . . . y2b1t
...

...
...

...
...

n y2bn1 y2bn2 . . . y2bnt

...
...

...
...

...
...

...

a

1

1 ya111 ya112 . . . ya11t
...

...
...

...
...

n ya1n1 ya1n2 . . . ya1nt

2

1 ya211 ya212 . . . ya21t
...

...
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...
...

...
...

...
...

b 1 yab11 yab12 . . . yab1t
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3.1.1. Normality and Outliers

Q–Q plots are used to check normality and outlier assumptions simultaneously. The
FFF, FRF, RFF, and RRF data sets do not show any serious deviations from normality.
Figure 2 shows the normal Q–Q plots for the four data subsets.

Figure 2. Q–Q plots for (a) FFF, (b) FRF, (c) RFF, and (d) RRF data sets.

Furthermore, the Q–Q plots do not show any influential point (outlier) that warrants
exclusion, since all plots are not very far from the diagonal.

3.1.2. Sphericity and/or Compound Symmetry

In order to test the suitability of using a repeated-measures design in the experiment,
the sphericity (or compound symmetry) assumption is tested for each partitioned data
subset. Sphericity test results are produced by fitting two models using the PROC MIXED
procedure: one specifying the unrestricted covariance structure and the other with a less
conservative Huynh–Feldt (H–F) adjustment in the Type option [41]. The null hypothesis
for the test is:

Hypothesis 4 (H4). The covariance structure fits the sphericity structure.

The difference (D) between the two −2 log-likelihoods of the two competing models
follows a Chi-square distribution with degrees of freedom equal to the difference in the
numbers of parameters in them.

FFF model: χ2
35(0.05) ≈ 55.76, d f = 35, D = 1722.6, significant;

FRF: χ2
38(0.05) ≈ 55.76, d f = 38, D = 184.54, significant;

RFF: χ2
37(0.05) ≈ 55.76, d f = 37, D = 288.8, significant;

RRF: χ2
36(0.05) ≈ 55.76, d f = 35, D = 384.1, significant.

The sphericity assumption H4 fails in all the four (4) partitioned data sets.
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3.2. Analysis of Results

We use the restricted maximum likelihood estimation (REML) approach to estimate
these variance components. Table 4 contains the estimated AIC from each of the covariance
structures as well as the number of covariance parameters estimated with a non-zero value.

Table 4. Akaike’s Information Criteria (AIC) for the covariance structures in partitioned models.

Model FFF Model FRF

Covariance
Structure

Number of
Parameters AIC Covariance

Structure
Number of
Parameters AIC

CS 2 −282.6 CS 4 −361.3
AR(1) 2 −443.1 AR(1) 3 −492.4

ARH(1) 10 −525.6 ARH(1) 13 −506.3
CSH 10 −356.7

Model RFF Model RRF

Covariance
Structure

Number of
Parameters AIC Covariance

Structure
Number of
Parameters AIC

CS 4 −450.1 CS 4 −665.8
AR(1) 4 −522.4 AR(1) 4 −782.4

ARH(1) 13 −509.3 ARH(1) 13 −785.3
AR(1): First-order autoregressive; ARH(1): Heterogeneous first-order autoregressive; CS: Compound symmetry;
VC: Variance components; CSH: Heterogeneous compound symmetry.

The covariance structure ARH(1) has the minimum AIC values in models FFF, FRF,
and RRF, and covariance structure AR(1) has the smallest AIC value in model RFF. The
covariance structure ARH(1) is chosen as the most adequate covariance structure for the
partitioned models based on AIC.

When the appropriate covariance structure is incorporated into the model, the rela-
tionships among the errors and variance components are specified. The PROC MIXED
procedure does not require further assumptions on them [42], making it a robust and
flexible procedure [15] that produces valid F-tests regardless of whether the sphericity
assumption is satisfied or not. Table 5 summarises the PROC MIXED F-tests for the main
and interaction effects of the between-subjects and the within-subjects factors for the four
partitioned models.

Table 5. Type III tests of fixed effects of FFF, FRF, FFR, and FRR models.

Model Effect
Numerator
Degrees of
Freedom

Denominator
Degrees of
Freedom

F p-Value

FFF

CCl4 1 12 0.24 0.6363
CHCl3 1 12 17.33 0.0013 **

CCl4×CHCl3 2 12 1.35 0.2678

Time 2 24 95.99 <0.0001 **
Time×CCl4 2 24 2.66 0.0908

Time×CHCl3 2 24 20.91 <0.0001 **
Time×CCl4×CHCl3 2 24 1.26 0.3023

FRF
CHCl3 1 1 0.5 0.6079
Time 2 2 2.17 0.3156

Time×CCl4 2 2 2.83 0.2610

RFF
CHCl3 1 1 7.07 0.2290
Time 2 2 5.42 0.1557

Time×CHCl3 2 2 3.26 0.2348

RRF Time 2 2 1.01 0.4978
‘**’ significant at α = 0.05.
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The CHCl3 factor has a significant effect on the leakage percentage (p-value < 0.001)
over time in the FFF partition. Based on the fixed-effects (FFF) repeated-measures study, it
may be concluded that chloroform (CHCl3) has a significant impact on the amount of lactic
dehydrogenase (LHD) enzyme percentage leakage (toxicity of cells) over time, whereas
neither carbon tetrachloride (CCl4) in isolation nor the interaction thereof has significant
influence. Furthermore, the Time factor plays an important role in determining the amount
of leakage as well. However, the interaction of old (random) and new (fixed) levels of
the between-subjects factor levels has non-significant effects in FRF, RFF, and RRF models
when CHCl3 fixed levels are involved.

Table 6 gives a summary of the estimated covariance parameters and the proportion (in
percentage) of variation they contribute in each of the partitioned models. A zero variance
for the random levels of chloroform (CHCl3) and very small estimates in other factors are
obtained, which result in very low estimates of covariance parameters in the models.

Table 6. Covariance parameter estimates of FRF, RFF, and RRF, models based on ARH(1) covariance
structure.

Model Covariance
Parameter Estimate Standard Error Proportion of Variation

Accounted for

FRF

CHCl3 0 0 0
CCl4×CHCl3 0.04249 0.04470 22.5
Time×CHCl3 0 0 0

Time× CCl4×CHCl3 0.000621 0.000759 0.3

RFF

CCl4 0.000607 0.003056 0.05
CCl4×CHCl3 0 0 0
Time×CCl4 0.000149 0.000809 0.02

Time× CCl4×CHCl3 0.000806 0.000984 0.08

RRF

CCl4 0.0011 0.00401 2.6
CHCl3 0.00306 0.00677 7.1

CCl4×CHCl3 0.00232 0.00396 5.4
Time×CCl4 0.000002 0.00002 0.0

Time×CHCl3 0.000065 0.000096 0.1
Time× CCl4×CHCl3 0.000013 0.000025 0.0

The CHCl3 and CCl4 random levels and their interaction have a noticeable contribution
to the proportion of variation in the amount of lactic dehydrogenase (LHD) enzyme
percentage leakage in the RRF partition. Generally, Time has very little interaction effect
with the between-subjects factors in FRF and RRF models in determining the proportion of
variation of the toxicity of cells.

Since the mixed-model methodology directly computes neither sums of squares nor
F-statistics from the ratio of mean squares, and since the R CRAN package lme4 for mixed
models currently does not have options for other covariance structures to cater for cor-
related error variances, generating a combined analysis is not a straightforward exercise.
We scrap the targeted data subset based on the effects of interest before fitting the models.
Analogous to the partitioned analyses, a comparison of model fit via the AIC approach is
conducted. For convenience purposes, let the factors CCl4, CHCl3, and Time be labelled as
factor A, B, and C, respectively. The PROC MIXED procedure is used to fit the repeated-
measures linear mixed models for intended narrow inference spaces [12,43]. Table 7 shows
the Type III tests for the combined models.

Of the possible candidate covariance structures (CS, CSH, AR(1), and ARH(1)), struc-
ture ARH(1) is selected as the most appropriate covariance structure for the combined
fixed-effects model FA, and AR(1) is appropriate for FB and FA × FB. The factors B (CHCl3)
and C (Time) have significant effects (p-value < 0.05) in the combined models. The broad
inference scope results for the combined models (assuming random factor A or B effects)
are similarly analysed.
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Table 7. Fixed-effects F-tests for the combined models in narrow inference scope.

Type III Tests of Fixed Effects in Combined Models

Model AIC [CS] Effect Num DF Den DF F Pr > F

FA −127.6 [ARH(1)]

A 1 24 3.36 0.0794

B 3 24 5.81 0.0039 **

A× B 3 24 9.10 0.0003 **

C 2 48 12.33 0.0001 **

A×C 2 48 2.52 0.0908

B×C 6 48 2.33 0.0468 **

A× B×C 6 48 0.76 0.6027

FB −127.6 [AR(1)]

A 3 24 0.53 0.6631

B 1 24 16.3 0.0005 **

A× B 3 24 0.22 0.8801

C 2 48 24.82 <0.0001 **

A×C 6 48 1.09 0.3795

B×C 2 48 7.82 0.0012 **

A× B×C 6 48 0.50 0.8064

FA× FB −69.1 [AR(1)]

A 1 12 0.14 0.7106

B 1 12 10.63 0.0068 **

A× B 1 12 0.83 0.3807

C 2 24 19.75 <0.0001 **

A×C 2 24 0.58 0.5667

B×C 2 24 4.65 0.0196 **

A× B×C 2 24 0.26 0.7725
‘**’ significant at α = 0.05.

4. Discussion

Based on the illustrative example results, the approach manages to isolate the effects
of new and old factor levels over time. The combined analysis confirmed the results of the
partitioned analysis on the percentage leakage in cells. The proposed approach conforms to
the model construction and the analysis procedures in a repeated-measures design. It can
be used as a planning tool in which factor combination and time are of interest in designing
experiments that involve repeated measures. In such experiments, blindly adopting the
assumption of homogeneous error terms without exploring possible candidate covariance
structures may compromise the ability of an experiment to detect sufficient variation in
the response variable. In addition, our approach enhances the accuracy of inferences by
providing partitioned analysis of heterogeneous variances and covariance structures, which
sometimes are not identical in the data subsets.

Given the increased complexity of research data in various research fields, the applica-
tion of a linear mixed-model methodology must be in line with data covariance structures
for accurate results to be achieved. One of the approaches that has proved to be a reliable
tool for managing big data complexity issues is the partitioning approach [12,20,21], in
which the traditional homogeneous error variance structure is assumed. The current study
extends the new approach to a three-factor treatment structure in a repeated-measures
design in which linear mixed-effects models are applicable. In essence, the approach can be
extended to cater for repeated-measures experiments in which any number of between-
subjects and within-subjects factors are involved. In most cases, repeated-measures ex-
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periments do not assume equal and uncorrelated error vectors, since regularly timed
measurements taken on the same subject over time are usually correlated [34].

For the fixed-effects partitions, the linear mixed-effects models for a repeated-measures
design are fit by the PROC GLM procedure, and a combined analysis of these can be ob-
tained by syncretising the sum of squares and degrees of freedom from the fit models.
However, obtaining a combined analysis using the SAS PROC MIXED procedure is im-
possible using the sum of squares approach, since the PROC MIXED procedure uses a
likelihood-based estimation scheme instead of the least-squares method. A comparable al-
ternative to reduction in the sum of squares for the fit model in PROC MIXED is to consider
the amount of information retained by the fit model when compared to the null model.

5. Conclusions

The proposed approach allows for construction and hypothesis testing in repeated-
measures data if a heterogeneous error structure is assumed. Although the MLE method
used in SAS PROC MIXED does not estimate sums of squares, data scrapping based on
targeted factor levels work equally well as an alternative approach to obtain the combined
analysis. The proposed approach can be adopted as an essential tool for the comparison
of new inventions against existing strategies and equipment. It leads to an exploration of
the fixed and random levels of the same factor and the subsequent interaction of levels
of factors of interest. We can assess the differences between levels of the same factor
and understand variation within the same factor. In addition, modelling allows for the
assessment of various covariance structures. Although this paper focuses on a limited
scope of covariance structures, we pose an open research problem on the application of the
proposed approach to other designs of experiments that incorporate more complex and
non-diagonal covariance structures.
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Appendix A

SAS Code for Mixed-Model Analysis

/* Fitting FFR Model in Proc Mixed */
FILENAME REFFILE ‘/home/u35581214/LDH Leakage Data.sav’;
PROC IMPORT DATAFILE = REFFILE

DBMS = SAV
OUT = LDH;

RUN;

/* View Repeated-Measures Data in Multivariate Form */
Proc print data = LDH;
run;

/* Set Repeated-Measures Data to Univariate form */
Data LDH_mult(keep = CCl4 CHCl3 Flask Time4 Time5 Time6)
LDH_univ(keep = CCl4 CHCl3 Flask Time Leakage);
set LDH;
output LDH_mult;
Leakage = Time4;Time = 1; output LDH_univ;
Leakage = Time5;Time = 2; output LDH_univ;
Leakage = Time6;Time = 3; output LDH_univ;
run;

/* View Data in Univariate and Multivariate Form */
Proc print data = LDH_univ;
run;
Proc print data = LDH_mult;
run;

/* Subset or partition FRF from LHD univariate original Data */
Data FRF;
set LDH_univ;
if (CCl4 = 2.5 AND CHCl3 = 0) then output;
if (CCl4 = 2.5 AND CHCl3 = 0) then output;
if (CCl4 = 2.5 AND CHCl3 = 0) then output;
if (CCl4 = 2.5 AND CHCl3 = 5) then output;
if (CCl4 = 2.5 AND CHCl3 = 5) then output;
if (CCl4 = 2.5 AND CHCl3 = 5) then output;
if (CCl4 = 5 AND CHCl3 = 0) then output;
if (CCl4 = 5 AND CHCl3 = 0) then output;
if (CCl4 = 5 AND CHCl3 = 0) then output;
if (CCl4 = 5 AND CHCl3 = 5) then output;
if (CCl4 = 5 AND CHCl3 = 5) then output;
if (CCl4 = 5 AND CHCl3 = 5) then output;
run;
Proc print data = FRF;
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run;

/* Plot differences in leakages contributed by predictors */
proc means noprint data = FRF nway;
var Leakage;
class CCl4 CHCl3 Flask Time;
output out = avgFRF mean = avgLeakage;
run;
proc print data = avgFRF;
run;

/* New data set called avg created*/
/* Plot differences in leakage by predictor CHCl3 and Time */
Proc gplot data = avgFRF;
plot avgLeakage*Time = CHCl3/haxis = 0 to 8 by 1 hminor = 0 vminor = 0;
symbol1 v = star c = blue i = join l = 1;
symbol2 v = plus c = red i = join l = 2;
title “Percentage leakage per time per CHCl3”;
run; Quit;

/* Partitioning FRF multivariate data for covariance analysis */
Data FRF_mult;
set LDH_mult;
if (CCl4 = 2.5 AND CHCl3 = 0) then output;
if (CCl4 = 2.5 AND CHCl3 = 0) then output;
if (CCl4 = 2.5 AND CHCl3 = 0) then output;
if (CCl4 = 2.5 AND CHCl3 = 5) then output;
if (CCl4 = 2.5 AND CHCl3 = 5) then output;
if (CCl4 = 2.5 AND CHCl3 = 5) then output;
if (CCl4 = 5 AND CHCl3 = 0) then output;
if (CCl4 = 5 AND CHCl3 = 0) then output;
if (CCl4 = 5 AND CHCl3 = 0) then output;
if (CCl4 = 5 AND CHCl3 = 5) then output;
if (CCl4 = 5 AND CHCl3 = 5) then output;
if (CCl4 = 5 AND CHCl3 = 5) then output;
run;
Proc print data = FRF_mult;
run;

/* Sphericity Test using PROC MIXED */
/* Sphericity test H0: Sphericity holds */
proc mixed data = FRF method = reml cl ic covtest;
class CCl4 CHCl3 Time Flask;
model Leakage = CCl4|CHCl3;
random CHCl3 CCl4*CHCl3 CHCl3*Time CCl4*CHCl3*Time /s;
repeated/ subject = Flask(CCl4*CHCl3) type = un;
run;

proc mixed data = FRF method = reml cl ic covtest;
class CCl4 CHCl3 Time Flask;
model Leakage = CCl4|CHCl3;
random CHCl3 CCl4*CHCl3 CHCl3*Time CCl4*CHCl3*Time /s;
repeated/ subject = Flask(CCl4*CHCl3) type = HF;
run;

/* Normality Q–Q plots */
ods graphics on;
proc mixed data = FRF plots = influenceestplot;
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class CCl4 CHCl3 Time Flask;
model Leakage = CCl4 Time CCl4*Time/residual;
random CHCl3 CCl4*CHCl3 CHCl3*Time CCl4*CHCl3*Time;
repeated/subject = Flask(CCl4*CHCl3) type = cs r;
run;
ods graphics off;

/* Checking Covariance Structure */
proc corr data = FRF_mult cov;
var Time4 Time5 Time6;
run;

/* Fit the model by PROC MIXED and compare covariance structures */
proc mixed data = FRF method = reml cl ic covtest;
class CCl4 CHCl3 Time Flask;
model Leakage = CCl4 Time CCl4*Time/s;
random CHCl3 CCl4*CHCl3 CHCl3*Time CCl4*CHCl3*Time;
repeated/subject = Flask(CCl4*CHCl3) type = cs r;
run;

proc mixed data = FRF method = reml cl ic covtest;
class CCl4 CHCl3 Time Flask;
model Leakage = CCl4 Time CCl4*Time;
random CHCl3 CCl4*CHCl3 CHCl3*Time CCl4*CHCl3*Time/s;
repeated/subject = Flask(CCl4*CHCl3) type = arh(1) r;
lsmeans CCl4/pdiff cl adjust = tukey;
run;

proc mixed data = FRF method = reml cl ic covtest;
class CCl4 CHCl3 Time Flask;
model Leakage = CCl4 Time CCl4*Time;
random CHCl3 CCl4*CHCl3 CHCl3*Time CCl4*CHCl3*Time/s;
repeated/subject = Flask(CCl4*CHCl3) type = ar(1) r;
lsmeans CCl4/pdiff cl adjust = tukey;
run;

/* Scrapping Data for the Combined Model FB */
Data FB_univ;
set LDH_univ;
if (CHCl3 = 10) then output;
if (CHCl3 = 25) then output;
run;

/* Scrapping Data for the FA x FB Combined Model */
Data FAFB_univ;
set LDH_univ;
if (CCl4 = 2.5 and CHCl3 = 10) then output;
if (CCl4 = 2.5 and CHCl3 = 25) then output;
if (CCl4 = 5 and CHCl3 = 10) then output;
if (CCl4 = 5 and CHCl3 = 25) then output;
run;
Proc print data = FB_univ;
run;

/* Fitting the combined model FB (for narrow inferential scope) */
proc mixed data = FB_univ method = reml cl ic covtest;
class CCl4 CHCl3 Time Flask;
model Leakage = CCl4 CHCl3 CCl4*CHCl3 Time CCl4*Time CHCl3*Time CCl4*CHCl3*Time/s;
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repeated/subject = Flask(CCl4*CHCl3) type = arh(1) r;
run;

/* Fitting the combined model FB (for broad inferential scope) */
proc mixed data = FB_univ method = reml cl ic covtest;
class CCl4 CHCl3 Time Flask;
model Leakage = CHCl3 Time CHCl3*Time/s;
random CCl4 CCl4*CHCl3 CCl4*Time CCl4*CHCl3*Time;
repeated/subject = Flask(CCl4*CHCl3) type = ar(1) r;
run;
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